/* * x86 SMP booting functions * * (c) 1995 Alan Cox, Building #3 * (c) 1998, 1999, 2000 Ingo Molnar * * Much of the core SMP work is based on previous work by Thomas Radke, to * whom a great many thanks are extended. * * Thanks to Intel for making available several different Pentium, * Pentium Pro and Pentium-II/Xeon MP machines. * Original development of Linux SMP code supported by Caldera. * * This code is released under the GNU public license version 2 or * later. * * Fixes * Felix Koop : NR_CPUS used properly * Jose Renau : Handle single CPU case. * Alan Cox : By repeated request 8) - Total BogoMIP report. * Greg Wright : Fix for kernel stacks panic. * Erich Boleyn : MP v1.4 and additional changes. * Matthias Sattler : Changes for 2.1 kernel map. * Michel Lespinasse : Changes for 2.1 kernel map. * Michael Chastain : Change trampoline.S to gnu as. * Alan Cox : Dumb bug: 'B' step PPro's are fine * Ingo Molnar : Added APIC timers, based on code * from Jose Renau * Ingo Molnar : various cleanups and rewrites * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug. * Maciej W. Rozycki : Bits for genuine 82489DX APICs */ #include #include #include #include #include #include #include #include #include #include #include /* Set if we find a B stepping CPU */ static int smp_b_stepping = 0; /* Setup configured maximum number of CPUs to activate */ static int max_cpus = -1; /* Total count of live CPUs */ int smp_num_cpus = 1; /* Bitmask of currently online CPUs */ unsigned long cpu_online_map = 0; /* which CPU (physical APIC ID) maps to which logical CPU number */ volatile int x86_apicid_to_cpu[NR_CPUS]; /* which logical CPU number maps to which CPU (physical APIC ID) */ volatile int x86_cpu_to_apicid[NR_CPUS]; static volatile unsigned long cpu_callin_map = 0; static volatile unsigned long cpu_callout_map = 0; /* Per CPU bogomips and other parameters */ struct cpuinfo_x86 cpu_data[NR_CPUS]; /* Set when the idlers are all forked */ int smp_threads_ready = 0; /* * Setup routine for controlling SMP activation * * Command-line option of "nosmp" or "maxcpus=0" will disable SMP * activation entirely (the MPS table probe still happens, though). * * Command-line option of "maxcpus=", where is an integer * greater than 0, limits the maximum number of CPUs activated in * SMP mode to . */ static int __init nosmp(char *str) { max_cpus = 0; return 1; } __setup("nosmp", nosmp); static int __init maxcpus(char *str) { get_option(&str, &max_cpus); return 1; } __setup("maxcpus=", maxcpus); /* * Trampoline 80x86 program as an array. */ extern unsigned char trampoline_data []; extern unsigned char trampoline_end []; static unsigned char *trampoline_base; /* * Currently trivial. Write the real->protected mode * bootstrap into the page concerned. The caller * has made sure it's suitably aligned. */ static unsigned long __init setup_trampoline(void) { memcpy(trampoline_base, trampoline_data, trampoline_end - trampoline_data); return virt_to_phys(trampoline_base); } /* * We are called very early to get the low memory for the * SMP bootup trampoline page. */ void __init smp_alloc_memory(void) { trampoline_base = (void *) alloc_bootmem_low_pages(PAGE_SIZE); /* * Has to be in very low memory so we can execute * real-mode AP code. */ if (__pa(trampoline_base) >= 0x9F000) BUG(); } /* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */ void __init smp_store_cpu_info(int id) { struct cpuinfo_x86 *c = cpu_data + id; *c = boot_cpu_data; c->pte_quick = 0; c->pmd_quick = 0; c->pgd_quick = 0; c->pgtable_cache_sz = 0; identify_cpu(c); /* * Mask B, Pentium, but not Pentium MMX */ if (c->x86_vendor == X86_VENDOR_INTEL && c->x86 == 5 && c->x86_mask >= 1 && c->x86_mask <= 4 && c->x86_model <= 3) /* * Remember we have B step Pentia with bugs */ smp_b_stepping = 1; } /* * Architecture specific routine called by the kernel just before init is * fired off. This allows the BP to have everything in order [we hope]. * At the end of this all the APs will hit the system scheduling and off * we go. Each AP will load the system gdt's and jump through the kernel * init into idle(). At this point the scheduler will one day take over * and give them jobs to do. smp_callin