diff options
Diffstat (limited to 'arch/sparc/math-emu/math.c')
-rw-r--r-- | arch/sparc/math-emu/math.c | 551 |
1 files changed, 231 insertions, 320 deletions
diff --git a/arch/sparc/math-emu/math.c b/arch/sparc/math-emu/math.c index 68ccb932a..15690b21e 100644 --- a/arch/sparc/math-emu/math.c +++ b/arch/sparc/math-emu/math.c @@ -1,26 +1,19 @@ -/* +/* * arch/sparc/math-emu/math.c * * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) - * Based on the sparc64 code by Jakub Jelinek. + * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) + * Copyright (C) 1999 David S. Miller (davem@redhat.com) * * This is a good place to start if you're trying to understand the - * emulation code, because it's pretty simple. What we do is + * emulation code, because it's pretty simple. What we do is * essentially analyse the instruction to work out what the operation * is and which registers are involved. We then execute the appropriate * FXXXX function. [The floating point queue introduces a minor wrinkle; * see below...] * The fxxxxx.c files each emulate a single insn. They look relatively * simple because the complexity is hidden away in an unholy tangle - * of preprocessor macros. - * - * WARNING : don't look at the macro definitions unless you - * absolutely have to! They're extremely ugly, rather complicated - * and a single line in an fxxxx.c file can expand to the equivalent - * of 30 lines or more of C. Of course, any error in those 30 lines - * is reported by the compiler as an error in the single line with the - * macro usage... - * Question: should we replace them with inline functions? + * of preprocessor macros. * * The first layer of macros is single.h, double.h, quad.h. Generally * these files define macros for working with floating point numbers @@ -29,11 +22,11 @@ * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number * of machine words required to store the given IEEE format is passed * as a parameter. [double.h and co check the number of bits in a word - * and define FP_ADD_D & co appropriately]. + * and define FP_ADD_D & co appropriately]. * The generic macros are defined in op-common.h. This is where all * the grotty stuff like handling NaNs is coded. To handle the possible * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() - * where wc is the 'number of machine words' parameter (here 2). + * where wc is the 'number of machine words' parameter (here 2). * These are defined in the third layer of macros: op-1.h, op-2.h * and op-4.h. These handle operations on floating point numbers composed * of 1,2 and 4 machine words respectively. [For example, on sparc64 @@ -41,7 +34,7 @@ * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] * soft-fp.h is on the same level as op-common.h, and defines some * macros which are independent of both word size and FP format. - * Finally, sfp-machine.h is the machine dependent part of the + * Finally, sfp-machine.h is the machine dependent part of the * code: it defines the word size and what type a word is. It also * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h * provide several possible flavours of multiply algorithm, most @@ -64,59 +57,11 @@ * so we follow that practice... */ -/* WISHLIST: - * - * + Replace all the macros with inline functions. These should - * have the same effect but be much easier to work with. - * - * + Emulate the IEEE exception flags. We don't currently do this - * because a) it would require significant alterations to - * the emulation macros [see the comments about _FP_NEG() - * in op-common.c and note that we'd need to invent a convention - * for passing in the flags to FXXXX fns and returning them] and - * b) SPARClinux doesn't let users access the flags anyway - * [contrast Solaris, which allows you to examine, clear or set - * the flags, and request that exceptions cause SIGFPE - * [which you then set up a signal handler for, obviously...]]