/* * arch/alpha/boot/bootp.c * * Copyright (C) 1997 Jay Estabrook * * This file is used for creating a bootp file for the Linux/AXP kernel * * based significantly on the arch/alpha/boot/main.c of Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include "ksize.h" extern int vsprintf(char *, const char *, va_list); extern unsigned long switch_to_osf_pal(unsigned long nr, struct pcb_struct * pcb_va, struct pcb_struct * pcb_pa, unsigned long vptb, unsigned long *kstk); int printk(const char * fmt, ...) { va_list args; int i, j, written, remaining, num_nl; static char buf[1024]; char * str; va_start(args, fmt); i = vsprintf(buf, fmt, args); va_end(args); /* expand \n into \r\n: */ num_nl = 0; for (j = 0; j < i; ++j) { if (buf[j] == '\n') ++num_nl; } remaining = i + num_nl; for (j = i - 1; j >= 0; --j) { buf[j + num_nl] = buf[j]; if (buf[j] == '\n') { --num_nl; buf[j + num_nl] = '\r'; } } str = buf; do { written = puts(str, remaining); remaining -= written; str += written; } while (remaining > 0); return i; } #define hwrpb (*INIT_HWRPB) /* * Find a physical address of a virtual object.. * * This is easy using the virtual page table address. */ struct pcb_struct * find_pa(unsigned long *vptb, struct pcb_struct * pcb) { unsigned long address = (unsigned long) pcb; unsigned long result; result = vptb[address >> 13]; result >>= 32; result <<= 13; result |= address & 0x1fff; return (struct pcb_struct *) result; } /* * This function moves into OSF/1 pal-code, and has a temporary * PCB for that. The kernel proper should replace this PCB with * the real one as soon as possible. * * The page table muckery in here depends on the fact that the boot * code has the L1 page table identity-map itself in the second PTE * in the L1 page table. Thus the L1-page is virtually addressable * itself (through three levels) at virtual address 0x200802000. * * As we don't want it there anyway, we also move the L1 self-map * up as high as we can, so that the last entry in the L1 page table * maps the page tables. * * As a result, the OSF/1 pal-code will instead use a virtual page table * map located at 0xffffffe00000000. */ #define pcb_va ((struct pcb_struct *) 0x20000000) #define old_vptb (0x0000000200000000UL) #define new_vptb (0xfffffffe00000000UL) void pal_init(void) { unsigned long i, rev, sum; unsigned long *L1, *l; struct percpu_struct * percpu; struct pcb_struct * pcb_pa; /* Find the level 1 page table and duplicate it in high memory */ L1 = (unsigned long *) 0x200802000UL; /* (1<<33 | 1<<23 | 1<<13) */ L1[1023] = L1[1]; percpu = (struct percpu_struct *) (hwrpb.processor_offset + (unsigned long) &hwrpb), pcb_va->ksp = 0; pcb_va->usp = 0; pcb_va->ptbr = L1[1] >> 32; pcb_va->asn = 0; pcb_va->pcc = 0; pcb_va->unique = 0; pcb_va->flags = 1; pcb_pa = find_pa((unsigned long *) old_vptb, pcb_va); printk("Switching to OSF PAL-code .. "); /* * a0 = 2 (OSF) * a1 = return address, but we give the asm the vaddr of the PCB * a2 = physical addr of PCB * a3 = new virtual page table pointer * a4 = KSP (but we give it 0, asm sets it) */ i = switch_to_osf_pal( 2, pcb_va, pcb_pa, new_vptb, 0); if (i) { printk("failed, code %ld\n", i); halt(); } rev = percpu->pal_revision = percpu->palcode_avail[2]; hwrpb.vptb = new_vptb; /* update checksum: */ sum = 0; for (l = (unsigned long *) &hwrpb; l < (unsigned long *) &hwrpb.chksum; ++l) sum += *l; hwrpb.chksum = sum; printk("Ok (rev %lx)\n", rev); /* remove the old virtual page-table mapping */ L1[1] = 0; tbia(); /* do it directly in case we are SMP */ } static inline long load(unsigned long dst, unsigned long src, unsigned long count) { extern void * memcpy(void *, const void *, size_t); memcpy((void *)dst, (void *)src, count); return count; } /* * Start the kernel. */ static void runkernel(void) { __asm__ __volatile__( "bis %1,%1,$30\n\t" "bis %0,%0,$27\n\t" "jmp ($27)" : /* no outputs: it doesn't even return */ : "r" (START_ADDR), "r" (PAGE_SIZE + INIT_STACK)); } extern char _end; #define KERNEL_ORIGIN \ ((((unsigned long)&_end) + 511) & ~511) void start_kernel(void) { static long i; static int nbytes; /* * note that this crufty stuff with static and envval and envbuf * is because: * * 1. frequently, the stack is is short, and we don't want to overrun; * 2. frequently the stack is where we are going to copy the kernel to; * 3. a certain SRM console required the GET_ENV output to stack. */ static char envval[256]; char envbuf[256]; printk("Linux/AXP bootp loader for Linux " UTS_RELEASE "\n"); if (hwrpb.pagesize != 8192) { printk("Expected 8kB pages, got %ldkB\n", hwrpb.pagesize >> 10); return; } pal_init(); nbytes = dispatch(CCB_GET_ENV, ENV_BOOTED_OSFLAGS, envbuf, sizeof(envbuf)); if (nbytes < 0 || nbytes >= sizeof(envbuf)) { nbytes = 0; } envbuf[nbytes] = '\0'; memcpy(envval, envbuf, nbytes+1); printk("Loading the kernel...'%s'\n", envval); /* NOTE: *no* callbacks or printouts from here on out!!! */ #if 1 /* * this is a hack, as some consoles seem to get virtual 20000000 * (ie where the SRM console puts the kernel bootp image) memory * overlapping physical 310000 memory, which causes real problems * when attempting to copy the former to the latter... :-( * * so, we first move the kernel virtual-to-physical way above where * we physically want the kernel to end up, then copy it from there * to its final resting place... ;-} * * sigh... */ i = load(START_ADDR+(4*KERNEL_SIZE), KERNEL_ORIGIN, KERNEL_SIZE); i = load(START_ADDR, START_ADDR+(4*KERNEL_SIZE), KERNEL_SIZE); #else i = load(START_ADDR, KERNEL_ORIGIN, KERNEL_SIZE); #endif strcpy((char*)ZERO_PAGE, envval); runkernel(); for (i = 0 ; i < 0x100000000 ; i++) /* nothing */; halt(); }