diff options
Diffstat (limited to 'arch/sparc/math-emu/sfp-machine.h')
-rw-r--r-- | arch/sparc/math-emu/sfp-machine.h | 496 |
1 files changed, 151 insertions, 345 deletions
diff --git a/arch/sparc/math-emu/sfp-machine.h b/arch/sparc/math-emu/sfp-machine.h index 67a74580c..99448502a 100644 --- a/arch/sparc/math-emu/sfp-machine.h +++ b/arch/sparc/math-emu/sfp-machine.h @@ -1,6 +1,11 @@ -/* Machine-dependent software floating-point definitions. Sparc version. - Copyright (C) 1997 Free Software Foundation, Inc. +/* Machine-dependent software floating-point definitions. + Sparc userland (_Q_*) version. + Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. This file is part of the GNU C Library. + Contributed by Richard Henderson (rth@cygnus.com), + Jakub Jelinek (jj@ultra.linux.cz), + David S. Miller (davem@redhat.com) and + Peter Maydell (pmaydell@chiark.greenend.org.uk). The GNU C Library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as @@ -15,382 +20,183 @@ You should have received a copy of the GNU Library General Public License along with the GNU C Library; see the file COPYING.LIB. If not, write to the Free Software Foundation, Inc., - 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. + 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ - Actually, this is a sparc (32bit) version, written based on the - i386 and sparc64 versions, by me, - Peter Maydell (pmaydell@chiark.greenend.org.uk). - Comments are by and large also mine, although they may be inaccurate. - - In picking out asm fragments I've gone with the lowest common - denominator, which also happens to be the hardware I have :-> - That is, a SPARC without hardware multiply and divide. - */ - - -/* basic word size definitions */ +#ifndef _SFP_MACHINE_H +#define _SFP_MACHINE_H + #define _FP_W_TYPE_SIZE 32 #define _FP_W_TYPE unsigned long #define _FP_WS_TYPE signed long #define _FP_I_TYPE long -/* You can optionally code some things like addition in asm. For - * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't - * then you get a fragment of C code [if you change an #ifdef 0 - * in op-2.h] or a call to add_ssaaaa (see below). - * Good places to look for asm fragments to use are gcc and glibc. - * gcc's longlong.h is useful. - */ +#define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm) +#define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm) +#define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_4_wide(Q,R,X,Y,umul_ppmm) -/* We need to know how to multiply and divide. If the host word size - * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which - * codes the multiply with whatever gcc does to 'a * b'. - * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm - * function that can multiply two 1W values and get a 2W result. - * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which - * does bitshifting to avoid overflow. - * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size - * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or - * _FP_DIV_HELP_ldiv (see op-1.h). - * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W). - * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd - * to do this.] - * In general, 'n' is the number of words required to hold the type, - * and 't' is either S, D or Q for single/double/quad. - * -- PMM - */ -/* Example: SPARC64: - * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_imm(S,R,X,Y) - * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm) - * #define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm) - * - * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) - * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y) - * #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv_64(Q,R,X,Y) - * - * Example: i386: - * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64) - * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64) - * - * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32) - * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) - */ -#define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,umul_ppmm) -#define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,umul_ppmm) -/* FIXME: This is not implemented, but should be soon */ -#define _FP_MUL_MEAT_Q(R,X,Y) _FP_FRAC_SET_4(R, _FP_ZEROFRAC_4) -#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) -#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) -/* FIXME: This is not implemented, but should be soon */ -#define _FP_DIV_MEAT_Q(R,X,Y) _FP_FRAC_SET_4(R, _FP_ZEROFRAC_4) +#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y) +#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) +#define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_4_udiv(Q,R,X,Y) -/* These macros define what NaN looks like. They're supposed to expand to - * a comma-separated set of 32bit unsigned ints that encode NaN. - */ -#define _FP_NANFRAC_S _FP_QNANBIT_S -#define _FP_NANFRAC_D _FP_QNANBIT_D, 0 -#define _FP_NANFRAC_Q _FP_QNANBIT_Q, 0, 0, 0 +#define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1) +#define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1), -1 +#define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1 +#define _FP_NANSIGN_S 0 +#define _FP_NANSIGN_D 0 +#define _FP_NANSIGN_Q 0 #define _FP_KEEPNANFRACP 1 -/* This macro appears to be called when both X and Y are NaNs, and - * has to choose one and copy it to R. i386 goes for the larger of the - * two, sparc64 just picks Y. I don't understand this at all so I'll - * go with sparc64 because it's shorter :-> -- PMM +/* If one NaN is signaling and the other is not, + * we choose that one, otherwise we choose X. + */ +/* For _Qp_* and _Q_*, this should prefer X, for + * CPU instruction emulation this should prefer Y. + * (see SPAMv9 B.2.2 section). */ #define _FP_CHOOSENAN(fs, wc, R, X, Y) \ do { \ - R##_s = Y##_s; \ - _FP_FRAC_COPY_##wc(R,Y); \ + if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs) \ + && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ + { \ + R##_s = X##_s; \ + _FP_FRAC_COPY_##wc(R,X); \ + } \ + else \ + { \ + R##_s = Y##_s; \ + _FP_FRAC_COPY_##wc(R,Y); \ + } \ R##_c = FP_CLS_NAN; \ } while (0) - -#define __FP_UNPACK_RAW_1(fs, X, val) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - X##_f = _flo->bits.frac; \ - X##_e = _flo->bits.exp; \ - X##_s = _flo->bits.sign; \ - } while (0) - -#define __FP_UNPACK_RAW_2(fs, X, val) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - X##_f0 = _flo->bits.frac0; \ - X##_f1 = _flo->bits.frac1; \ - X##_e = _flo->bits.exp; \ - X##_s = _flo->bits.sign; \ - } while (0) -#define __FP_UNPACK_RAW_4(fs, X, val) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - X##_f[0] = _flo->bits.frac0; \ - X##_f[1] = _flo->bits.frac1; \ - X##_f[2] = _flo->bits.frac2; \ - X##_f[3] = _flo->bits.frac3; \ - X##_e = _flo->bits.exp; \ - X##_s = _flo->bits.sign; \ +/* Some assembly to speed things up. */ +#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ + __asm__ ("addcc %r7,%8,%2 + addxcc %r5,%6,%1 + addx %r3,%4,%0" \ + : "=r" ((USItype)(r2)), \ + "=&r" ((USItype)(r1)), \ + "=&r" ((USItype)(r0)) \ + : "%rJ" ((USItype)(x2)), \ + "rI" ((USItype)(y2)), \ + "%rJ" ((USItype)(x1)), \ + "rI" ((USItype)(y1)), \ + "%rJ" ((USItype)(x0)), \ + "rI" ((USItype)(y0)) \ + : "cc") + +#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \ + __asm__ ("subcc %r7,%8,%2 + subxcc %r5,%6,%1 + subx %r3,%4,%0" \ + : "=r" ((USItype)(r2)), \ + "=&r" ((USItype)(r1)), \ + "=&r" ((USItype)(r0)) \ + : "%rJ" ((USItype)(x2)), \ + "rI" ((USItype)(y2)), \ + "%rJ" ((USItype)(x1)), \ + "rI" ((USItype)(y1)), \ + "%rJ" ((USItype)(x0)), \ + "rI" ((USItype)(y0)) \ + : "cc") + +#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + /* We need to fool gcc, as we need to pass more than 10 \ + input/outputs. */ \ + register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \ + __asm__ __volatile__ (" + addcc %r8,%9,%1 + addxcc %r6,%7,%0 + addxcc %r4,%5,%%g2 + addx %r2,%3,%%g1" \ + : "=&r" ((USItype)(r1)), \ + "=&r" ((USItype)(r0)) \ + : "%rJ" ((USItype)(x3)), \ + "rI" ((USItype)(y3)), \ + "%rJ" ((USItype)(x2)), \ + "rI" ((USItype)(y2)), \ + "%rJ" ((USItype)(x1)), \ + "rI" ((USItype)(y1)), \ + "%rJ" ((USItype)(x0)), \ + "rI" ((USItype)(y0)) \ + : "cc", "g1", "g2"); \ + __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \ + r3 = _t1; r2 = _t2; \ } while (0) -#define __FP_UNPACK_S(X,val) \ - do { \ - __FP_UNPACK_RAW_1(S,X,val); \ - _FP_UNPACK_CANONICAL(S,1,X); \ +#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \ + do { \ + /* We need to fool gcc, as we need to pass more than 10 \ + input/outputs. */ \ + register USItype _t1 __asm__ ("g1"), _t2 __asm__ ("g2"); \ + __asm__ __volatile__ (" + subcc %r8,%9,%1 + subxcc %r6,%7,%0 + subxcc %r4,%5,%%g2 + subx %r2,%3,%%g1" \ + : "=&r" ((USItype)(r1)), \ + "=&r" ((USItype)(r0)) \ + : "%rJ" ((USItype)(x3)), \ + "rI" ((USItype)(y3)), \ + "%rJ" ((USItype)(x2)), \ + "rI" ((USItype)(y2)), \ + "%rJ" ((USItype)(x1)), \ + "rI" ((USItype)(y1)), \ + "%rJ" ((USItype)(x0)), \ + "rI" ((USItype)(y0)) \ + : "cc", "g1", "g2"); \ + __asm__ __volatile__ ("" : "=r" (_t1), "=r" (_t2)); \ + r3 = _t1; r2 = _t2; \ } while (0) -#define __FP_UNPACK_D(X,val) \ - do { \ - __FP_UNPACK_RAW_2(D,X,val); \ - _FP_UNPACK_CANONICAL(D,2,X); \ - } while (0) - -#define __FP_UNPACK_Q(X,val) \ - do { \ - __FP_UNPACK_RAW_4(Q,X,val); \ - _FP_UNPACK_CANONICAL(Q,4,X); \ - } while (0) - -#define __FP_PACK_RAW_1(fs, val, X) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - _flo->bits.frac = X##_f; \ - _flo->bits.exp = X##_e; \ - _flo->bits.sign = X##_s; \ - } while (0) - -#define __FP_PACK_RAW_2(fs, val, X) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - _flo->bits.frac0 = X##_f0; \ - _flo->bits.frac1 = X##_f1; \ - _flo->bits.exp = X##_e; \ - _flo->bits.sign = X##_s; \ - } while (0) - -#define __FP_PACK_RAW_4(fs, val, X) \ - do { \ - union _FP_UNION_##fs *_flo = \ - (union _FP_UNION_##fs *)val; \ - \ - _flo->bits.frac0 = X##_f[0]; \ - _flo->bits.frac1 = X##_f[1]; \ - _flo->bits.frac2 = X##_f[2]; \ - _flo->bits.frac3 = X##_f[3]; \ - _flo->bits.exp = X##_e; \ - _flo->bits.sign = X##_s; \ - } while (0) - -#include <linux/kernel.h> -#include <linux/sched.h> - -/* We only actually write to the destination register - * if exceptions signalled (if any) will not trap. - */ -#ifdef __SMP__ -#define __FPU_TEM \ - (((current->tss.fsr)>>23)&0x1f) -#else +#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) __FP_FRAC_SUB_3(x2,x1,x0,x2,x1,x0,y2,y1,y0) + +#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) __FP_FRAC_SUB_4(x3,x2,x1,x0,x3,x2,x1,x0,y3,y2,y1,y0) + +#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \ + __asm__ ("addcc %3,%4,%3 + addxcc %2,%%g0,%2 + addxcc %1,%%g0,%1 + addx %0,%%g0,%0" \ + : "=&r" ((USItype)(x3)), \ + "=&r" ((USItype)(x2)), \ + "=&r" ((USItype)(x1)), \ + "=&r" ((USItype)(x0)) \ + : "rI" ((USItype)(i)), \ + "0" ((USItype)(x3)), \ + "1" ((USItype)(x2)), \ + "2" ((USItype)(x1)), \ + "3" ((USItype)(x0)) \ + : "cc") + +#ifndef __SMP__ extern struct task_struct *last_task_used_math; -#define __FPU_TEM \ - (((last_task_used_math->tss.fsr)>>23)&0x1f) #endif -#define __FPU_TRAP_P(bits) \ - ((__FPU_TEM & (bits)) != 0) - -#define __FP_PACK_S(val,X) \ -({ int __exc = _FP_PACK_CANONICAL(S,1,X); \ - if(!__exc || !__FPU_TRAP_P(__exc)) \ - __FP_PACK_RAW_1(S,val,X); \ - __exc; \ -}) - -#define __FP_PACK_D(val,X) \ -({ int __exc = _FP_PACK_CANONICAL(D,2,X); \ - if(!__exc || !__FPU_TRAP_P(__exc)) \ - __FP_PACK_RAW_2(D,val,X); \ - __exc; \ -}) - -#define __FP_PACK_Q(val,X) \ -({ int __exc = _FP_PACK_CANONICAL(Q,4,X); \ - if(!__exc || !