. - * Erm, (b) may quite possibly be garbage. %fsr is user-writable - * so you don't need a syscall. There may or may not be library - * support. - * - * + Emulation of FMULQ, FDIVQ, FSQRTQ, FDMULQ needs to be - * written! - * - * + reindent code to conform to Linux kernel standard :-> - * - * + work out whether all the compile-time warnings are bogus - * - * + check that conversion to/from integers works - * - * + check with the SPARC architecture manual to see if we resolve - * the implementation-dependent bits of the IEEE spec in the - * same manner as the hardware. - * - * + more test cases for the test script always welcome! - * - * + illegal opcodes currently cause SIGFPEs. We should arrange - * to tell the traps.c code to SIGILL instead. Currently, - * everywhere that we return 0 should cause SIGILL, I think. - * SIGFPE should only be caused if we set an IEEE exception bit - * and the relevant trap bit is also set. (this means that - * traps.c should do this; also it should handle the case of - * IEEE exception generated directly by the hardware.) - * Should illegal_fp_register (which is a flavour of fp exception) - * cause SIGFPE or SIGILL? - * - * + the test script needs to be extended to handle the quadword - * and comparison insns. - * - * + _FP_DIV_MEAT_2_udiv_64() appears to work but it should be - * checked by somebody who understands the algorithm :-> - * - * + fpsave() saves the FP queue but fpload() doesn't reload it. +/* TODO: + * fpsave() saves the FP queue but fpload() doesn't reload it. * Therefore when we context switch or change FPU ownership * we have to check to see if the queue had anything in it and - * emulate it if it did. This is going to be a pain. + * emulate it if it did. This is going to be a pain. */ #include <linux/types.h> @@ -124,38 +69,21 @@ #include <linux/mm.h> #include <asm/uaccess.h> +#include "sfp-util.h" #include "soft-fp.h" #define FLOATFUNC(x) extern int x(void *,void *,void *) -/* Current status: we don't properly emulate the difficult quadword - * insns (MUL, DIV, SQRT). - * There are also some ops involving the FP registers which we don't - * emulate: the branch on FP condition flags and the load/store to - * FP regs or FSR. I'm assuming that these will never generate traps - * (not unreasonable if there's an FPU at all; comments in the NetBSD - * kernel source agree on this point). If we wanted to allow - * purely software-emulation of the FPU with FPU totally disabled - * or non-existent, we'd have to emulate these as well. We'd also - * need to alter the fp_disabled trap handler to call the math-emu - * code appropriately. The structure of do_one_mathemu() is also - * inappropriate for these ops (as it has no way to alter the pc, - * for a start) and it might be better to special-case them in do_mathemu(). - * Oh, and you'd need to alter the traps.c code so it didn't try to - * fpsave() and fpload(). If there's genuinely no FPU then there's - * probably bits of kernel stuff that just won't work anyway... - */ - /* The Vn labels indicate what version of the SPARC architecture gas thinks - * each insn is. This is from the binutils source :-> + * each insn is. This is from the binutils source :-> */ /* quadword instructions */ -FLOATFUNC(FSQRTQ); /* v8 NYI */ +FLOATFUNC(FSQRTQ); /* v8 */ FLOATFUNC(FADDQ); /* v8 */ FLOATFUNC(FSUBQ); /* v8 */ -FLOATFUNC(FMULQ); /* v8 NYI */ -FLOATFUNC(FDIVQ); /* v8 NYI */ -FLOATFUNC(FDMULQ); /* v8 NYI */ +FLOATFUNC(FMULQ); /* v8 */ +FLOATFUNC(FDIVQ); /* v8 */ +FLOATFUNC(FDMULQ); /* v8 */ FLOATFUNC(FQTOS); /* v8 */ FLOATFUNC(FQTOD); /* v8 */ FLOATFUNC(FITOQ); /* v8 */ @@ -197,7 +125,7 @@ FLOATFUNC(FITOD); /* v6 */ #define FSR_CEXC_SHIFT 0UL #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT) -static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); +static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); /* Unlike the Sparc64 version (which has a struct fpustate), we * pass the taskstruct corresponding to the task which currently owns the @@ -210,65 +138,65 @@ static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); */ int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) { - /* regs->pc isn't necessarily the PC at which the offending insn is sitting. - * The FPU