/* * linux/arch/alpha/kernel/sys_noritake.c * * Copyright (C) 1995 David A Rusling * Copyright (C) 1996 Jay A Estabrook * Copyright (C) 1998 Richard Henderson * * Code supporting the NORITAKE (AlphaServer 1000A), * CORELLE (AlphaServer 800), and ALCOR Primo (AlphaStation 600A). */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "proto.h" #include "irq.h" #include "bios32.h" #include "machvec.h" static void noritake_update_irq_hw(unsigned long irq, unsigned long mask, int unmask_p) { if (irq <= 15) if (irq <= 7) outb(mask, 0x21); /* ISA PIC1 */ else outb(mask >> 8, 0xA1); /* ISA PIC2 */ else if (irq <= 31) outw(~(mask >> 16), 0x54a); else outw(~(mask >> 32), 0x54c); } static void noritake_device_interrupt(unsigned long vector, struct pt_regs *regs) { unsigned long pld; unsigned int i; /* Read the interrupt summary registers of NORITAKE */ pld = ((unsigned long) inw(0x54c) << 32) | ((unsigned long) inw(0x54a) << 16) | ((unsigned long) inb(0xa0) << 8) | ((unsigned long) inb(0x20)); /* * Now for every possible bit set, work through them and call * the appropriate interrupt handler. */ while (pld) { i = ffz(~pld); pld &= pld - 1; /* clear least bit set */ if (i < 16) { isa_device_interrupt(vector, regs); } else { handle_irq(i, i, regs); } } } static void noritake_srm_device_interrupt(unsigned long vector, struct pt_regs * regs) { int irq, ack; ack = irq = (vector - 0x800) >> 4; /* * I really hate to do this, too, but the NORITAKE SRM console also * reports PCI vectors *lower* than I expected from the bit numbers * in the documentation. * But I really don't want to change the fixup code for allocation * of IRQs, nor the alpha_irq_mask maintenance stuff, both of which * look nice and clean now. * So, here's this additional grotty hack... :-( */ if (irq >= 16) ack = irq = irq + 1; handle_irq(irq, ack, regs); } static void __init noritake_init_irq(void) { STANDARD_INIT_IRQ_PROLOG; if (alpha_using_srm) alpha_mv.device_interrupt = noritake_srm_device_interrupt; outw(~(alpha_irq_mask >> 16), 0x54a); /* note invert */ outw(~(alpha_irq_mask >> 32), 0x54c); /* note invert */ enable_irq(2); /* enable cascade */ } /* * PCI Fixup configuration. * * Summary @ 0x542, summary register #1: * Bit Meaning * 0 All valid ints from summary regs 2 & 3 * 1 QLOGIC ISP1020A SCSI * 2 Interrupt Line A from slot 0 * 3 Interrupt Line B from slot 0 * 4 Interrupt Line A from slot 1 * 5 Interrupt line B from slot 1 * 6 Interrupt Line A from slot 2 * 7 Interrupt Line B from slot 2 * 8 Interrupt Line A from slot 3 * 9 Interrupt Line B from slot 3 *10 Interrupt Line A from slot 4 *11 Interrupt Line B from slot 4 *12 Interrupt Line A from slot 5 *13 Interrupt Line B from slot 5 *14 Interrupt Line A from slot 6 *15 Interrupt Line B from slot 6 * * Summary @ 0x544, summary register #2: * Bit Meaning * 0 OR of all unmasked ints in SR #2 * 1 OR of secondary bus ints * 2 Interrupt Line C from slot 0 * 3 Interrupt Line D from slot 0 * 4 Interrupt Line C from slot 1 * 5 Interrupt line D from slot 1 * 6 Interrupt Line C from slot 2 * 7 Interrupt Line D from slot 2 * 8 Interrupt Line C from slot 3 * 9 Interrupt Line D from slot 3 *10 Interrupt Line C from slot 4 *11 Interrupt Line D from slot 4 *12 Interrupt Line C from slot 5 *13 Interrupt Line D from slot 5 *14 Interrupt Line C from slot 6 *15 Interrupt Line D from slot 6 * * The device to slot mapping looks like: * * Slot Device * 7 Intel PCI-EISA bridge chip * 8 DEC PCI-PCI bridge chip * 11 PCI on board slot 0 * 12 PCI on board slot 1 * 13 PCI on board slot 2 * * * This two layered