is a standard routine * we use to track CPUs as they power up. */ static atomic_t smp_commenced = ATOMIC_INIT(0); void __init smp_commence(void) { /* * Lets the callins below out of their loop. */ Dprintk("Setting commenced=1, go go go\n"); wmb(); atomic_set(&smp_commenced,1); } /* * TSC synchronization. * * We first check wether all CPUs have their TSC's synchronized, * then we print a warning if not, and always resync. */ static atomic_t tsc_start_flag = ATOMIC_INIT(0); static atomic_t tsc_count_start = ATOMIC_INIT(0); static atomic_t tsc_count_stop = ATOMIC_INIT(0); static unsigned long long tsc_values[NR_CPUS] = { 0, }; #define NR_LOOPS 5 extern unsigned long fast_gettimeoffset_quotient; /* * accurate 64-bit/32-bit division, expanded to 32-bit divisions and 64-bit * multiplication. Not terribly optimized but we need it at boot time only * anyway. * * result == a / b * == (a1 + a2*(2^32)) / b * == a1/b + a2*(2^32/b) * == a1/b + a2*((2^32-1)/b) + a2/b + (a2*((2^32-1) % b))/b * ^---- (this multiplication can overflow) */ static unsigned long long div64 (unsigned long long a, unsigned long b0) { unsigned int a1, a2; unsigned long long res; a1 = ((unsigned int*)&a)[0]; a2 = ((unsigned int*)&a)[1]; res = a1/b0 + (unsigned long long)a2 * (unsigned long long)(0xffffffff/b0) + a2 / b0 + (a2 * (0xffffffff % b0)) / b0; return res; } static void __init synchronize_tsc_bp (void) { int i; unsigned long long t0; unsigned long long sum, avg; long long delta; unsigned long one_usec; int buggy = 0; printk("checking TSC synchronization across CPUs: "); one_usec = ((1<<30)/fast_gettimeoffset_quotient)*(1<<2); atomic_set(&tsc_start_flag, 1); wmb(); /* * We loop a few times to get a primed instruction cache, * then the last pass is more or less synchronized and * the BP and APs set their cycle counters to zero all at * once. This reduces the chance of having random offsets * between the processors, and guarantees that the maximum * delay between the cycle counters is never bigger than * the latency of information-passing (cachelines) between * two CPUs. */ for (i = 0; i < NR_LOOPS; i++) { /* * all APs synchronize but they loop on '== num_cpus' */ while (atomic_read(&tsc_count_start) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_stop, 0); wmb(); /* * this lets the APs save their current TSC: */ atomic_inc(&tsc_count_start); rdtscll(tsc_values[smp_processor_id()]); /* * We clear the TSC in the last loop: */ if (i == NR_LOOPS-1) write_tsc(0, 0); /* * Wait for all APs to leave the synchronization point: */ while (atomic_read(&tsc_count_stop) != smp_num_cpus-1) mb(); atomic_set(&tsc_count_start, 0); wmb(); atomic_inc(&tsc_count_stop); } sum = 0; for (i = 0; i < smp_num_cpus; i++) { t0 = tsc_values[i]; sum += t0; } avg = div64(sum, smp_num_cpus); sum = 0; for (i = 0; i < smp_num_cpus; i++) { delta = tsc_values[i] - avg; if (delta < 0) delta = -delta; /* * We report bigger than 2 microseconds clock differences. */ if (delta > 2*one_usec) { long realdelta; if (!buggy) { buggy = 1; printk("\n"); } realdelta = div64(delta, one_usec); if (tsc_values[i] < avg) realdelta = -realdelta; printk("BIOS BUG: CPU#%d improperly initialized, has %ld usecs TSC skew! FIXED.\n", i, realdelta); } sum += delta; } if (!buggy) printk("passed.\n"); } static void __init synchronize_tsc_ap (void) { int i; /* * smp_num_cpus is not necessarily known at the time * this gets called, so we first wait for the BP to * finish SMP initialization: */ while (!atomic_read(&tsc_start_flag)) mb(); for (i = 0; i < NR_LOOPS; i++) { atomic_inc(&tsc_count_start); while (atomic_read(&tsc_count_start) != smp_num_cpus) mb(); rdtscll(tsc_values[smp_processor_id()]); if (i == NR_LOOPS-1) write_tsc(0, 0); atomic_inc(&tsc_count_stop); while (atomic_read(&tsc_count_stop) != smp_num_cpus) mb(); } } #undef NR_LOOPS extern void calibrate_delay(void); void __init smp_callin(void) { int cpuid, phys_id; unsigned long timeout; /* * (This works even if the APIC is not enabled.) */ phys_id = GET_APIC_ID(apic_read(APIC_ID)); cpuid = current->processor; if (test_and_set_bit(cpuid, &cpu_online_map)) { printk("huh, phys CPU#%d, CPU#%d already present??