__FPU_TRAP_P(__exc)) \ - __FP_PACK_RAW_4(Q,val,X); \ - __exc; \ -}) /* Obtain the current rounding mode. */ +#ifndef FP_ROUNDMODE #ifdef __SMP__ #define FP_ROUNDMODE ((current->tss.fsr >> 30) & 0x3) #else #define FP_ROUNDMODE ((last_task_used_math->tss.fsr >> 30) & 0x3) #endif +#endif -/* the asm fragments go here: all these are taken from glibc-2.0.5's stdlib/longlong.h */ - -#include <linux/types.h> -#include <asm/byteorder.h> - -/* add_ssaaaa is used in op-2.h and should be equivalent to - * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al)) - * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, - * high_addend_2, low_addend_2) adds two UWtype integers, composed by - * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 - * respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow - * (i.e. carry out) is not stored anywhere, and is lost. - */ -#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ - __asm__ ("addcc %r4,%5,%1 - addx %r2,%3,%0" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "%rJ" ((USItype)(ah)), \ - "rI" ((USItype)(bh)), \ - "%rJ" ((USItype)(al)), \ - "rI" ((USItype)(bl)) \ - : "cc") - - -/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to - * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al)) - * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, - * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, - * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and - * LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE - * and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere, - * and is lost. - */ - -#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ - __asm__ ("subcc %r4,%5,%1 - subx %r2,%3,%0" \ - : "=r" ((USItype)(sh)), \ - "=&r" ((USItype)(sl)) \ - : "rJ" ((USItype)(ah)), \ - "rI" ((USItype)(bh)), \ - "rJ" ((USItype)(al)), \ - "rI" ((USItype)(bl)) \ - : "cc") - - -/* asm fragments for mul and div */ -/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two - * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype - * word product in HIGH_PROD and LOW_PROD. - * These look ugly because the sun4/4c don't have umul/udiv/smul/sdiv in - * hardware. - */ -#define umul_ppmm(w1, w0, u, v) \ - __asm__ ("! Inlined umul_ppmm - wr %%g0,%2,%%y ! SPARC has 0-3 delay insn after a wr - sra %3,31,%%g2 ! Don't move this insn - and %2,%%g2,%%g2 ! Don't move this insn - andcc %%g0,0,%%g1 ! Don't move this insn - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,%3,%%g1 - mulscc %%g1,0,%%g1 - add %%g1,%%g2,%0 - rd %%y,%1" \ - : "=r" ((USItype)(w1)), \ - "=r" ((USItype)(w0)) \ - : "%rI" ((USItype)(u)), \ - "r" ((USItype)(v)) \ - : "%g1", "%g2", "cc") - -/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, - * denominator) divides a UDWtype, composed by the UWtype integers - * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient - * in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less - * than DENOMINATOR for correct operation. If, in addition, the most - * significant bit of DENOMINATOR must be 1, then the pre-processor symbol - * UDIV_NEEDS_NORMALIZATION is defined to 1. - */ - -#define udiv_qrnnd(q, r, n1, n0, d) \ - __asm__ ("! Inlined udiv_qrnnd - mov 32,%%g1 - subcc %1,%2,%%g0 -1: bcs 5f - addxcc %0,%0,%0 ! shift n1n0 and a q-bit in lsb - sub %1,%2,%1 ! this kills msb of n - addx %1,%1,%1 ! so this can't give carry - subcc %%g1,1,%%g1 -2: bne 1b - subcc %1,%2,%%g0 - bcs 3f - addxcc %0,%0,%0 ! shift n1n0 and a q-bit in lsb - b 3f - sub %1,%2,%1 ! this kills msb of n -4: sub %1,%2,%1 -5: addxcc %1,%1,%1 - bcc 2b - subcc %%g1,1,%%g1 -! Got carry from n. Subtract next step to cancel this carry. - bne 4b - addcc %0,%0,%0 ! shift n1n0 and a 0-bit in lsb - sub %1,%2,%1 -3: xnor %0,0,%0 - ! End of inline udiv_qrnnd" \ - : "=&r" ((USItype) (q)), \ - "=&r" ((USItype) (r)) \ - : "r" ((USItype) (d)), \ - "1" ((USItype) (n1)), \ - "0" ((USItype) (n0)) : "%g1", "cc") - -#define UDIV_NEEDS_NORMALIZATION 0 +/* Exception flags. */ +#define FP_EX_INVALID (1 << 4) +#define FP_EX_OVERFLOW (1 << 3) +#define FP_EX_UNDERFLOW (1 << 2) +#define FP_EX_DIVZERO (1 << 1) +#define FP_EX_INEXACT (1 << 0) -#define abort() \ - return 0 +#define FP_HANDLE_EXCEPTIONS return _fex -#ifdef __BIG_ENDIAN -#define __BYTE_ORDER __BIG_ENDIAN +#ifdef __SMP__ +#define FP_INHIBIT_RESULTS ((current->tss.fsr >> 23) & _fex) #else -#define __BYTE_ORDER __LITTLE_ENDIAN +#define FP_INHIBIT_RESULTS ((last_task_used_math->tss.fsr >> 23) & _fex) #endif -/* Exception flags. */ -#define EFLAG_INVALID (1 << 4) -#define EFLAG_OVERFLOW (1 << 3) -#define EFLAG_UNDERFLOW (1 << 2) -#define EFLAG_DIVZERO (1 << 1) -#define EFLAG_INEXACT (1 << 0) +#endif |