maintains a queue of FPops which cause traps. - * When it hits an instruction that requires that the trapped op succeeded - * (usually because it reads a reg. that the trapped op wrote) then it - * causes this exception. We need to emulate all the insns on the queue - * and then allow the op to proceed. - * This code should also handle the case where the trap was precise, - * in which case the queue length is zero and regs->pc points at the - * single FPop to be emulated. (this case is untested, though :->) - * You'll need this case if you want to be able to emulate all FPops - * because the FPU either doesn't exist or has been software-disabled. - * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it - * might sound because the Ultra does funky things with a superscalar - * architecture.] - */ - - /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ + /* regs->pc isn't necessarily the PC at which the offending insn is sitting. + * The FPU maintains a queue of FPops which cause traps. + * When it hits an instruction that requires that the trapped op succeeded + * (usually because it reads a reg. that the trapped op wrote) then it + * causes this exception. We need to emulate all the insns on the queue + * and then allow the op to proceed. + * This code should also handle the case where the trap was precise, + * in which case the queue length is zero and regs->pc points at the + * single FPop to be emulated. (this case is untested, though :->) + * You'll need this case if you want to be able to emulate all FPops + * because the FPU either doesn't exist or has been software-disabled. + * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it + * might sound because the Ultra does funky things with a superscalar + * architecture.] + */ + + /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ - int i; - int retcode = 0; /* assume all succeed */ - unsigned long insn; - -#ifdef DEBUG_MATHEMU - printk("In do_mathemu()... pc is %08lx\n", regs->pc); - printk("fpqdepth is %ld\n",fpt->tss.fpqdepth); - for (i = 0; i < fpt->tss.fpqdepth; i++) - printk("%d: %08lx at %08lx\n",i,fpt->tss.fpqueue[i].insn, (unsigned long)fpt->tss.fpqueue[i].insn_addr); -#endif + int i; + int retcode = 0; /* assume all succeed */ + unsigned long insn; - if (fpt->tss.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */ -#ifdef DEBUG_MATHEMU - printk("precise trap at %08lx\n", regs->pc); +#ifdef DEBUG_MATHEMU + printk("In do_mathemu()... pc is %08lx\n", regs->pc); + printk("fpqdepth is %ld\n", fpt->tss.fpqdepth); + for (i = 0; i < fpt->tss.fpqdepth; i++) + printk("%d: %08lx at %08lx\n", i, fpt->tss.fpqueue[i].insn, + (unsigned long)fpt->tss.fpqueue[i].insn_addr); #endif - if (!get_user(insn, (u32 *)regs->pc)) { - retcode = do_one_mathemu(insn, &fpt->tss.fsr, fpt->tss.float_regs); - if (retcode) { - /* in this case we need to fix up PC & nPC */ - regs->pc = regs->npc; - regs->npc += 4; - } - } - return retcode; - } - /* Normal case: need to empty the queue... */ - for (i = 0; i < fpt->tss.fpqdepth; i++) - { - retcode = do_one_mathemu(fpt->tss.fpqueue[i].insn, &(fpt->tss.fsr), fpt->tss.float_regs); - if (!retcode) /* insn failed, no point doing any more */ - break; - } - /* Now empty the queue and clear the queue_not_empty flag */ - if(retcode) - fpt->tss.fsr &= ~(0x3000 | FSR_CEXC_MASK); - else - fpt->tss.fsr &= ~0x3000; - fpt->tss.fpqdepth = 0; - - return retcode; + if (fpt->tss.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */ +#ifdef DEBUG_MATHEMU + printk("precise trap at %08lx\n", regs->pc); +#endif + if (!get_user(insn, (u32 *)regs->pc)) { + retcode = do_one_mathemu(insn, &fpt->tss.fsr, fpt->tss.float_regs); + if (retcode) { + /* in this case we need to fix up PC & nPC */ + regs->pc = regs->npc; + regs->npc += 4; + } + } + return retcode; + } + + /* Normal case: need to empty the queue... */ + for (i = 0; i < fpt->tss.fpqdepth; i++) { + retcode = do_one_mathemu(fpt->tss.fpqueue[i].insn, &(fpt->tss.fsr), fpt->tss.float_regs); + if (!retcode) /* insn failed, no point doing any more */ + break; + } + /* Now empty the