interrupt approach means that we allocate IRQ 16 and * above for PCI interrupts. The IRQ relates to which bit the interrupt * comes in on. This makes interrupt processing much easier. */ static int __init noritake_map_irq(struct pci_dev *dev, int slot, int pin) { static char irq_tab[15][5] __initlocaldata = { /*INT INTA INTB INTC INTD */ /* note: IDSELs 16, 17, and 25 are CORELLE only */ { 16+1, 16+1, 16+1, 16+1, 16+1}, /* IdSel 16, QLOGIC */ { -1, -1, -1, -1, -1}, /* IdSel 17, S3 Trio64 */ { -1, -1, -1, -1, -1}, /* IdSel 18, PCEB */ { -1, -1, -1, -1, -1}, /* IdSel 19, PPB */ { -1, -1, -1, -1, -1}, /* IdSel 20, ???? */ { -1, -1, -1, -1, -1}, /* IdSel 21, ???? */ { 16+2, 16+2, 16+3, 32+2, 32+3}, /* IdSel 22, slot 0 */ { 16+4, 16+4, 16+5, 32+4, 32+5}, /* IdSel 23, slot 1 */ { 16+6, 16+6, 16+7, 32+6, 32+7}, /* IdSel 24, slot 2 */ { 16+8, 16+8, 16+9, 32+8, 32+9}, /* IdSel 25, slot 3 */ /* The following 5 are actually on PCI bus 1, which is across the built-in bridge of the NORITAKE only. */ { 16+1, 16+1, 16+1, 16+1, 16+1}, /* IdSel 16, QLOGIC */ { 16+8, 16+8, 16+9, 32+8, 32+9}, /* IdSel 17, slot 3 */ {16+10, 16+10, 16+11, 32+10, 32+11}, /* IdSel 18, slot 4 */ {16+12, 16+12, 16+13, 32+12, 32+13}, /* IdSel 19, slot 5 */ {16+14, 16+14, 16+15, 32+14, 32+15}, /* IdSel 20, slot 6 */ }; const long min_idsel = 5, max_idsel = 19, irqs_per_slot = 5; return COMMON_TABLE_LOOKUP; } static int __init noritake_swizzle(struct pci_dev *dev, int *pinp) { int slot, pin = *pinp; /* Check first for the built-in bridge */ if (PCI_SLOT(dev->bus->self->devfn) == 8) { slot = PCI_SLOT(dev->devfn) + 15; /* WAG! */ } else { /* Must be a card-based bridge. */ do { if (PCI_SLOT(dev->bus->self->devfn) == 8) { slot = PCI_SLOT(dev->devfn) + 15; break; } pin = bridge_swizzle(pin, PCI_SLOT(dev->devfn)) ; /* Move up the chain of bridges. */ dev = dev->bus->self; /* Slot of the next bridge. */ slot = PCI_SLOT(dev->devfn); } while (dev->bus->self); } *pinp = pin; return slot; } static void __init noritake_pci_fixup(void) { layout_all_busses(EISA_DEFAULT_IO_BASE,APECS_AND_LCA_DEFAULT_MEM_BASE); common_pci_fixup(noritake_map_irq, noritake_swizzle); } static void __init noritake_primo_pci_fixup(void) { layout_all_busses(EISA_DEFAULT_IO_BASE, DEFAULT_MEM_BASE); common_pci_fixup(noritake_map_irq, noritake_swizzle); } /* * The System Vectors */ #if defined(CONFIG_ALPHA_GENERIC) || !defined(CONFIG_ALPHA_PRIMO) struct alpha_machine_vector noritake_mv __initmv = { vector_name: "Noritake", DO_EV4_MMU, DO_DEFAULT_RTC, DO_APECS_IO, DO_APECS_BUS, machine_check: apecs_machine_check, max_dma_address: ALPHA_MAX_DMA_ADDRESS, nr_irqs: 48, irq_probe_mask: _PROBE_MASK(48), update_irq_hw: noritake_update_irq_hw, ack_irq: generic_ack_irq, device_interrupt: noritake_device_interrupt, init_arch: apecs_init_arch, init_irq: noritake_init_irq, init_pit: generic_init_pit, pci_fixup: noritake_pci_fixup, kill_arch: generic_kill_arch, }; ALIAS_MV(noritake) #endif #if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_PRIMO) struct alpha_machine_vector noritake_primo_mv __initmv = { vector_name: "Noritake-Primo", DO_EV5_MMU, DO_DEFAULT_RTC, DO_CIA_IO, DO_CIA_BUS, machine_check: cia_machine_check, max_dma_address: ALPHA_MAX_DMA_ADDRESS, nr_irqs: 48, irq_probe_mask: _PROBE_MASK(48), update_irq_hw: noritake_update_irq_hw, ack_irq: generic_ack_irq, device_interrupt: noritake_device_interrupt, init_arch: cia_init_arch, init_irq: noritake_init_irq, init_pit: generic_init_pit, pci_fixup: noritake_primo_pci_fixup, kill_arch: generic_kill_arch, }; ALIAS_MV(noritake_primo) #endif