From d6434e1042f3b0a6dfe1b1f615af369486f9b1fa Mon Sep 17 00:00:00 2001 From: Ralf Baechle Date: Sat, 9 Oct 1999 00:00:47 +0000 Subject: Merge with 2.3.19. --- arch/ppc/math-emu/op-common.h | 690 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 690 insertions(+) create mode 100644 arch/ppc/math-emu/op-common.h (limited to 'arch/ppc/math-emu/op-common.h') diff --git a/arch/ppc/math-emu/op-common.h b/arch/ppc/math-emu/op-common.h new file mode 100644 index 000000000..374045830 --- /dev/null +++ b/arch/ppc/math-emu/op-common.h @@ -0,0 +1,690 @@ + +#define _FP_DECL(wc, X) \ + _FP_I_TYPE X##_c, X##_s, X##_e; \ + _FP_FRAC_DECL_##wc(X) + +/* + * Finish truely unpacking a native fp value by classifying the kind + * of fp value and normalizing both the exponent and the fraction. + */ + +#define _FP_UNPACK_CANONICAL(fs, wc, X) \ +do { \ + switch (X##_e) \ + { \ + default: \ + _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs; \ + _FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \ + X##_e -= _FP_EXPBIAS_##fs; \ + X##_c = FP_CLS_NORMAL; \ + break; \ + \ + case 0: \ + if (_FP_FRAC_ZEROP_##wc(X)) \ + X##_c = FP_CLS_ZERO; \ + else \ + { \ + /* a denormalized number */ \ + _FP_I_TYPE _shift; \ + _FP_FRAC_CLZ_##wc(_shift, X); \ + _shift -= _FP_FRACXBITS_##fs; \ + _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \ + X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \ + X##_c = FP_CLS_NORMAL; \ + } \ + break; \ + \ + case _FP_EXPMAX_##fs: \ + if (_FP_FRAC_ZEROP_##wc(X)) \ + X##_c = FP_CLS_INF; \ + else \ + /* we don't differentiate between signaling and quiet nans */ \ + X##_c = FP_CLS_NAN; \ + break; \ + } \ +} while (0) + + +/* + * Before packing the bits back into the native fp result, take care + * of such mundane things as rounding and overflow. Also, for some + * kinds of fp values, the original parts may not have been fully + * extracted -- but that is ok, we can regenerate them now. + */ + +#define _FP_PACK_CANONICAL(fs, wc, X) \ +({int __ret = 0; \ + switch (X##_c) \ + { \ + case FP_CLS_NORMAL: \ + X##_e += _FP_EXPBIAS_##fs; \ + if (X##_e > 0) \ + { \ + __ret |= _FP_ROUND(wc, X); \ + if (_FP_FRAC_OVERP_##wc(fs, X)) \ + { \ + _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1)); \ + X##_e++; \ + } \ + else \ + _FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \ + if (X##_e >= _FP_EXPMAX_##fs) \ + { \ + /* overflow to infinity */ \ + X##_e = _FP_EXPMAX_##fs; \ + _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ + __ret |= EFLAG_OVERFLOW; \ + } \ + } \ + else \ + { \ + /* we've got a denormalized number */ \ + X##_e = -X##_e + 1; \ + if (X##_e <= _FP_WFRACBITS_##fs) \ + { \ + _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \ + __ret |= _FP_ROUND(wc, X); \ + _FP_FRAC_SLL_##wc(X, 1); \ + if (_FP_FRAC_OVERP_##wc(fs, X)) \ + { \ + X##_e = 1; \ + _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ + } \ + else \ + { \ + X##_e = 0; \ + _FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1); \ + __ret |= EFLAG_UNDERFLOW; \ + } \ + } \ + else \ + { \ + /* underflow to zero */ \ + X##_e = 0; \ + _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ + __ret |= EFLAG_UNDERFLOW; \ + } \ + } \ + break; \ + \ + case FP_CLS_ZERO: \ + X##_e = 0; \ + _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ + break; \ + \ + case FP_CLS_INF: \ + X##_e = _FP_EXPMAX_##fs; \ + _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ + break; \ + \ + case FP_CLS_NAN: \ + X##_e = _FP_EXPMAX_##fs; \ + if (!_FP_KEEPNANFRACP) \ + { \ + _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \ + X##_s = 0; \ + } \ + else \ + _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs; \ + break; \ + } \ + __ret; \ +}) + + +/* + * Main addition routine. The input values should be cooked. + */ + +#define _FP_ADD(fs, wc, R, X, Y) \ +do { \ + switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ + { \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ + { \ + /* shift the smaller number so that its exponent matches the larger */ \ + _FP_I_TYPE diff = X##_e - Y##_e; \ + \ + if (diff < 0) \ + { \ + diff = -diff; \ + if (diff <= _FP_WFRACBITS_##fs) \ + _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \ + else if (!