\n", phys_id, cpuid); BUG(); } Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id); /* * STARTUP IPIs are fragile beasts as they might sometimes * trigger some glue motherboard logic. Complete APIC bus * silence for 1 second, this overestimates the time the * boot CPU is spending to send the up to 2 STARTUP IPIs * by a factor of two. This should be enough. */ /* * Waiting 2s total for startup (udelay is not yet working) */ timeout = jiffies + 2*HZ; while (time_before(jiffies, timeout)) { /* * Has the boot CPU finished it's STARTUP sequence? */ if (test_bit(cpuid, &cpu_callout_map)) break; } if (!time_before(jiffies, timeout)) { printk("BUG: CPU%d started up but did not get a callout!\n", cpuid); BUG(); } /* * the boot CPU has finished the init stage and is spinning * on callin_map until we finish. We are free to set up this * CPU, first the APIC. (this is probably redundant on most * boards) */ Dprintk("CALLIN, before setup_local_APIC().\n"); setup_local_APIC(); sti(); #ifdef CONFIG_MTRR /* * Must be done before calibration delay is computed */ mtrr_init_secondary_cpu (); #endif /* * Get our bogomips. */ calibrate_delay(); Dprintk("Stack at about %p\n",&cpuid); /* * Save our processor parameters */ smp_store_cpu_info(cpuid); /* * Allow the master to continue. */ set_bit(cpuid, &cpu_callin_map); /* * Synchronize the TSC with the BP */ if (cpu_has_tsc) synchronize_tsc_ap(); } int cpucount = 0; extern int cpu_idle(void); /* * Activate a secondary processor. */ int __init start_secondary(void *unused) { /* * Dont put anything before smp_callin(), SMP * booting is too fragile that we want to limit the * things done here to the most necessary things. */ cpu_init(); smp_callin(); while (!atomic_read(&smp_commenced)) /* nothing */ ; /* * low-memory mappings have been cleared, flush them from * the local TLBs too. */ local_flush_tlb(); return cpu_idle(); } /* * Everything has been set up for the secondary * CPUs - they just need to reload everything * from the task structure * This function must not return. */ void __init initialize_secondary(void) { /* * We don't actually need to load the full TSS, * basically just the stack pointer and the eip. */ asm volatile( "movl %0,%%esp\n\t" "jmp *%1" : :"r" (current->thread.esp),"r" (current->thread.eip)); } extern struct { void * esp; unsigned short ss; } stack_start; static int __init fork_by_hand(void) { struct pt_regs regs; /* * don't care about the eip and regs settings since * we'll never reschedule the forked task. */ return do_fork(CLONE_VM|CLONE_PID, 0, ®s); } #if APIC_DEBUG static inline void inquire_remote_apic(int apicid) { int i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 }; char *names[] = { "ID", "VERSION", "SPIV" }; int timeout, status; printk("Inquiring remote APIC #%d...\n", apicid); for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) { printk("... APIC #%d %s: ", apicid, names[i]); apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]); timeout = 0; do { udelay(100); status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK; } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000); switch (status) { case APIC_ICR_RR_VALID: status = apic_read(APIC_RRR); printk("%08x\n", status); break; default: printk("failed\n"); } } } #endif static void __init do_boot_cpu (int apicid) { struct task_struct *idle; unsigned long send_status, accept_status, boot_status, maxlvt; int timeout, num_starts, j, cpu; unsigned long start_eip; cpu = ++cpucount; /* * We can't use kernel_thread since we must avoid to * reschedule the child. */ if (fork_by_hand() < 0) panic("failed fork for CPU %d", cpu); /* * We remove it from the pidhash and the runqueue * once we got the process: */ idle = init_task.prev_task; if (!idle) panic("No idle process for CPU %d", cpu); idle->processor = cpu; x86_cpu_to_apicid[cpu] = apicid; x86_apicid_to_cpu[apicid] = cpu; idle->has_cpu = 1; /* we schedule the first task manually */ idle->thread.eip = (unsigned long) start_secondary; del_from_runqueue(idle); unhash_process(idle); init_tasks[cpu] = idle; /* start_eip had better be page-aligned! */ start_eip = setup_trampoline(); /* So we see what's up */ printk("Booting processor %d/%d eip %lx\n", cpu, apicid, start_eip); stack_start.esp = (void *) (1024 + PAGE_SIZE + (char *)idle); /* * This grunge runs the startup process for * the targeted processor. */ Dprintk("Setting warm reset code and vector.