queue and clear the queue_not_empty flag */ + if(retcode) + fpt->tss.fsr &= ~(0x3000 | FSR_CEXC_MASK); + else + fpt->tss.fsr &= ~0x3000; + fpt->tss.fpqdepth = 0; + + return retcode; } /* All routines returning an exception to raise should detect @@ -291,46 +219,36 @@ static int record_exception(unsigned long *pfsr, int eflag) if(would_trap != 0) { eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); if((eflag & (eflag - 1)) != 0) { - if(eflag & EFLAG_INVALID) - eflag = EFLAG_INVALID; - else if(eflag & EFLAG_DIVZERO) - eflag = EFLAG_DIVZERO; - else if(eflag & EFLAG_INEXACT) - eflag = EFLAG_INEXACT; + if(eflag & FP_EX_INVALID) + eflag = FP_EX_INVALID; + else if(eflag & FP_EX_OVERFLOW) + eflag = FP_EX_OVERFLOW; + else if(eflag & FP_EX_UNDERFLOW) + eflag = FP_EX_UNDERFLOW; + else if(eflag & FP_EX_DIVZERO) + eflag = FP_EX_DIVZERO; + else if(eflag & FP_EX_INEXACT) + eflag = FP_EX_INEXACT; } } - /* Set CEXC, here are the rules: + /* Set CEXC, here is the rule: * - * 1) In general all FPU ops will set one and only one + * In general all FPU ops will set one and only one * bit in the CEXC field, this is always the case * when the IEEE exception trap is enabled in TEM. - * - * 2) As a special case, if an overflow or underflow - * is being signalled, AND the trap is not enabled - * in TEM, then the inexact field shall also be set. */ fsr &= ~(FSR_CEXC_MASK); - if(would_trap || - (eflag & (EFLAG_OVERFLOW | EFLAG_UNDERFLOW)) == 0) { - fsr |= ((long)eflag << FSR_CEXC_SHIFT); - } else { - fsr |= (((long)eflag << FSR_CEXC_SHIFT) | - (EFLAG_INEXACT << FSR_CEXC_SHIFT)); - } + fsr |= ((long)eflag << FSR_CEXC_SHIFT); - /* Set the AEXC field, rules are: + /* Set the AEXC field, rule is: * - * 1) If a trap would not be generated, the + * If a trap would not be generated, the * CEXC just generated is OR'd into the * existing value of AEXC. - * - * 2) When a trap is generated, AEXC is cleared. */ if(would_trap == 0) fsr |= ((long)eflag << FSR_AEXC_SHIFT); - else - fsr &= ~(FSR_AEXC_MASK); /* If trapping, indicate fault trap type IEEE. */ if(would_trap != 0) @@ -343,157 +261,150 @@ static int record_exception(unsigned long *pfsr, int eflag) static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs) { - /* Emulate the given insn, updating fsr and fregs appropriately. */ - int type = 0; - /* 01 is single, 10 is double, 11 is quad, - * 000011 is rs1, 001100 is rs2, 110000 is rd (00 in rd is fcc) - * 111100000000 tells which ftt that may happen in - * (this field not used on sparc32 code, as we can't - * extract trap type info for ops on the FP queue) - */ - int freg, eflag; - int (*func)(void *,void *,void *) = NULL; - void *rs1 = NULL, *rs2 = NULL, *rd = NULL; + /* Emulate the given insn, updating fsr and fregs appropriately. */ + int type = 0; + /* 01 is single, 10 is double, 11 is quad, + * 000011 is rs1, 001100 is rs2, 110000 is rd (00 in rd is fcc) + * 111100000000 tells which ftt that may happen in + * (this field not used on sparc32 code, as we can't + * extract trap type info for ops on the FP queue) + */ + int freg, eflag; + int (*func)(void *,void *,void *) = NULL; + void *rs1 = NULL, *rs2 = NULL, *rd = NULL; + +#ifdef DEBUG_MATHEMU + printk("In do_mathemu(), emulating %08lx\n", insn); +#endif + if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ { + switch ((insn >> 5) & 0x1ff) { + /* QUAD - ftt == 3 */ + case 0x001: type = 0x314; func = FMOVS; break; + case 0x005: type = 0x314; func = FNEGS; break; + case 0x009: type = 0x314; func = FABSS; break; + case 0x02b: type = 0x33c; func = FSQRTQ; break; + case 0x043: type = 0x33f; func = FADDQ; break; + case 0x047: type = 0x33f; func = FSUBQ; break; + case 0x04b: type = 0x33f; func = FMULQ; break; + case 0x04f: type = 0x33f; func = FDIVQ; break; + case 0x06e: type = 0x33a; func = FDMULQ; break; + case 0x0c7: type = 0x31c; func = FQTOS; break; + case 0x0cb: type = 0x32c; func = FQTOD; break; + case 0x0cc: type = 0x334; func = FITOQ; break; + case 0x0cd: type = 0x334; func = FSTOQ; break; + case 0x0ce: type = 0x338; func = FDTOQ; break; + case 0x0d3: type = 