_FP_FRAC_ZEROP_##wc(X)) \ + _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \ + else \ + _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ + R##_e = Y##_e; \ + } \ + else \ + { \ + if (diff > 0) \ + { \ + if (diff <= _FP_WFRACBITS_##fs) \ + _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \ + else if (!_FP_FRAC_ZEROP_##wc(Y)) \ + _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \ + else \ + _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc); \ + } \ + R##_e = X##_e; \ + } \ + \ + R##_c = FP_CLS_NORMAL; \ + \ + if (X##_s == Y##_s) \ + { \ + R##_s = X##_s; \ + _FP_FRAC_ADD_##wc(R, X, Y); \ + if (_FP_FRAC_OVERP_##wc(fs, R)) \ + { \ + _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ + R##_e++; \ + } \ + } \ + else \ + { \ + R##_s = X##_s; \ + _FP_FRAC_SUB_##wc(R, X, Y); \ + if (_FP_FRAC_ZEROP_##wc(R)) \ + { \ + /* return an exact zero */ \ + if (FP_ROUNDMODE == FP_RND_MINF) \ + R##_s |= Y##_s; \ + else \ + R##_s &= Y##_s; \ + R##_c = FP_CLS_ZERO; \ + } \ + else \ + { \ + if (_FP_FRAC_NEGP_##wc(R)) \ + { \ + _FP_FRAC_SUB_##wc(R, Y, X); \ + R##_s = Y##_s; \ + } \ + \ + /* renormalize after subtraction */ \ + _FP_FRAC_CLZ_##wc(diff, R); \ + diff -= _FP_WFRACXBITS_##fs; \ + if (diff) \ + { \ + R##_e -= diff; \ + _FP_FRAC_SLL_##wc(R, diff); \ + } \ + } \ + } \ + break; \ + } \ + \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ + _FP_CHOOSENAN(fs, wc, R, X, Y); \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ + R##_e = X##_e; \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ + _FP_FRAC_COPY_##wc(R, X); \ + R##_s = X##_s; \ + R##_c = X##_c; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ + R##_e = Y##_e; \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ + _FP_FRAC_COPY_##wc(R, Y); \ + R##_s = Y##_s; \ + R##_c = Y##_c; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ + if (X##_s != Y##_s) \ + { \ + /* +INF + -INF => NAN */ \ + _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ + R##_s = X##_s ^ Y##_s; \ + R##_c = FP_CLS_NAN; \ + break; \ + } \ + /* FALLTHRU */ \ + \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ + R##_s = X##_s; \ + R##_c = FP_CLS_INF; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ + R##_s = Y##_s; \ + R##_c = FP_CLS_INF; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ + /* make sure the sign is correct */ \ + if (FP_ROUNDMODE == FP_RND_MINF) \ + R##_s = X##_s | Y##_s; \ + else \ + R##_s = X##_s & Y##_s; \ + R##_c = FP_CLS_ZERO; \ + break; \ + \ + default: \ + abort(); \ + } \ +} while (0) + + +/* + * Main negation routine. FIXME -- when we care about setting exception + * bits reliably, this will not do. We should examine all of the fp classes. + */ + +#define _FP_NEG(fs, wc, R, X) \ + do { \ + _FP_FRAC_COPY_##wc(R, X); \ + R##_c = X##_c; \ + R##_e = X##_e; \ + R##_s = 1 ^ X##_s; \ + } while (0) + + +/* + * Main multiplication routine. The input values should be cooked. + */ + +#define _FP_MUL(fs, wc, R, X, Y) \ +do { \ + R##_s = X##_s ^ Y##_s; \ + switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ + { \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ + R##_c = FP_CLS_NORMAL; \ + R##_e = X##_e + Y##_e + 1; \ + \ + _FP_MUL_MEAT_##fs(R,X,Y); \ + \ + if (_FP_FRAC_OVERP_##wc(fs, R)) \ + _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \ + else \ + R##_e--; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ + _FP_CHOOSENAN(fs, wc, R, X, Y); \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ + R##_s = X##_s; \ + \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ + _FP_FRAC_COPY_##wc(R, X); \ + R##_c = X##_c; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ + R##_s = Y##_s; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ + _FP_FRAC_COPY_##wc(R, Y); \ + R##_c = Y##_c; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ + R##_c = FP_CLS_NAN; \ + _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ + break; \ + \ + default: \ + abort(); \ + } \ +} while (0) + + +/* + * Main