\n"); CMOS_WRITE(0xa, 0xf); local_flush_tlb(); Dprintk("1.\n"); *((volatile unsigned short *) phys_to_virt(0x469)) = start_eip >> 4; Dprintk("2.\n"); *((volatile unsigned short *) phys_to_virt(0x467)) = start_eip & 0xf; Dprintk("3.\n"); /* * Be paranoid about clearing APIC errors. */ if (APIC_INTEGRATED(apic_version[apicid])) { apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); } /* * Status is now clean */ send_status = 0; accept_status = 0; boot_status = 0; /* * Starting actual IPI sequence... */ Dprintk("Asserting INIT.\n"); /* * Turn INIT on target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); /* * Send IPI */ apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT); Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); mdelay(10); Dprintk("Deasserting INIT.\n"); /* Target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); /* Send IPI */ apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT); Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); /* * Should we send STARTUP IPIs ? * * Determine this based on the APIC version. * If we don't have an integrated APIC, don't * send the STARTUP IPIs. */ if (APIC_INTEGRATED(apic_version[apicid])) num_starts = 2; else num_starts = 0; /* * Run STARTUP IPI loop. */ Dprintk("#startup loops: %d.\n", num_starts); maxlvt = get_maxlvt(); for (j = 1; j <= num_starts; j++) { Dprintk("Sending STARTUP #%d.\n",j); apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); apic_read(APIC_ESR); Dprintk("After apic_write.\n"); /* * STARTUP IPI */ /* Target chip */ apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid)); /* Boot on the stack */ /* Kick the second */ apic_write_around(APIC_ICR, APIC_DM_STARTUP | (start_eip >> 12)); Dprintk("Startup point 1.\n"); Dprintk("Waiting for send to finish...\n"); timeout = 0; do { Dprintk("+"); udelay(100); send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY; } while (send_status && (timeout++ < 1000)); /* * Give the other CPU some time to accept the IPI. */ udelay(200); /* * Due to the Pentium erratum 3AP. */ if (maxlvt > 3) { apic_read_around(APIC_SPIV); apic_write(APIC_ESR, 0); } accept_status = (apic_read(APIC_ESR) & 0xEF); if (send_status || accept_status) break; } Dprintk("After Startup.\n"); if (send_status) printk("APIC never delivered???\n"); if (accept_status) printk("APIC delivery error (%lx).\n", accept_status); if (!send_status && !accept_status) { /* * allow APs to start initializing. */ Dprintk("Before Callout %d.\n", cpu); set_bit(cpu, &cpu_callout_map); Dprintk("After Callout %d.\n", cpu); /* * Wait 5s total for a response */ for (timeout = 0; timeout < 50000; timeout++) { if (test_bit(cpu, &cpu_callin_map)) break; /* It has booted */ udelay(100); } if (test_bit(cpu, &cpu_callin_map)) { /* number CPUs logically, starting from 1 (BSP is 0) */ Dprintk("OK.\n"); printk("CPU%d: ", cpu); print_cpu_info(&cpu_data[cpu]); Dprintk("CPU has booted.\n"); } else { boot_status = 1; if (*((volatile unsigned char *)phys_to_virt(8192)) == 0xA5) /* trampoline started but...? */ printk("Stuck ??\n"); else /* trampoline code not run */ printk("Not responding.\n"); #if APIC_DEBUG inquire_remote_apic(apicid); #endif } } if (send_status || accept_status || boot_status) { x86_cpu_to_apicid[cpu] = -1; x86_apicid_to_cpu[apicid] = -1; cpucount--; } /* mark "stuck" area as not stuck */ *((volatile unsigned long *)phys_to_virt(8192)) = 0; } cycles_t cacheflush_time; extern unsigned long cpu_hz; static void smp_tune_scheduling (void) { unsigned long cachesize; /* kB */ unsigned long bandwidth = 350; /* MB/s */ /* * Rough estimation for SMP scheduling, this is the number of * cycles it takes for a fully memory-limited process to flush * the SMP-local cache. * * (For a P5 this pretty much means we will choose another idle * CPU almost always at wakeup time (this is due to the small * L1 cache), on PIIs it's around 50-100 usecs, depending on * the cache size) */ if (!cpu_hz) { /* * this basically disables processor-affinity * scheduling on SMP without a TSC. */ cacheflush_time = 0; return; } else { cachesize = boot_cpu_data.x86_cache_size; if (cachesize == -1) { cachesize = 16; /* Pentiums, 2x8kB cache */ bandwidth = 100; } cacheflush_time = (cpu_hz>>20) * (cachesize<<10) / bandwidth; } printk("per-CPU timeslice cutoff: %ld.