/* * linux/arch/alpha/mm/init.c * * Copyright (C) 1995 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void die_if_kernel(char *,struct pt_regs *,long); extern void show_net_buffers(void); struct thread_struct * original_pcb_ptr; #ifndef __SMP__ struct pgtable_cache_struct quicklists; #endif void __bad_pmd(pgd_t *pgd) { printk("Bad pgd in pmd_alloc: %08lx\n", pgd_val(*pgd)); pgd_set(pgd, BAD_PAGETABLE); } void __bad_pte(pmd_t *pmd) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, (pte_t *) BAD_PAGETABLE); } pmd_t * get_pmd_slow(pgd_t *pgd, unsigned long offset) { pmd_t *pmd; pmd = (pmd_t *) __get_free_page(GFP_KERNEL); if (pgd_none(*pgd)) { if (pmd) { clear_page((unsigned long)pmd); pgd_set(pgd, pmd); return pmd + offset; } pgd_set(pgd, BAD_PAGETABLE); return NULL; } free_page((unsigned long)pmd); if (pgd_bad(*pgd)) { __bad_pmd(pgd); return NULL; } return (pmd_t *) pgd_page(*pgd) + offset; } pte_t * get_pte_slow(pmd_t *pmd, unsigned long offset) { pte_t *pte; pte = (pte_t *) __get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (pte) { clear_page((unsigned long)pte); pmd_set(pmd, pte); return pte + offset; } pmd_set(pmd, (pte_t *) BAD_PAGETABLE); return NULL; } free_page((unsigned long)pte); if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + offset; } int do_check_pgt_cache(int low, int high) { int freed = 0; if(pgtable_cache_size > high) { do { if(pgd_quicklist) free_pgd_slow(get_pgd_fast()), freed++; if(pmd_quicklist) free_pmd_slow(get_pmd_fast()), freed++; if(pte_quicklist) free_pte_slow(get_pte_fast()), freed++; } while(pgtable_cache_size > low); } return freed; } /* * BAD_PAGE is the page that is used for page faults when linux * is out-of-memory. Older versions of linux just did a * do_exit(), but using this instead means there is less risk * for a process dying in kernel mode, possibly leaving an inode * unused etc.. * * BAD_PAGETABLE is the accompanying page-table: it is initialized * to point to BAD_PAGE entries. * * ZERO_PAGE is a special page that is used for zero-initialized * data and COW. */ pmd_t * __bad_pagetable(void) { memset((void *) EMPTY_PGT, 0, PAGE_SIZE); return (pmd_t *) EMPTY_PGT; } pte_t __bad_page(void) { memset((void *) EMPTY_PGE, 0, PAGE_SIZE); return pte_mkdirty(mk_pte((unsigned long) EMPTY_PGE, PAGE_SHARED)); } void show_mem(void) { long i,free = 0,total = 0,reserved = 0; long shared = 0, cached = 0; printk("\nMem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n",nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (!atomic_read(&mem_map[i].count)) free++; else shared += atomic_read(&mem_map[i].count) - 1; } printk("%ld pages of RAM\n",total); printk("%ld free pages\n",free); printk("%ld reserved pages\n",reserved); printk("%ld pages shared\n",shared); printk("%ld pages swap cached\n",cached); printk("%ld pages in page table cache\n",pgtable_cache_size); show_buffers(); #ifdef CONFIG_NET show_net_buffers(); #endif } extern unsigned long free_area_init(unsigned long, unsigned long); static struct thread_struct * load_PCB(struct thread_struct * pcb) { register unsigned long sp __asm__("$30"); pcb->ksp = sp; return __reload_tss(pcb); } /* * paging_init() sets up the page tables: in the alpha version this actually * unmaps the bootup page table (as we're now in KSEG, so we don't need it). */ unsigned long paging_init(unsigned long start_mem, unsigned long end_mem) { int i; unsigned