division routine. The input values should be cooked. + */ + +#define _FP_DIV(fs, wc, R, X, Y) \ +do { \ + R##_s = X##_s ^ Y##_s; \ + switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ + { \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ + R##_c = FP_CLS_NORMAL; \ + R##_e = X##_e - Y##_e; \ + \ + _FP_DIV_MEAT_##fs(R,X,Y); \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ + _FP_CHOOSENAN(fs, wc, R, X, Y); \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ + R##_s = X##_s; \ + _FP_FRAC_COPY_##wc(R, X); \ + R##_c = X##_c; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ + R##_s = Y##_s; \ + _FP_FRAC_COPY_##wc(R, Y); \ + R##_c = Y##_c; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ + R##_c = FP_CLS_ZERO; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ + R##_c = FP_CLS_INF; \ + break; \ + \ + case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ + case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ + R##_c = FP_CLS_NAN; \ + _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ + break; \ + \ + default: \ + abort(); \ + } \ +} while (0) + + +/* + * Main differential comparison routine. The inputs should be raw not + * cooked. The return is -1,0,1 for normal values, 2 otherwise. + */ + +#define _FP_CMP(fs, wc, ret, X, Y, un) \ + do { \ + /* NANs are unordered */ \ + if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ + || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ + { \ + ret = un; \ + } \ + else \ + { \ + int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \ + int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \ + \ + if (__x_zero && __y_zero) \ + ret = 0; \ + else if (__x_zero) \ + ret = Y##_s ? 1 : -1; \ + else if (__y_zero) \ + ret = X##_s ? -1 : 1; \ + else if (X##_s != Y##_s) \ + ret = X##_s ? -1 : 1; \ + else if (X##_e > Y##_e) \ + ret = X##_s ? -1 : 1; \ + else if (X##_e < Y##_e) \ + ret = X##_s ? 1 : -1; \ + else if (_FP_FRAC_GT_##wc(X, Y)) \ + ret = X##_s ? -1 : 1; \ + else if (_FP_FRAC_GT_##wc(Y, X)) \ + ret = X##_s ? 1 : -1; \ + else \ + ret = 0; \ + } \ + } while (0) + + +/* Simplification for strict equality. */ + +#define _FP_CMP_EQ(fs, wc, ret, X, Y) \ + do { \ + /* NANs are unordered */ \ + if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ + || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ + { \ + ret = 1; \ + } \ + else \ + { \ + ret = !(X##_e == Y##_e \ + && _FP_FRAC_EQ_##wc(X, Y) \ + && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ + } \ + } while (0) + +/* + * Main square root routine. The input value should be cooked. + */ + +#define _FP_SQRT(fs, wc, R, X) \ +do { \ + _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \ + _FP_W_TYPE q; \ + switch (X##_c) \ + { \ + case FP_CLS_NAN: \ + R##_s = 0; \ + R##_c = FP_CLS_NAN; \ + _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ + break; \ + case FP_CLS_INF: \ + if (X##_s) \ + { \ + R##_s = 0; \ + R##_c = FP_CLS_NAN; /* sNAN */ \ + } \ + else \ + { \ + R##_s = 0; \ + R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \ + } \ + break; \ + case FP_CLS_ZERO: \ + R##_s = X##_s; \ + R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \ + break; \ + case FP_CLS_NORMAL: \ + R##_s = 0; \ + if (X##_s) \ + { \ + R##_c = FP_CLS_NAN; /* sNAN */ \ + break; \ + } \ + R##_c = FP_CLS_NORMAL; \ + if (X##_e & 1) \ + _FP_FRAC_SLL_##wc(X, 1); \ + R##_e = X##_e >> 1; \ + _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \ + _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \ + q = _FP_OVERFLOW_##fs; \ + _FP_FRAC_SLL_##wc(X, 1); \ + _FP_SQRT_MEAT_##wc(R, S, T, X, q); \ + _FP_FRAC_SRL_##wc(R, 1); \ + } \ + } while (0) + +/* + * Convert from FP to integer + */ + +/* "When a NaN, infinity, large positive argument >= 2147483648.0, or + * large negative argument <= -2147483649.0 is converted to an integer, + * the invalid_current bit...should be set and fp_exception_IEEE_754 should + * be raised. If the floating point invalid trap is disabled, no trap occurs + * and a numerical result is generated: if the sign bit of the operand + * is 0, the result is 2147483647; if