/* * sys_ia32.c: Conversion between 32bit and 64bit native syscalls. Based on * sys_sparc32 * * Copyright (C) 2000 VA Linux Co * Copyright (C) 2000 Don Dugger * Copyright (C) 1999 Arun Sharma * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 2000 Hewlett-Packard Co. * Copyright (C) 2000 David Mosberger-Tang * * These routines maintain argument size conversion between 32bit and 64bit * environment. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define A(__x) ((unsigned long)(__x)) #define AA(__x) ((unsigned long)(__x)) #define ROUND_UP(x,a) ((__typeof__(x))(((unsigned long)(x) + ((a) - 1)) & ~((a) - 1))) #define NAME_OFFSET(de) ((int) ((de)->d_name - (char *) (de))) extern asmlinkage long sys_execve (char *, char **, char **, struct pt_regs *); extern asmlinkage long sys_munmap (unsigned long, size_t len); extern asmlinkage long sys_mprotect (unsigned long, size_t, unsigned long); static int nargs(unsigned int arg, char **ap) { int n, err, addr; n = 0; do { err = get_user(addr, (int *)A(arg)); if (err) return err; if (ap) { /* no access_ok needed, we allocated */ err = __put_user((char *)A(addr), ap++); if (err) return err; } arg += sizeof(unsigned int); n++; } while (addr); return(n - 1); } asmlinkage long sys32_execve( char *filename, unsigned int argv, unsigned int envp, int dummy3, int dummy4, int dummy5, int dummy6, int dummy7, int stack) { struct pt_regs *regs = (struct pt_regs *)&stack; char **av, **ae; int na, ne, len; long r; na = nargs(argv, NULL); if (na < 0) return(na); ne = nargs(envp, NULL); if (ne < 0) return(ne); len = (na + ne + 2) * sizeof(*av); /* * kmalloc won't work because the `sys_exec' code will attempt * to do a `get_user' on the arg list and `get_user' will fail * on a kernel address (simplifies `get_user'). Instead we * do an mmap to get a user address. Note that since a successful * `execve' frees all current memory we only have to do an * `munmap' if the `execve' failes. */ down(¤t->mm->mmap_sem); av = (char **) do_mmap_pgoff(0, 0UL, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0); up(¤t->mm->mmap_sem); if (IS_ERR(av)) return (long)av; ae = av + na + 1; r = __put_user(0, (av + na)); if (r) goto out; r = __put_user(0, (ae + ne)); if (r) goto out; r = nargs(argv, av); if (r < 0) goto out; r = nargs(envp, ae); if (r < 0) goto out; r = sys_execve(filename, av, ae, regs); if (r < 0) out: sys_munmap((unsigned long) av, len); return(r); } static inline int putstat(struct stat32 *ubuf, struct stat *kbuf) { int err; err = put_user (kbuf->st_dev, &ubuf->st_dev); err |= __put_user (kbuf->st_ino, &ubuf->st_ino); err |= __put_user (kbuf->st_mode, &ubuf->st_mode); err |= __put_user (kbuf->st_nlink, &ubuf->st_nlink); err |= __put_user (kbuf->st_uid, &ubuf->st_uid); err |= __put_user (kbuf->st_gid, &ubuf->st_gid); err |= __put_user (kbuf->st_rdev, &ubuf->st_rdev); err |= __put_user (kbuf->st_size, &ubuf->st_size); err |= __put_user (kbuf->st_atime, &ubuf->st_atime); err |= __put_user (kbuf->st_mtime, &ubuf->st_mtime); err |= __put_user (kbuf->st_ctime, &ubuf->st_ctime); err |= __put_user (kbuf->st_blksize, &ubuf->st_blksize); err |= __put_user (kbuf->st_blocks, &ubuf->st_blocks); return err; } extern asmlinkage long sys_newstat(char * filename, struct stat * statbuf); asmlinkage long sys32_newstat(char * filename, struct stat32 *statbuf) { int ret; struct stat s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_newstat(filename, &s); set_fs (old_fs); if (putstat (statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newlstat(char * filename, struct stat * statbuf); asmlinkage long sys32_newlstat(char * filename, struct stat32 *statbuf) { int ret; struct stat s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_newlstat(filename, &s); set_fs (old_fs); if (putstat (statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newfstat(unsigned int fd, struct stat * statbuf); asmlinkage long sys32_newfstat(unsigned int fd, struct stat32 *statbuf) { int ret; struct stat s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_newfstat(fd, &s); set_fs (old_fs); if (putstat (statbuf, &s)) return -EFAULT; return ret; } #define ALIGN4K(a) (((a) + 0xfff) & ~0xfff) #define OFFSET4K(a) ((a) & 0xfff) unsigned long do_mmap_fake(struct file *file, unsigned long addr, unsigned long len, unsigned long prot, unsigned long flags, loff_t off) { struct inode *inode; void *front, *back; unsigned long baddr; int r; char c; if (OFFSET4K(addr) || OFFSET4K(off)) return -EINVAL; prot |= PROT_WRITE; front = NULL; back = NULL; if ((baddr = (addr & PAGE_MASK)) != addr && get_user(c, (char *)baddr) == 0) { front = kmalloc(addr - baddr, GFP_KERNEL); __copy_user(front, (void *)baddr, addr - baddr); } if (addr && ((addr + len) & ~PAGE_MASK) && get_user(c, (char *)(addr + len)) == 0) { back = kmalloc(PAGE_SIZE - ((addr + len) & ~PAGE_MASK), GFP_KERNEL); __copy_user(back, (char *)addr + len, PAGE_SIZE - ((addr + len) & ~PAGE_MASK)); } down(¤t->mm->mmap_sem); r = do_mmap(0, baddr, len + (addr - baddr), prot, flags | MAP_ANONYMOUS, 0); up(¤t->mm->mmap_sem); if (r < 0) return(r); if (addr == 0) addr = r; if (back) { __copy_user((char *)addr + len, back, PAGE_SIZE - ((addr + len) & ~PAGE_MASK)); kfree(back); } if (front) { __copy_user((void *)baddr, front, addr - baddr); kfree(front); } if (flags & MAP_ANONYMOUS) { clear_user((char *)addr, len); return(addr); } if (!file) return -EINVAL; inode = file->f_dentry->d_inode; if (!inode->i_fop) return -EINVAL; if (!file->f_op->read) return -EINVAL; r = file->f_op->read(file, (char *)addr, len, &off); return (r < 0) ? -EINVAL : addr; } long ia32_do_mmap (struct file *file, unsigned int addr, unsigned int len, unsigned int prot, unsigned int flags, unsigned int fd, unsigned int offset) { long error = -EFAULT; unsigned int poff; flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE); prot |= PROT_EXEC; if ((flags & MAP_FIXED) && ((addr & ~PAGE_MASK) || (offset & ~PAGE_MASK))) error = do_mmap_fake(file, addr, len, prot, flags, (loff_t)offset); else { poff = offset & PAGE_MASK; len += offset - poff; down(¤t->mm->mmap_sem); error = do_mmap_pgoff(file, addr, len, prot, flags, poff >> PAGE_SHIFT); up(¤t->mm->mmap_sem); if (!IS_ERR((void *) error)) error += offset - poff; } return error; } /* * Linux/i386 didn't use to be able to handle more than * 4 system call parameters, so these system calls used a memory * block for parameter passing.. */ struct mmap_arg_struct { unsigned int addr; unsigned int len; unsigned int prot; unsigned int flags; unsigned int fd; unsigned int offset; }; asmlinkage long sys32_mmap(struct mmap_arg_struct *arg) { struct mmap_arg_struct a; struct file *file = NULL; long retval; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; if (!(a.flags & MAP_ANONYMOUS)) { file = fget(a.fd); if (!file) return -EBADF; } retval = ia32_do_mmap(file, a.addr, a.len, a.prot, a.flags, a.fd, a.offset); if (file) fput(file); return retval; } asmlinkage long sys32_pipe(int *fd) { int retval; int fds[2]; retval = do_pipe(fds); if (retval) goto out; if (copy_to_user(fd, fds, sizeof(fds))) retval = -EFAULT; out: return retval; } asmlinkage long sys32_mprotect(unsigned long start, size_t len, unsigned long prot) { if (prot == 0) return(0); len += start & ~PAGE_MASK; if ((start & ~PAGE_MASK) && (prot & PROT_WRITE)) prot |= PROT_EXEC; return(sys_mprotect(start & PAGE_MASK, len & PAGE_MASK, prot)); } asmlinkage long sys32_rt_sigaction(int sig, struct sigaction32 *act, struct sigaction32 *oact, unsigned int sigsetsize) { struct k_sigaction new_ka, old_ka; int ret; sigset32_t set32; /* XXX: Don't preclude handling different sized sigset_t's. */ if (sigsetsize != sizeof(sigset32_t)) return -EINVAL; if (act) { ret = get_user((long)new_ka.sa.sa_handler, &act->sa_handler); ret |= __copy_from_user(&set32, &act->sa_mask, sizeof(sigset32_t)); switch (_NSIG_WORDS) { case 4: new_ka.sa.sa_mask.sig[3] = set32.sig[6] | (((long)set32.sig[7]) << 32); case 3: new_ka.sa.sa_mask.sig[2] = set32.sig[4] | (((long)set32.sig[5]) << 32); case 2: new_ka.sa.sa_mask.sig[1] = set32.sig[2] | (((long)set32.sig[3]) << 32); case 1: new_ka.sa.sa_mask.sig[0] = set32.sig[0] | (((long)set32.sig[1]) << 32); } ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags); if (ret) return -EFAULT; } ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); if (!ret && oact) { switch (_NSIG_WORDS) { case 4: set32.sig[7] = (old_ka.sa.sa_mask.sig[3] >> 32); set32.sig[6] = old_ka.sa.sa_mask.sig[3]; case 3: set32.sig[5] = (old_ka.sa.sa_mask.sig[2] >> 32); set32.sig[4] = old_ka.sa.sa_mask.sig[2]; case 2: set32.sig[3] = (old_ka.sa.sa_mask.sig[1] >> 32); set32.sig[2] = old_ka.sa.sa_mask.sig[1]; case 1: set32.sig[1] = (old_ka.sa.sa_mask.sig[0] >> 32); set32.sig[0] = old_ka.sa.sa_mask.sig[0]; } ret = put_user((long)old_ka.sa.sa_handler, &oact->sa_handler); ret |= __copy_to_user(&oact->sa_mask, &set32, sizeof(sigset32_t)); ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags); } return ret; } extern asmlinkage long sys_rt_sigprocmask(int how, sigset_t *set, sigset_t *oset, size_t sigsetsize); asmlinkage long sys32_rt_sigprocmask(int how, sigset32_t *set, sigset32_t *oset, unsigned int sigsetsize) { sigset_t s; sigset32_t s32; int ret; mm_segment_t old_fs = get_fs(); if (set) { if (copy_from_user (&s32, set, sizeof(sigset32_t))) return -EFAULT; switch (_NSIG_WORDS) { case 4: s.sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); case 3: s.sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); case 2: s.sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); case 1: s.sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); } } set_fs (KERNEL_DS); ret = sys_rt_sigprocmask(how, set ? &s : NULL, oset ? &s : NULL, sigsetsize); set_fs (old_fs); if (ret) return ret; if (oset) { switch (_NSIG_WORDS) { case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3]; case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2]; case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1]; case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0]; } if (copy_to_user (oset, &s32, sizeof(sigset32_t))) return -EFAULT; } return 0; } static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf) { int err; err = put_user (kbuf->f_type, &ubuf->f_type); err |= __put_user (kbuf->f_bsize, &ubuf->f_bsize); err |= __put_user (kbuf->f_blocks, &ubuf->f_blocks); err |= __put_user (kbuf->f_bfree, &ubuf->f_bfree); err |= __put_user (kbuf->f_bavail, &ubuf->f_bavail); err |= __put_user (kbuf->f_files, &ubuf->f_files); err |= __put_user (kbuf->f_ffree, &ubuf->f_ffree); err |= __put_user (kbuf->f_namelen, &ubuf->f_namelen); err |= __put_user (kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]); err |= __put_user (kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]); return err; } extern asmlinkage long sys_statfs(const char * path, struct statfs * buf); asmlinkage long sys32_statfs(const char * path, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_statfs((const char *)path, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_fstatfs(unsigned int fd, struct statfs * buf); asmlinkage long sys32_fstatfs(unsigned int fd, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fstatfs(fd, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; static inline long get_tv32(struct timeval *o, struct timeval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); return ENOSYS; } static inline long put_tv32(struct timeval32 *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } static inline long get_it32(struct itimerval *o, struct itimerval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); return ENOSYS; } static inline long put_it32(struct itimerval32 *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, i, sizeof(*i)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); return ENOSYS; } extern int do_getitimer(int which, struct itimerval *value); asmlinkage long sys32_getitimer(int which, struct itimerval32 *it) { struct itimerval kit; int error; error = do_getitimer(which, &kit); if (!error && put_it32(it, &kit)) error = -EFAULT; return error; } extern int do_setitimer(int which, struct itimerval *, struct itimerval *); asmlinkage long sys32_setitimer(int which, struct itimerval32 *in, struct itimerval32 *out) { struct itimerval kin, kout; int error; if (in) { if (get_it32(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer(which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_it32(out, &kout)) return -EFAULT; return 0; } asmlinkage unsigned long sys32_alarm(unsigned int seconds) { struct itimerval it_new, it_old; unsigned int oldalarm; it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; it_new.it_value.tv_sec = seconds; it_new.it_value.tv_usec = 0; do_setitimer(ITIMER_REAL, &it_new, &it_old); oldalarm = it_old.it_value.tv_sec; /* ehhh.. We can't return 0 if we have an alarm pending.. */ /* And we'd better return too much than too little anyway */ if (it_old.it_value.tv_usec) oldalarm++; return oldalarm; } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ struct utimbuf_32 { int atime; int mtime; }; extern asmlinkage long sys_utimes(char * filename, struct timeval * utimes); extern asmlinkage long sys_gettimeofday (struct timeval *tv, struct timezone *tz); asmlinkage long ia32_utime(char * filename, struct utimbuf_32 *times32) { mm_segment_t old_fs = get_fs(); struct timeval tv[2]; long ret; if (times32) { get_user(tv[0].tv_sec, ×32->atime); tv[0].tv_usec = 0; get_user(tv[1].tv_sec, ×32->mtime); tv[1].tv_usec = 0; set_fs (KERNEL_DS); } else { set_fs (KERNEL_DS); ret = sys_gettimeofday(&tv[0], 0); if (ret < 0) goto out; tv[1] = tv[0]; } ret = sys_utimes(filename, tv); out: set_fs (old_fs); return ret; } extern struct timezone sys_tz; extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz); asmlinkage long sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage long sys32_settimeofday(struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } struct linux32_dirent { u32 d_ino; u32 d_off; u16 d_reclen; char d_name[1]; }; struct old_linux32_dirent { u32 d_ino; u32 d_offset; u16 d_namlen; char d_name[1]; }; struct getdents32_callback { struct linux32_dirent * current_dir; struct linux32_dirent * previous; int count; int error; }; struct readdir32_callback { struct old_linux32_dirent * dirent; int count; }; static int filldir32 (void *__buf, const char *name, int namlen, off_t offset, ino_t ino, unsigned int d_type) { struct linux32_dirent * dirent; struct getdents32_callback * buf = (struct getdents32_callback *) __buf; int reclen = ROUND_UP(NAME_OFFSET(dirent) + namlen + 1, 4); buf->error = -EINVAL; /* only used if we fail.. */ if (reclen > buf->count) return -EINVAL; dirent = buf->previous; if (dirent) put_user(offset, &dirent->d_off); dirent = buf->current_dir; buf->previous = dirent; put_user(ino, &dirent->d_ino); put_user(reclen, &dirent->d_reclen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); ((char *) dirent) += reclen; buf->current_dir = dirent; buf->count -= reclen; return 0; } asmlinkage long sys32_getdents (unsigned int fd, void * dirent, unsigned int count) { struct file * file; struct linux32_dirent * lastdirent; struct getdents32_callback buf; int error; error = -EBADF; file = fget(fd); if (!file) goto out; buf.current_dir = (struct linux32_dirent *) dirent; buf.previous = NULL; buf.count = count; buf.error = 0; error = vfs_readdir(file, filldir32, &buf); if (error < 0) goto out_putf; error = buf.error; lastdirent = buf.previous; if (lastdirent) { put_user(file->f_pos, &lastdirent->d_off); error = count - buf.count; } out_putf: fput(file); out: return error; } static int fillonedir32 (void * __buf, const char * name, int namlen, off_t offset, ino_t ino, unsigned int d_type) { struct readdir32_callback * buf = (struct readdir32_callback *) __buf; struct old_linux32_dirent * dirent; if (buf->count) return -EINVAL; buf->count++; dirent = buf->dirent; put_user(ino, &dirent->d_ino); put_user(offset, &dirent->d_offset); put_user(namlen, &dirent->d_namlen); copy_to_user(dirent->d_name, name, namlen); put_user(0, dirent->d_name + namlen); return 0; } asmlinkage long sys32_readdir (unsigned int fd, void * dirent, unsigned int count) { int error; struct file * file; struct readdir32_callback buf; error = -EBADF; file = fget(fd); if (!file) goto out; buf.count = 0; buf.dirent = dirent; error = vfs_readdir(file, fillonedir32, &buf); if (error >= 0) error = buf.count; fput(file); out: return error; } /* * We can actually return ERESTARTSYS instead of EINTR, but I'd * like to be certain this leads to no problems. So I return * EINTR just for safety. * * Update: ERESTARTSYS breaks at least the xview clock binary, so * I'm trying ERESTARTNOHAND which restart only when you want to. */ #define MAX_SELECT_SECONDS \ ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) #define ROUND_UP_TIME(x,y) (((x)+(y)-1)/(y)) asmlinkage long sys32_select(int n, fd_set *inp, fd_set *outp, fd_set *exp, struct timeval32 *tvp32) { fd_set_bits fds; char *bits; long timeout; int ret, size; timeout = MAX_SCHEDULE_TIMEOUT; if (tvp32) { time_t sec, usec; get_user(sec, &tvp32->tv_sec); get_user(usec, &tvp32->tv_usec); ret = -EINVAL; if (sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = ROUND_UP_TIME(usec, 1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = kmalloc(6 * size, GFP_KERNEL); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); if ((ret = get_fd_set(n, inp, fds.in)) || (ret = get_fd_set(n, outp, fds.out)) || (ret = get_fd_set(n, exp, fds.ex))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp32 && !(current->personality & STICKY_TIMEOUTS)) { time_t sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } put_user(sec, (int *)&tvp32->tv_sec); put_user(usec, (int *)&tvp32->tv_usec); } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set(n, inp, fds.res_in); set_fd_set(n, outp, fds.res_out); set_fd_set(n, exp, fds.res_ex); out: kfree(bits); out_nofds: return ret; } struct sel_arg_struct { unsigned int n; unsigned int inp; unsigned int outp; unsigned int exp; unsigned int tvp; }; asmlinkage long old_select(struct sel_arg_struct *arg) { struct sel_arg_struct a; if (copy_from_user(&a, arg, sizeof(a))) return -EFAULT; return sys32_select(a.n, (fd_set *)A(a.inp), (fd_set *)A(a.outp), (fd_set *)A(a.exp), (struct timeval32 *)A(a.tvp)); } struct timespec32 { int tv_sec; int tv_nsec; }; extern asmlinkage long sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp); asmlinkage long sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); if (get_user (t.tv_sec, &rqtp->tv_sec) || __get_user (t.tv_nsec, &rqtp->tv_nsec)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_nanosleep(&t, rmtp ? &t : NULL); set_fs (old_fs); if (rmtp && ret == -EINTR) { if (__put_user (t.tv_sec, &rmtp->tv_sec) || __put_user (t.tv_nsec, &rmtp->tv_nsec)) return -EFAULT; } return ret; } struct iovec32 { unsigned int iov_base; int iov_len; }; asmlinkage ssize_t sys_readv(unsigned long,const struct iovec *,unsigned long); asmlinkage ssize_t sys_writev(unsigned long,const struct iovec *,unsigned long); static struct iovec * get_iovec32(struct iovec32 *iov32, struct iovec *iov_buf, u32 count, int type) { int i; u32 buf, len; struct iovec *ivp, *iov; /* Get the "struct iovec" from user memory */ if (!count) return 0; if(verify_area(VERIFY_READ, iov32, sizeof(struct iovec32)*count)) return(struct iovec *)0; if (count > UIO_MAXIOV) return(struct iovec *)0; if (count > UIO_FASTIOV) { iov = kmalloc(count*sizeof(struct iovec), GFP_KERNEL); if (!iov) return((struct iovec *)0); } else iov = iov_buf; ivp = iov; for (i = 0; i < count; i++) { if (__get_user(len, &iov32->iov_len) || __get_user(buf, &iov32->iov_base)) { if (iov != iov_buf) kfree(iov); return((struct iovec *)0); } if (verify_area(type, (void *)A(buf), len)) { if (iov != iov_buf) kfree(iov); return((struct iovec *)0); } ivp->iov_base = (void *)A(buf); ivp->iov_len = (__kernel_size_t)len; iov32++; ivp++; } return(iov); } asmlinkage long sys32_readv(int fd, struct iovec32 *vector, u32 count) { struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov; int ret; mm_segment_t old_fs = get_fs(); if ((iov = get_iovec32(vector, iovstack, count, VERIFY_WRITE)) == (struct iovec *)0) return -EFAULT; set_fs(KERNEL_DS); ret = sys_readv(fd, iov, count); set_fs(old_fs); if (iov != iovstack) kfree(iov); return ret; } asmlinkage long sys32_writev(int fd, struct iovec32 *vector, u32 count) { struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov; int ret; mm_segment_t old_fs = get_fs(); if ((iov = get_iovec32(vector, iovstack, count, VERIFY_READ)) == (struct iovec *)0) return -EFAULT; set_fs(KERNEL_DS); ret = sys_writev(fd, iov, count); set_fs(old_fs); if (iov != iovstack) kfree(iov); return ret; } #define RLIM_INFINITY32 0x7fffffff #define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x) struct rlimit32 { int rlim_cur; int rlim_max; }; extern asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage long sys32_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_getrlimit(resource, &r); set_fs (old_fs); if (!ret) { ret = put_user (RESOURCE32(r.rlim_cur), &rlim->rlim_cur); ret |= __put_user (RESOURCE32(r.rlim_max), &rlim->rlim_max); } return ret; } extern asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage long sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); if (resource >= RLIM_NLIMITS) return -EINVAL; if (get_user (r.rlim_cur, &rlim->rlim_cur) || __get_user (r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur == RLIM_INFINITY32) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max == RLIM_INFINITY32) r.rlim_max = RLIM_INFINITY; set_fs (KERNEL_DS); ret = sys_setrlimit(resource, &r); set_fs (old_fs); return ret; } /* * Declare the IA32 version of the msghdr */ struct msghdr32 { unsigned int msg_name; /* Socket name */ int msg_namelen; /* Length of name */ unsigned int msg_iov; /* Data blocks */ unsigned int msg_iovlen; /* Number of blocks */ unsigned int msg_control; /* Per protocol magic (eg BSD file descriptor passing) */ unsigned int msg_controllen; /* Length of cmsg list */ unsigned msg_flags; }; static inline int shape_msg(struct msghdr *mp, struct msghdr32 *mp32) { int ret; unsigned int i; if (!access_ok(VERIFY_READ, mp32, sizeof(*mp32))) return(-EFAULT); ret = __get_user(i, &mp32->msg_name); mp->msg_name = (void *)A(i); ret |= __get_user(mp->msg_namelen, &mp32->msg_namelen); ret |= __get_user(i, &mp32->msg_iov); mp->msg_iov = (struct iovec *)A(i); ret |= __get_user(mp->msg_iovlen, &mp32->msg_iovlen); ret |= __get_user(i, &mp32->msg_control); mp->msg_control = (void *)A(i); ret |= __get_user(mp->msg_controllen, &mp32->msg_controllen); ret |= __get_user(mp->msg_flags, &mp32->msg_flags); return(ret ? -EFAULT : 0); } /* * Verify & re-shape IA32 iovec. The caller must ensure that the * iovec is big enough to hold the re-shaped message iovec. * * Save time not doing verify_area. copy_*_user will make this work * in any case. * * Don't need to check the total size for overflow (cf net/core/iovec.c), * 32-bit sizes can't overflow a 64-bit count. */ static inline int verify_iovec32(struct msghdr *m, struct iovec *iov, char *address, int mode) { int size, err, ct; struct iovec32 *iov32; if(m->msg_namelen) { if(mode==VERIFY_READ) { err=move_addr_to_kernel(m->msg_name, m->msg_namelen, address); if(err<0) goto out; } m->msg_name = address; } else m->msg_name = NULL; err = -EFAULT; size = m->msg_iovlen * sizeof(struct iovec32); if (copy_from_user(iov, m->msg_iov, size)) goto out; m->msg_iov=iov; err = 0; iov32 = (struct iovec32 *)iov; for (ct = m->msg_iovlen; ct-- > 0; ) { iov[ct].iov_len = (__kernel_size_t)iov32[ct].iov_len; iov[ct].iov_base = (void *) A(iov32[ct].iov_base); err += iov[ct].iov_len; } out: return err; } extern __inline__ void sockfd_put(struct socket *sock) { fput(sock->file); } /* XXX This really belongs in some header file... -DaveM */ #define MAX_SOCK_ADDR 128 /* 108 for Unix domain - 16 for IP, 16 for IPX, 24 for IPv6, about 80 for AX.25 */ extern struct socket *sockfd_lookup(int fd, int *err); /* * BSD sendmsg interface */ int sys32_sendmsg(int fd, struct msghdr32 *msg, unsigned flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iovstack[UIO_FASTIOV], *iov = iovstack; unsigned char ctl[sizeof(struct cmsghdr) + 20]; /* 20 is size of ipv6_pktinfo */ unsigned char *ctl_buf = ctl; struct msghdr msg_sys; int err, ctl_len, iov_size, total_len; err = -EFAULT; if (shape_msg(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; /* do not move before msg_sys is valid */ err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec32); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* This will also move the address data into kernel space */ err = verify_iovec32(&msg_sys, iov, address, VERIFY_READ); if (err < 0) goto out_freeiov; total_len = err; err = -ENOBUFS; if (msg_sys.msg_controllen > INT_MAX) goto out_freeiov; ctl_len = msg_sys.msg_controllen; if (ctl_len) { if (ctl_len > sizeof(ctl)) { err = -ENOBUFS; ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL); if (ctl_buf == NULL) goto out_freeiov; } err = -EFAULT; if (copy_from_user(ctl_buf, msg_sys.msg_control, ctl_len)) goto out_freectl; msg_sys.msg_control = ctl_buf; } msg_sys.msg_flags = flags; if (sock->file->f_flags & O_NONBLOCK) msg_sys.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &msg_sys, total_len); out_freectl: if (ctl_buf != ctl) sock_kfree_s(sock->sk, ctl_buf, ctl_len); out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } /* * BSD recvmsg interface */ int sys32_recvmsg (int fd, struct msghdr32 *msg, unsigned int flags) { struct socket *sock; struct iovec iovstack[UIO_FASTIOV]; struct iovec *iov=iovstack; struct msghdr msg_sys; unsigned long cmsg_ptr; int err, iov_size, total_len, len; /* kernel mode address */ char addr[MAX_SOCK_ADDR]; /* user mode address pointers */ struct sockaddr *uaddr; int *uaddr_len; err=-EFAULT; if (shape_msg(&msg_sys, msg)) goto out; sock = sockfd_lookup(fd, &err); if (!sock) goto out; err = -EINVAL; if (msg_sys.msg_iovlen > UIO_MAXIOV) goto out_put; /* Check whether to allocate the iovec area*/ err = -ENOMEM; iov_size = msg_sys.msg_iovlen * sizeof(struct iovec); if (msg_sys.msg_iovlen > UIO_FASTIOV) { iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL); if (!iov) goto out_put; } /* * Save the user-mode address (verify_iovec will change the * kernel msghdr to use the kernel address space) */ uaddr = msg_sys.msg_name; uaddr_len = &msg->msg_namelen; err = verify_iovec32(&msg_sys, iov, addr, VERIFY_WRITE); if (err < 0) goto out_freeiov; total_len=err; cmsg_ptr = (unsigned long)msg_sys.msg_control; msg_sys.msg_flags = 