long newptbr; struct memclust_struct * cluster; struct memdesc_struct * memdesc; /* initialize mem_map[] */ start_mem = free_area_init(start_mem, end_mem); /* find free clusters, update mem_map[] accordingly */ memdesc = (struct memdesc_struct *) (INIT_HWRPB->mddt_offset + (unsigned long) INIT_HWRPB); cluster = memdesc->cluster; for (i = memdesc->numclusters ; i > 0; i--, cluster++) { unsigned long pfn, nr; if (cluster->usage & 1) continue; pfn = cluster->start_pfn; nr = cluster->numpages; /* non-volatile memory. We might want to mark this for later */ if (cluster->usage & 2) continue; while (nr--) clear_bit(PG_reserved, &mem_map[pfn++].flags); } /* unmap the console stuff: we don't need it, and we don't want it */ /* Also set up the real kernel PCB while we're at it.. */ memset((void *) ZERO_PAGE, 0, PAGE_SIZE); memset(swapper_pg_dir, 0, PAGE_SIZE); newptbr = ((unsigned long) swapper_pg_dir - PAGE_OFFSET) >> PAGE_SHIFT; pgd_val(swapper_pg_dir[1023]) = (newptbr << 32) | pgprot_val(PAGE_KERNEL); init_task.tss.ptbr = newptbr; init_task.tss.pal_flags = 1; /* set FEN, clear everything else */ init_task.tss.flags = 0; original_pcb_ptr = phys_to_virt((unsigned long)load_PCB(&init_task.tss)); #if 0 printk("OKSP 0x%lx OPTBR 0x%lx\n", original_pcb_ptr->ksp, original_pcb_ptr->ptbr); #endif tbia(); return start_mem; } #ifdef __SMP__ /* * paging_init_secondary(), called ONLY by secondary CPUs, * sets up current->tss contents appropriately and does a load_PCB. * note that current should be pointing at the idle thread task struct * for this CPU. */ void paging_init_secondary(void) { current->tss.ptbr = init_task.tss.ptbr; current->tss.pal_flags = 1; current->tss.flags = 0; #if 0 printk("paging_init_secondary: KSP 0x%lx PTBR 0x%lx\n", current->tss.ksp, current->tss.ptbr); #endif load_PCB(¤t->tss); tbia(); return; } #endif /* __SMP__ */ void mem_init(unsigned long start_mem, unsigned long end_mem) { unsigned long tmp; end_mem &= PAGE_MASK; max_mapnr = num_physpages = MAP_NR(end_mem); high_memory = (void *) end_mem; start_mem = PAGE_ALIGN(start_mem); /* * Mark the pages used by the kernel as reserved. */ tmp = KERNEL_START; while (tmp < start_mem) { set_bit(PG_reserved, &mem_map[MAP_NR(tmp)].flags); tmp += PAGE_SIZE; } for (tmp = PAGE_OFFSET ; tmp < end_mem ; tmp += PAGE_SIZE) { if (tmp >= MAX_DMA_ADDRESS) clear_bit(PG_DMA, &mem_map[MAP_NR(tmp)].flags); if (PageReserved(mem_map+MAP_NR(tmp))) continue; atomic_set(&mem_map[MAP_NR(tmp)].count, 1); free_page(tmp); } tmp = nr_free_pages << PAGE_SHIFT; printk("Memory: %luk available\n", tmp >> 10); return; } void free_initmem (void) { extern char __init_begin, __init_end; unsigned long addr; addr = (unsigned long)(&__init_begin); for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) { mem_map[MAP_NR(addr)].flags &= ~(1 << PG_reserved); atomic_set(&mem_map[MAP_NR(addr)].count, 1); free_page(addr); } printk ("Freeing unused kernel memory: %ldk freed\n", (&__init_end - &__init_begin) >> 10); } void si_meminfo(struct sysinfo *val) { int i; i = max_mapnr; val->totalram = 0; val->sharedram = 0; val->freeram = nr_free_pages << PAGE_SHIFT; val->bufferram = buffermem; while (i-- > 0) { if (PageReserved(mem_map+i)) continue; val->totalram++; if (!atomic_read(&mem_map[i].count)) continue; val->sharedram += atomic_read(&mem_map[i].count) - 1; } val->totalram <<= PAGE_SHIFT; val->sharedram <<= PAGE_SHIFT; return; }