%02ld usecs.\n", (long)cacheflush_time/(cpu_hz/1000000), ((long)cacheflush_time*100/(cpu_hz/1000000)) % 100); } /* * Cycle through the processors sending APIC IPIs to boot each. */ extern int prof_multiplier[NR_CPUS]; extern int prof_old_multiplier[NR_CPUS]; extern int prof_counter[NR_CPUS]; void __init smp_boot_cpus(void) { int apicid, cpu; #ifdef CONFIG_MTRR /* Must be done before other processors booted */ mtrr_init_boot_cpu (); #endif /* * Initialize the logical to physical CPU number mapping * and the per-CPU profiling counter/multiplier */ for (apicid = 0; apicid < NR_CPUS; apicid++) { x86_apicid_to_cpu[apicid] = -1; prof_counter[apicid] = 1; prof_old_multiplier[apicid] = 1; prof_multiplier[apicid] = 1; } /* * Setup boot CPU information */ smp_store_cpu_info(0); /* Final full version of the data */ printk("CPU%d: ", 0); print_cpu_info(&cpu_data[0]); /* * We have the boot CPU online for sure. */ set_bit(0, &cpu_online_map); x86_apicid_to_cpu[boot_cpu_id] = 0; x86_cpu_to_apicid[0] = boot_cpu_id; global_irq_holder = 0; current->processor = 0; init_idle(); smp_tune_scheduling(); /* * If we couldnt find an SMP configuration at boot time, * get out of here now! */ if (!smp_found_config) { printk(KERN_NOTICE "SMP motherboard not detected. Using dummy APIC emulation.\n"); #ifndef CONFIG_VISWS io_apic_irqs = 0; #endif cpu_online_map = phys_cpu_present_map = 1; smp_num_cpus = 1; goto smp_done; } /* * Should not be necessary because the MP table should list the boot * CPU too, but we do it for the sake of robustness anyway. */ if (!test_bit(boot_cpu_id, &phys_cpu_present_map)) { printk("weird, boot CPU (#%d) not listed by the BIOS.\n", boot_cpu_id); phys_cpu_present_map |= (1 << hard_smp_processor_id()); } /* * If SMP should be disabled, then really disable it! */ if (!max_cpus) { smp_found_config = 0; printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n"); } { int reg; /* * This is to verify that we're looking at * a real local APIC. Check these against * your board if the CPUs aren't getting * started for no apparent reason. */ reg = apic_read(APIC_LVR); Dprintk("Getting VERSION: %x\n", reg); apic_write(APIC_LVR, 0); reg = apic_read(APIC_LVR); Dprintk("Getting VERSION: %x\n", reg); /* * The two version reads above should print the same * NON-ZERO!!! numbers. If the second one is zero, * there is a problem with the APIC write/read * definitions. * * The next two are just to see if we have sane values. * They're only really relevant if we're in Virtual Wire * compatibility mode, but most boxes are anymore. */ reg = apic_read(APIC_LVT0); Dprintk("Getting LVT0: %x\n", reg); reg = apic_read(APIC_LVT1); Dprintk("Getting LVT1: %x\n", reg); } connect_bsp_APIC(); setup_local_APIC(); if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) BUG(); /* * Now scan the CPU present map and fire up the other CPUs. */ Dprintk("CPU present map: %lx\n", phys_cpu_present_map); for (apicid = 0; apicid < NR_CPUS; apicid++) { /* * Don't even attempt to start the boot CPU! */ if (apicid == boot_cpu_id) continue; if (!(phys_cpu_present_map & (1 << apicid))) continue; if ((max_cpus >= 0) && (max_cpus <= cpucount+1)) continue; do_boot_cpu(apicid); /* * Make sure we unmap all failed CPUs */ if ((x86_apicid_to_cpu[apicid] == -1) && (phys_cpu_present_map & (1 << apicid))) printk("phys CPU #%d not responding - cannot use it.\n",apicid); } /* * Cleanup possible dangling ends... */ #ifndef CONFIG_VISWS { /* * Install writable page 0 entry to set BIOS data area. */ local_flush_tlb(); /* * Paranoid: Set warm reset code and vector here back * to default values. */ CMOS_WRITE(0, 0xf); *((volatile long *) phys_to_virt(0x467)) = 0; } #endif /* * Allow the user to impress friends. */ Dprintk("Before bogomips.\n"); if (!cpucount) { printk(KERN_ERR "Error: only one processor found.\n"); } else { unsigned long bogosum = 0; for (cpu = 0; cpu < NR_CPUS; cpu++) if (cpu_online_map & (1<