0; if (sock->file->f_flags & O_NONBLOCK) flags |= MSG_DONTWAIT; err = sock_recvmsg(sock, &msg_sys, total_len, flags); if (err < 0) goto out_freeiov; len = err; if (uaddr != NULL) { err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr, uaddr_len); if (err < 0) goto out_freeiov; } err = __put_user(msg_sys.msg_flags, &msg->msg_flags); if (err) goto out_freeiov; err = __put_user((unsigned long)msg_sys.msg_control-cmsg_ptr, &msg->msg_controllen); if (err) goto out_freeiov; err = len; out_freeiov: if (iov != iovstack) sock_kfree_s(sock->sk, iov, iov_size); out_put: sockfd_put(sock); out: return err; } /* Argument list sizes for sys_socketcall */ #define AL(x) ((x) * sizeof(u32)) static unsigned char nas[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3), AL(3),AL(3),AL(4),AL(4),AL(4),AL(6), AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)}; #undef AL extern asmlinkage long sys_bind(int fd, struct sockaddr *umyaddr, int addrlen); extern asmlinkage long sys_connect(int fd, struct sockaddr *uservaddr, int addrlen); extern asmlinkage long sys_accept(int fd, struct sockaddr *upeer_sockaddr, int *upeer_addrlen); extern asmlinkage long sys_getsockname(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_getpeername(int fd, struct sockaddr *usockaddr, int *usockaddr_len); extern asmlinkage long sys_send(int fd, void *buff, size_t len, unsigned flags); extern asmlinkage long sys_sendto(int fd, u32 buff, __kernel_size_t32 len, unsigned flags, u32 addr, int addr_len); extern asmlinkage long sys_recv(int fd, void *ubuf, size_t size, unsigned flags); extern asmlinkage long sys_recvfrom(int fd, u32 ubuf, __kernel_size_t32 size, unsigned flags, u32 addr, u32 addr_len); extern asmlinkage long sys_setsockopt(int fd, int level, int optname, char *optval, int optlen); extern asmlinkage long sys_getsockopt(int fd, int level, int optname, u32 optval, u32 optlen); extern asmlinkage long sys_socket(int family, int type, int protocol); extern asmlinkage long sys_socketpair(int family, int type, int protocol, int usockvec[2]); extern asmlinkage long sys_shutdown(int fd, int how); extern asmlinkage long sys_listen(int fd, int backlog); asmlinkage long sys32_socketcall(int call, u32 *args) { int ret; u32 a[6]; u32 a0,a1; if (callSYS_RECVMSG) return -EINVAL; if (copy_from_user(a, args, nas[call])) return -EFAULT; a0=a[0]; a1=a[1]; switch(call) { case SYS_SOCKET: ret = sys_socket(a0, a1, a[2]); break; case SYS_BIND: ret = sys_bind(a0, (struct sockaddr *)A(a1), a[2]); break; case SYS_CONNECT: ret = sys_connect(a0, (struct sockaddr *)A(a1), a[2]); break; case SYS_LISTEN: ret = sys_listen(a0, a1); break; case SYS_ACCEPT: ret = sys_accept(a0, (struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_GETSOCKNAME: ret = sys_getsockname(a0, (struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_GETPEERNAME: ret = sys_getpeername(a0, (struct sockaddr *)A(a1), (int *)A(a[2])); break; case SYS_SOCKETPAIR: ret = sys_socketpair(a0, a1, a[2], (int *)A(a[3])); break; case SYS_SEND: ret = sys_send(a0, (void *)A(a1), a[2], a[3]); break; case SYS_SENDTO: ret = sys_sendto(a0, a1, a[2], a[3], a[4], a[5]); break; case SYS_RECV: ret = sys_recv(a0, (void *)A(a1), a[2], a[3]); break; case SYS_RECVFROM: ret = sys_recvfrom(a0, a1, a[2], a[3], a[4], a[5]); break; case SYS_SHUTDOWN: ret = sys_shutdown(a0,a1); break; case SYS_SETSOCKOPT: ret = sys_setsockopt(a0, a1, a[2], (char *)A(a[3]), a[4]); break; case SYS_GETSOCKOPT: ret = sys_getsockopt(a0, a1, a[2], a[3], a[4]); break; case SYS_SENDMSG: ret = sys32_sendmsg(a0, (struct msghdr32 *)A(a1), a[2]); break; case SYS_RECVMSG: ret = sys32_recvmsg(a0, (struct msghdr32 *)A(a1), a[2]); break; default: ret = EINVAL; break; } return ret; } /* * sys32_ipc() is the de-multiplexer for the SysV IPC calls in 32bit emulation.. * * This is really horribly ugly. */ struct msgbuf32 { s32 mtype; char mtext[1]; }; struct ipc_perm32 { key_t key; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_uid_t32 cuid; __kernel_gid_t32 cgid; __kernel_mode_t32 mode; unsigned short seq; }; struct semid_ds32 { struct ipc_perm32 sem_perm; /* permissions .. see ipc.h */ __kernel_time_t32 sem_otime; /* last semop time */ __kernel_time_t32 sem_ctime; /* last change time */ u32 sem_base; /* ptr to first semaphore in array */ u32 sem_pending; /* pending operations to be processed */ u32 sem_pending_last; /* last pending operation */ u32 undo; /* undo requests on this array */ unsigned short sem_nsems; /* no. of semaphores in array */ }; struct msqid_ds32 { struct ipc_perm32 msg_perm; u32 msg_first; u32 msg_last; __kernel_time_t32 msg_stime; __kernel_time_t32 msg_rtime; __kernel_time_t32 msg_ctime; u32 wwait; u32 rwait; unsigned short msg_cbytes; unsigned short msg_qnum; unsigned short msg_qbytes; __kernel_ipc_pid_t32 msg_lspid; __kernel_ipc_pid_t32 msg_lrpid; }; struct shmid_ds32 { struct ipc_perm32 shm_perm; int shm_segsz; __kernel_time_t32 shm_atime; __kernel_time_t32 shm_dtime; __kernel_time_t32 shm_ctime; __kernel_ipc_pid_t32 shm_cpid; __kernel_ipc_pid_t32 shm_lpid; unsigned short shm_nattch; }; #define IPCOP_MASK(__x) (1UL << (__x)) static int do_sys32_semctl(int first, int second, int third, void *uptr) { union semun fourth; u32 pad; int err, err2; struct semid64_ds s; struct semid_ds32 *usp; mm_segment_t old_fs; if (!uptr) return -EINVAL; err = -EFAULT; if (get_user (pad, (u32 *)uptr)) return err; if(third == SETVAL) fourth.val = (int)pad; else fourth.