/* * linux/arch/arm/kernel/time.c * * Copyright (C) 1991, 1992, 1995 Linus Torvalds * Modifications for ARM (C) 1994, 1995, 1996,1997 Russell King * * This file contains the ARM-specific time handling details: * reading the RTC at bootup, etc... * * 1994-07-02 Alan Modra * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime * 1998-12-20 Updated NTP code according to technical memorandum Jan '96 * "A Kernel Model for Precision Timekeeping" by Dave Mills */ #include #include #include #include #include #include #include #include #include #include #include #include extern int setup_arm_irq(int, struct irqaction *); extern void setup_timer(void); extern rwlock_t xtime_lock; extern unsigned long wall_jiffies; /* change this if you have some constant time drift */ #define USECS_PER_JIFFY (1000000/HZ) #ifndef BCD_TO_BIN #define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10) #endif #ifndef BIN_TO_BCD #define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10) #endif static int dummy_set_rtc(void) { return 0; } /* * hook for setting the RTC's idea of the current time. */ int (*set_rtc)(void) = dummy_set_rtc; static unsigned long dummy_gettimeoffset(void) { return 0; } /* * hook for getting the time offset. Note that it is * always called with interrupts disabled. */ unsigned long (*gettimeoffset)(void) = dummy_gettimeoffset; /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * WARNING: this function will overflow on 2106-02-07 06:28:16 on * machines were long is 32-bit! (However, as time_t is signed, we * will already get problems at other places on 2038-01-19 03:14:08) */ unsigned long mktime(unsigned int year, unsigned int mon, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec) { if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */ mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((( (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) + year*365 - 719499 )*24 + hour /* now have hours */ )*60 + min /* now have minutes */ )*60 + sec; /* finally seconds */ } /* * Handle kernel profile stuff... */ static inline void do_profile(struct pt_regs *regs) { if (!user_mode(regs) && prof_buffer && current->pid) { unsigned long pc = instruction_pointer(regs); extern int _stext; pc -= (unsigned long)&_stext; pc >>= prof_shift; if (pc >= prof_len) pc = prof_len - 1; prof_buffer[pc] += 1; } } static long next_rtc_update; /* * If we have an externally synchronized linux clock, then update * CMOS clock accordingly every ~11 minutes. set_rtc() has to be * called as close as possible to 500 ms before the new second * starts. */ static inline void do_set_rtc(void) { if (time_status & STA_UNSYNC || set_rtc == NULL) return; if (next_rtc_update && time_before(xtime.tv_sec, next_rtc_update)) return; if (xtime.tv_usec < 50000 - (tick >> 1) && xtime.tv_usec >= 50000 + (tick >> 1)) return; if (set_rtc()) /* * rtc update failed. Try again in 60s */ next_rtc_update = xtime.tv_sec + 60; else next_rtc_update = xtime.tv_sec + 660; } #ifdef CONFIG_LEDS #include static void do_leds(void) { #ifdef CONFIG_LEDS_CPU { static int last_pid; if (current->pid != last_pid) { last_pid = current->pid; if (last_pid) leds_event(led_idle_end); else leds_event(led_idle_start); } } #endif #ifdef CONFIG_LEDS_TIMER { static unsigned int count = 50; if (--count == 0) { count = 50; leds_event(led_timer); } } #endif } #else #define do_leds() #endif void do_gettimeofday(struct timeval *tv) { unsigned long flags; unsigned long usec, sec; read_lock_irqsave(&xtime_lock, flags); usec = gettimeoffset(); { unsigned long lost = jiffies - wall_jiffies; if (lost) usec += lost * USECS_PER_JIFFY; } sec = xtime.tv_sec; usec += xtime.tv_usec; read_unlock_irqrestore(&xtime_lock, flags); /* usec may have gone up a lot: be safe */ while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec; tv->tv_usec = usec; } void do_settimeofday(struct timeval *tv) { write_lock_irq(&xtime_lock); /* This is revolting. We need to set the xtime.tv_usec * correctly. However, the value in this location is * is value at the last tick. * Discover what correction gettimeofday * would have done, and then undo it! */ tv->tv_usec -= gettimeoffset(); tv->tv_usec -= (jiffies - wall_jiffies) * USECS_PER_JIFFY; while (tv->tv_usec < 0) { tv->tv_usec += 1000000; tv->tv_sec--; } xtime = *tv; time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; write_unlock_irq(&xtime_lock); } static struct irqaction timer_irq = { NULL, 0, 0, "timer", NULL, NULL }; /* * Include architecture specific code */ #include /* * This must cause the timer to start ticking. * It doesn't have to set the current time though * from an RTC - it can be done later once we have * some buses initialised. */ void __init time_init(void) { xtime.tv_usec = 0; xtime.tv_sec = 0; setup_timer(); }