0x31c; func = FQTOI; break; + /* SUBNORMAL - ftt == 2 */ + case 0x029: type = 0x214; func = FSQRTS; break; + case 0x02a: type = 0x228; func = FSQRTD; break; + case 0x041: type = 0x215; func = FADDS; break; + case 0x042: type = 0x22a; func = FADDD; break; + case 0x045: type = 0x215; func = FSUBS; break; + case 0x046: type = 0x22a; func = FSUBD; break; + case 0x049: type = 0x215; func = FMULS; break; + case 0x04a: type = 0x22a; func = FMULD; break; + case 0x04d: type = 0x215; func = FDIVS; break; + case 0x04e: type = 0x22a; func = FDIVD; break; + case 0x069: type = 0x225; func = FSMULD; break; + case 0x0c6: type = 0x218; func = FDTOS; break; + case 0x0c9: type = 0x224; func = FSTOD; break; + case 0x0d1: type = 0x214; func = FSTOI; break; + case 0x0d2: type = 0x218; func = FDTOI; break; + default: +#ifdef DEBUG_MATHEMU + printk("unknown FPop1: %03lx\n",(insn>>5)&0x1ff); +#endif + } + } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ { + switch ((insn >> 5) & 0x1ff) { + case 0x051: type = 0x305; func = FCMPS; break; + case 0x052: type = 0x30a; func = FCMPD; break; + case 0x053: type = 0x30f; func = FCMPQ; break; + case 0x055: type = 0x305; func = FCMPES; break; + case 0x056: type = 0x30a; func = FCMPED; break; + case 0x057: type = 0x30f; func = FCMPEQ; break; + default: #ifdef DEBUG_MATHEMU - printk("In do_mathemu(), emulating %08lx\n", insn); -#endif - - if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ { - switch ((insn >> 5) & 0x1ff) { - /* QUAD - ftt == 3 */ - case 0x001: type = 0x314; func = FMOVS; break; - case 0x005: type = 0x314; func = FNEGS; break; - case 0x009: type = 0x314; func = FABSS; break; - case 0x02b: type = 0x33c; func = FSQRTQ; break; - case 0x043: type = 0x33f; func = FADDQ; break; - case 0x047: type = 0x33f; func = FSUBQ; break; - case 0x04b: type = 0x33f; func = FMULQ; break; - case 0x04f: type = 0x33f; func = FDIVQ; break; - case 0x06e: type = 0x33a; func = FDMULQ; break; - case 0x0c7: type = 0x31c; func = FQTOS; break; - case 0x0cb: type = 0x32c; func = FQTOD; break; - case 0x0cc: type = 0x334; func = FITOQ; break; - case 0x0cd: type = 0x334; func = FSTOQ; break; - case 0x0ce: type = 0x338; func = FDTOQ; break; - case 0x0d3: type = 0x31c; func = FQTOI; break; - /* SUBNORMAL - ftt == 2 */ - case 0x029: type = 0x214; func = FSQRTS; break; - case 0x02a: type = 0x228; func = FSQRTD; break; - case 0x041: type = 0x215; func = FADDS; break; - case 0x042: type = 0x22a; func = FADDD; break; - case 0x045: type = 0x215; func = FSUBS; break; - case 0x046: type = 0x22a; func = FSUBD; break; - case 0x049: type = 0x215; func = FMULS; break; - case 0x04a: type = 0x22a; func = FMULD; break; - case 0x04d: type = 0x215; func = FDIVS; break; - case 0x04e: type = 0x22a; func = FDIVD; break; - case 0x069: type = 0x225; func = FSMULD; break; - case 0x0c6: type = 0x218; func = FDTOS; break; - case 0x0c9: type = 0x224; func = FSTOD; break; - case 0x0d1: type = 0x214; func = FSTOI; break; - case 0x0d2: type = 0x218; func = FDTOI; break; - default: -#ifdef DEBUG_MATHEMU - printk("unknown FPop1: %03lx\n",(insn>>5)&0x1ff); -#endif - } - } - else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ { - switch ((insn >> 5) & 0x1ff) { - case 0x051: type = 0x305; func = FCMPS; break; - case 0x052: type = 0x30a; func = FCMPD; break; - case 0x053: type = 0x30f; func = FCMPQ; break; - case 0x055: type = 0x305; func = FCMPES; break; - case 0x056: type = 0x30a; func = FCMPED; break; - case 0x057: type = 0x30f; func = FCMPEQ; break; - default: -#ifdef DEBUG_MATHEMU - printk("unknown FPop2: %03lx\n",(insn>>5)&0x1ff); -#endif - } - } - - if (!type) { /* oops, didn't recognise that FPop */ - printk("attempt to emulate unrecognised FPop!\n"); - return 0; - } - - /* Decode the registers to be used */ - freg = (*fsr >> 14) & 0xf; + printk("unknown FPop2: %03lx\n",(insn>>5)&0x1ff); +#endif + } + } + + if (!type) { /* oops, didn't recognise that FPop */ + printk("attempt to emulate unrecognised FPop!