the sign bit of the operand is 1, + * the result is -2147483648." + * Similarly for conversion to extended ints, except that the boundaries + * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and + * -2^63 for s=1. + * -- SPARC Architecture Manual V9, Appendix B, which specifies how + * SPARCs resolve implementation dependencies in the IEEE-754 spec. + * I don't believe that the code below follows this. I'm not even sure + * it's right! + * It doesn't cope with needing to convert to an n bit integer when there + * is no n bit integer type. Fortunately gcc provides long long so this + * isn't a problem for sparc32. + * I have, however, fixed its NaN handling to conform as above. + * -- PMM 02/1998 + * NB: rsigned is not 'is r declared signed?' but 'should the value stored + * in r be signed or unsigned?'. r is always(?) declared unsigned. + * Comments below are mine, BTW -- PMM + */ +#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ + do { \ + switch (X##_c) \ + { \ + case FP_CLS_NORMAL: \ + if (X##_e < 0) \ + { \ + /* case FP_CLS_NAN: see above! */ \ + case FP_CLS_ZERO: \ + r = 0; \ + } \ + else if (X##_e >= rsize - (rsigned != 0)) \ + { /* overflow */ \ + case FP_CLS_NAN: \ + case FP_CLS_INF: \ + if (rsigned) \ + { \ + r = 1; \ + r <<= rsize - 1; \ + r -= 1 - X##_s; \ + } \ + else \ + { \ + r = 0; \ + if (!X##_s) \ + r = ~r; \ + } \ + } \ + else \ + { \ + if (_FP_W_TYPE_SIZE*wc < rsize) \ + { \ + _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ + r <<= X##_e - _FP_WFRACBITS_##fs; \ + } \ + else \ + { \ + if (X##_e >= _FP_WFRACBITS_##fs) \ + _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\ + else \ + _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\ + _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ + } \ + if (rsigned && X##_s) \ + r = -r; \ + } \ + break; \ + } \ + } while (0) + +#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \ + do { \ + if (r) \ + { \ + X##_c = FP_CLS_NORMAL; \ + \ + if ((X##_s = (r < 0))) \ + r = -r; \ + /* Note that `r' is now considered unsigned, so we don't have \ + to worry about the single signed overflow case. */ \ + \ + if (rsize <= _FP_W_TYPE_SIZE) \ + __FP_CLZ(X##_e, r); \ + else \ + __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \ + (_FP_W_TYPE)r); \ + if (rsize < _FP_W_TYPE_SIZE) \ + X##_e -= (_FP_W_TYPE_SIZE - rsize); \ + X##_e = rsize - X##_e - 1; \ + \ + if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \ + __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \ + r &= ~((_FP_W_TYPE)1 << X##_e); \ + _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \ + _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \ + } \ + else \ + { \ + X##_c = FP_CLS_ZERO, X##_s = 0; \ + } \ + } while (0) + + +#define FP_CONV(dfs,sfs,dwc,swc,D,S) \ + do { \ + _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \ + D##_e = S##_e; \ + D##_c = S##_c; \ + D##_s = S##_s; \ + } while (0) + +/* + * Helper primitives. + */ + +/* Count leading zeros in a word. */ + +#ifndef __FP_CLZ +#if _FP_W_TYPE_SIZE < 64 +/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ +#define __FP_CLZ(r, x) \ + do { \ + _FP_W_TYPE _t = (x); \ + r = _FP_W_TYPE_SIZE - 1; \ + if (_t > 0xffff) r -= 16; \ + if (_t > 0xffff) _t >>= 16; \ + if (_t > 0xff) r -= 8; \ + if (_t > 0xff) _t >>= 8; \ + if (_t & 0xf0) r -= 4; \ + if (_t & 0xf0) _t >>= 4; \ + if (_t & 0xc) r -= 2; \ + if (_t & 0xc) _t >>= 2; \ + if (_t & 0x2) r -= 1; \ + } while (0) +#else /* not _FP_W_TYPE_SIZE < 64 */ +#define __FP_CLZ(r, x) \ + do { \ + _FP_W_TYPE _t = (x); \ + r = _FP_W_TYPE_SIZE - 1; \ + if (_t > 0xffffffff) r -= 32; \ + if (_t > 0xffffffff) _t >>= 32; \ + if (_t > 0xffff) r -= 16; \ + if (_t > 0xffff) _t >>= 16; \ + if (_t > 0xff) r -= 8; \ + if (_t > 0xff) _t >>= 8; \ + if (_t & 0xf0) r -= 4; \ + if (_t & 0xf0) _t >>= 4; \ + if (_t & 0xc) r -= 2; \ + if (_t & 0xc) _t >>= 2; \ + if (_t & 0x2) r -= 1; \ + } while (0) +#endif /* not _FP_W_TYPE_SIZE < 64 */ +#endif /* ndef __FP_CLZ */ + +#define _FP_DIV_HELP_imm(q, r, n, d) \ + do { \ + q = n / d, r = n % d; \ + } while (0) + -- cgit v1.2.3