\n"); + return 0; + } + + /* Decode the registers to be used */ + freg = (*fsr >> 14) & 0xf; - *fsr &= ~0x1c000; /* clear the traptype bits */ - - freg = ((insn >> 14) & 0x1f); - switch (type & 0x3) /* is rs1 single, double or quad? */ - { - case 3: - if (freg & 3) /* quadwords must have bits 4&5 of the */ - { /* encoded reg. number set to zero. */ - *fsr |= (6 << 14); - return 0; /* simulate invalid_fp_register exception */ - } - /* fall through */ - case 2: - if (freg & 1) /* doublewords must have bit 5 zeroed */ - { - *fsr |= (6 << 14); - return 0; - } - } - rs1 = (void *)&fregs[freg]; - freg = (insn & 0x1f); - switch ((type >> 2) & 0x3) - { /* same again for rs2 */ - case 3: - if (freg & 3) /* quadwords must have bits 4&5 of the */ - { /* encoded reg. number set to zero. */ - *fsr |= (6 << 14); - return 0; /* simulate invalid_fp_register exception */ - } - /* fall through */ - case 2: - if (freg & 1) /* doublewords must have bit 5 zeroed */ - { - *fsr |= (6 << 14); - return 0; - } - } - rs2 = (void *)&fregs[freg]; - freg = ((insn >> 25) & 0x1f); - switch ((type >> 4) & 0x3) /* and finally rd. This one's a bit different */ - { - case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */ - if (freg) /* V8 has only one set of condition codes, so */ - { /* anything but 0 in the rd field is an error */ - *fsr |= (6 << 14); /* (should probably flag as invalid opcode */ - return 0; /* but SIGFPE will do :-> ) */ - } - rd = (void *)(fsr); /* FCMPQ and FCMPEQ are special and only */ - break; /* set bits they're supposed to :-> */ - case 3: - if (freg & 3) /* quadwords must have bits 4&5 of the */ - { /* encoded reg. number set to zero. */ - *fsr |= (6 << 14); - return 0; /* simulate invalid_fp_register exception */ - } - /* fall through */ - case 2: - if (freg & 1) /* doublewords must have bit 5 zeroed */ - { - *fsr |= (6 << 14); - return 0; - } - /* fall through */ - case 1: - rd = (void *)&fregs[freg]; - break; - } -#ifdef DEBUG_MATHEMU - printk("executing insn...\n"); -#endif - eflag = func(rd, rs2, rs1); /* do the Right Thing */ - if(eflag == 0) - return 1; /* success! */ - return record_exception(fsr, eflag); + *fsr &= ~0x1c000; /* clear the traptype bits */ + + freg = ((insn >> 14) & 0x1f); + switch (type & 0x3) { /* is rs1 single, double or quad? */ + case 3: + if (freg & 3) { /* quadwords must have bits 4&5 of the */ + /* encoded reg. number set to zero. */ + *fsr |= (6 << 14); + return 0; /* simulate invalid_fp_register exception */ + } + /* fall through */ + case 2: + if (freg & 1) { /* doublewords must have bit 5 zeroed */ + *fsr |= (6 << 14); + return 0; + } + } + rs1 = (void *)&fregs[freg]; + freg = (insn & 0x1f); + switch ((type >> 2) & 0x3) { /* same again for rs2 */ + case 3: + if (freg & 3) { /* quadwords must have bits 4&5 of the */ + /* encoded reg. number set to zero. */ + *fsr |= (6 << 14); + return 0; /* simulate invalid_fp_register exception */ + } + /* fall through */ + case 2: + if (freg & 1) { /* doublewords must have bit 5 zeroed */ + *fsr |= (6 << 14); + return 0; + } + } + rs2 = (void *)&fregs[freg]; + freg = ((insn >> 25) & 0x1f); + switch ((type >> 4) & 0x3) { /* and finally rd. This one's a bit different */ + case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */ + if (freg) { /* V8 has only one set of condition codes, so */ + /* anything but 0 in the rd field is an error */ + *fsr |= (6 << 14); /* (should probably flag as invalid opcode */ + return 0; /* but SIGFPE will do :-> ) */ + } + rd = (void *)(fsr); /* FCMPQ and FCMPEQ are special and only */ + break; /* set bits they're supposed to :-> */ + case 3: + if (freg & 3) { /* quadwords must have bits 4&5 of the */ + /* encoded reg. number set to zero. */ + *fsr |= (6 << 14); + return 0; /* simulate invalid_fp_register exception */ + } + /* fall through */ + case 2: + if (freg & 1) { /* doublewords must have bit 5 zeroed */ + *fsr |= (6 << 14); + return 0; + } + /* fall through */ + case 1: + rd = (void *)&fregs[freg]; + break; + } +#ifdef DEBUG_MATHEMU + printk("executing insn...\n"); +#endif + eflag = func(rd, rs2, rs1); /* do the Right Thing */ + if(eflag == 0) + return 1; /* success! */ + return record_exception(fsr, eflag); } |