__pad = (void *)A(pad); switch (third) { case IPC_INFO: case IPC_RMID: case IPC_SET: case SEM_INFO: case GETVAL: case GETPID: case GETNCNT: case GETZCNT: case GETALL: case SETVAL: case SETALL: err = sys_semctl (first, second, third, fourth); break; case IPC_STAT: case SEM_STAT: usp = (struct semid_ds32 *)A(pad); fourth.__pad = &s; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_semctl (first, second, third, fourth); set_fs (old_fs); err2 = put_user(s.sem_perm.key, &usp->sem_perm.key); err2 |= __put_user(s.sem_perm.uid, &usp->sem_perm.uid); err2 |= __put_user(s.sem_perm.gid, &usp->sem_perm.gid); err2 |= __put_user(s.sem_perm.cuid, &usp->sem_perm.cuid); err2 |= __put_user (s.sem_perm.cgid, &usp->sem_perm.cgid); err2 |= __put_user (s.sem_perm.mode, &usp->sem_perm.mode); err2 |= __put_user (s.sem_perm.seq, &usp->sem_perm.seq); err2 |= __put_user (s.sem_otime, &usp->sem_otime); err2 |= __put_user (s.sem_ctime, &usp->sem_ctime); err2 |= __put_user (s.sem_nsems, &usp->sem_nsems); if (err2) err = -EFAULT; break; } return err; } static int do_sys32_msgsnd (int first, int second, int third, void *uptr) { struct msgbuf *p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER); struct msgbuf32 *up = (struct msgbuf32 *)uptr; mm_segment_t old_fs; int err; if (!p) return -ENOMEM; err = get_user (p->mtype, &up->mtype); err |= __copy_from_user (p->mtext, &up->mtext, second); if (err) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgsnd (first, p, second, third); set_fs (old_fs); out: kfree (p); return err; } static int do_sys32_msgrcv (int first, int second, int msgtyp, int third, int version, void *uptr) { struct msgbuf32 *up; struct msgbuf *p; mm_segment_t old_fs; int err; if (!version) { struct ipc_kludge *uipck = (struct ipc_kludge *)uptr; struct ipc_kludge ipck; err = -EINVAL; if (!uptr) goto out; err = -EFAULT; if (copy_from_user (&ipck, uipck, sizeof (struct ipc_kludge))) goto out; uptr = (void *)A(ipck.msgp); msgtyp = ipck.msgtyp; } err = -ENOMEM; p = kmalloc (second + sizeof (struct msgbuf) + 4, GFP_USER); if (!p) goto out; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgrcv (first, p, second + 4, msgtyp, third); set_fs (old_fs); if (err < 0) goto free_then_out; up = (struct msgbuf32 *)uptr; if (put_user (p->mtype, &up->mtype) || __copy_to_user (&up->mtext, p->mtext, err)) err = -EFAULT; free_then_out: kfree (p); out: return err; } static int do_sys32_msgctl (int first, int second, void *uptr) { int err = -EINVAL, err2; struct msqid_ds m; struct msqid64_ds m64; struct msqid_ds32 *up = (struct msqid_ds32 *)uptr; mm_segment_t old_fs; switch (second) { case IPC_INFO: case IPC_RMID: case MSG_INFO: err = sys_msgctl (first, second, (struct msqid_ds *)uptr); break; case IPC_SET: err = get_user (m.msg_perm.uid, &up->msg_perm.uid); err |= __get_user (m.msg_perm.gid, &up->msg_perm.gid); err |= __get_user (m.msg_perm.mode, &up->msg_perm.mode); err |= __get_user (m.msg_qbytes, &up->msg_qbytes); if (err) break; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgctl (first, second, &m); set_fs (old_fs); break; case IPC_STAT: case MSG_STAT: old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_msgctl (first, second, (void *) &m64); set_fs (old_fs); err2 = put_user (m64.msg_perm.key, &up->msg_perm.key); err2 |= __put_user(m64.msg_perm.uid, &up->msg_perm.uid); err2 |= __put_user(m64.msg_perm.gid, &up->msg_perm.gid); err2 |= __put_user(m64.msg_perm.cuid, &up->msg_perm.cuid); err2 |= __put_user(m64.msg_perm.cgid, &up->msg_perm.cgid); err2 |= __put_user(m64.msg_perm.mode, &up->msg_perm.mode); err2 |= __put_user(m64.msg_perm.seq, &up->msg_perm.seq); err2 |= __put_user(m64.msg_stime, &up->msg_stime); err2 |= __put_user(m64.msg_rtime, &up->msg_rtime); err2 |= __put_user(m64.msg_ctime, &up->msg_ctime); err2 |= __put_user(m64.msg_cbytes, &up->msg_cbytes); err2 |= __put_user(m64.msg_qnum, &up->msg_qnum); err2 |= __put_user(m64.msg_qbytes, &up->msg_qbytes); err2 |= __put_user(m64.msg_lspid, &up->msg_lspid); err2 |= __put_user(m64.msg_lrpid, &up->msg_lrpid); if (err2) err = -EFAULT; break; } return err; } static int do_sys32_shmat (int first, int second, int third, int version, void *uptr) { unsigned long raddr; u32 *uaddr = (u32 *)A((u32)third); int err = -EINVAL; if (version == 1) return err; err = sys_shmat (first, uptr, second, &raddr); if (err) return err; err = put_user (raddr, uaddr); return err; } static int do_sys32_shmctl (int first, int second, void *uptr) { int err = -EFAULT, err2; struct shmid_ds s; struct shmid64_ds s64; struct shmid_ds32 *up = (struct shmid_ds32 *)uptr; mm_segment_t old_fs; struct shm_info32 { int used_ids; u32 shm_tot, shm_rss, shm_swp; u32 swap_attempts, swap_successes; } *uip = (struct shm_info32 *)uptr; struct shm_info si; switch (second) { case IPC_INFO: case IPC_RMID: case SHM_LOCK: case SHM_UNLOCK: err = sys_shmctl (first, second, (struct shmid_ds *)uptr); break; case IPC_SET: err = get_user (s.shm_perm.uid, &up->shm_perm.uid); err |= __get_user (s.shm_perm.gid, &up->shm_perm.gid); err |= __get_user (s.shm_perm.mode, &up->shm_perm.mode); if (err) break; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, &s); set_fs (old_fs); break; case IPC_STAT: case SHM_STAT: old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, (void *) &s64); set_fs (old_fs); if (err < 0) break; err2 = put_user (s64.shm_perm.key, &up->shm_perm.key); err2 |= __put_user (s64.shm_perm.uid, &up->shm_perm.uid); err2 |= __put_user (s64.shm_perm.gid, &up->shm_perm.gid); err2 |= __put_user (s64.shm_perm.cuid, &up->shm_perm.cuid); err2 |= __put_user (s64.shm_perm.cgid, &up->shm_perm.cgid); err2 |= __put_user (s64.shm_perm.mode, &up->shm_perm.mode); err2 |= __put_user (s64.shm_perm.seq, &up->shm_perm.seq); err2 |= __put_user (s64.shm_atime, &up->shm_atime); err2 |= __put_user (s64.shm_dtime, &up->shm_dtime); err2 |= __put_user (s64.shm_ctime, &up->shm_ctime); err2 |= __put_user (s64.shm_segsz, &up->shm_segsz); err2 |= __put_user (s64.shm_nattch, &up->shm_nattch); err2 |= __put_user (s64.shm_cpid, &up->shm_cpid); err2 |= __put_user (s64.shm_lpid, &up->shm_lpid); if (err2) err = -EFAULT; break; case SHM_INFO: old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_shmctl (first, second, (void *)&si); set_fs (old_fs); if (err < 0) break; err2 = put_user (si.used_ids, &uip->used_ids); err2 |= __put_user (si.shm_tot, &uip->shm_tot); err2 |= __put_user (si.shm_rss, &uip->shm_rss); err2 |= __put_user (si.shm_swp, &uip->shm_swp); err2 |= __put_user (si.swap_attempts, &uip->swap_attempts); err2 |= __put_user (si.swap_successes, &uip->swap_successes); if (err2) err = -EFAULT; break; } return err; } asmlinkage long sys32_ipc (u32 call, int first, int second, int third, u32 ptr, u32 fifth) { int version, err; version = call >> 16; /* hack for backward compatibility */ call &= 0xffff; switch (call) { case SEMOP: /* struct sembuf is the same on 32 and 64bit :)) */ err = sys_semop (first, (struct sembuf *)AA(ptr), second); break; case SEMGET: err = sys_semget (first, second, third); break; case SEMCTL: err = do_sys32_semctl (first, second, third, (void *)AA(ptr)); break; case MSGSND: err = do_sys32_msgsnd (first, second, third, (void *)AA(ptr)); break; case MSGRCV: err = do_sys32_msgrcv (first, second, fifth, third, version, (void *)AA(ptr)); break; case MSGGET: err = sys_msgget ((key_t) first, second); break; case MSGCTL: err = do_sys32_msgctl (first, second, (void *)AA(ptr)); break; case SHMAT: err = do_sys32_shmat (first, second, third, version, (void *)AA(ptr)); break; case SHMDT: err = sys_shmdt ((char *)AA(ptr)); break; case SHMGET: err = sys_shmget (first, second, third); break; case SHMCTL: err = do_sys32_shmctl (first, second, (void *)AA(ptr)); break; default: err = -EINVAL; break; } return err; } /* * sys_time() can be implemented in user-level using * sys_gettimeofday(). IA64 did this but i386 Linux did not * so we have to implement this system call here. */ asmlinkage long sys32_time(int * tloc) { int i; /* SMP: This is fairly trivial. We grab CURRENT_TIME and stuff it to user space. No side effects */ i = CURRENT_TIME; if (tloc) { if (put_user(i,tloc)) i = -EFAULT; } return i; } struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; int ru_maxrss; int ru_ixrss; int ru_idrss; int ru_isrss; int ru_minflt; int ru_majflt; int ru_nswap; int ru_inblock; int ru_oublock; int ru_msgsnd; int ru_msgrcv; int ru_nsignals; int ru_nvcsw; int ru_nivcsw; }; static int put_rusage (struct rusage32 *ru, struct rusage *r) { int err; err = put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec); err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec); err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec); err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec); err |= __put_user (r->ru_maxrss, &ru->ru_maxrss); err |= __put_user (r->ru_ixrss, &ru->ru_ixrss); err |= __put_user (r->ru_idrss, &ru->ru_idrss); err |= __put_user (r->ru_isrss, &ru->ru_isrss); err |= __put_user (r->ru_minflt, &ru->ru_minflt); err |= __put_user (r->ru_majflt, &ru->ru_majflt); err |= __put_user (r->ru_nswap, &ru->ru_nswap); err |= __put_user (r->ru_inblock, &ru->ru_inblock); err |= __put_user (r->ru_oublock, &ru->ru_oublock); err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd); err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv); err |= __put_user (r->ru_nsignals, &ru->ru_nsignals); err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw); err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw); return err; } asmlinkage long sys32_wait4(__kernel_pid_t32 pid, unsigned int *stat_addr, int options, struct rusage32 *ru) { if (!ru) return sys_wait4(pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; if (stat_addr && put_user (status, stat_addr)) return -EFAULT; return ret; } } asmlinkage long sys32_waitpid(__kernel_pid_t32 pid, unsigned int *stat_addr, int options) { return sys32_wait4(pid, stat_addr, options, NULL); } extern asmlinkage long sys_getrusage(int who, struct rusage *ru); asmlinkage long sys32_getrusage(int who, struct rusage32 *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getrusage(who, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; return ret; } struct tms32 { __kernel_clock_t32 tms_utime; __kernel_clock_t32 tms_stime; __kernel_clock_t32 tms_cutime; __kernel_clock_t32 tms_cstime; }; extern asmlinkage long sys_times(struct tms * tbuf); asmlinkage long sys32_times(struct tms32 *tbuf) { struct tms t; long ret; mm_segment_t old_fs = get_fs (); int err; set_fs (KERNEL_DS); ret = sys_times(tbuf ? &t : NULL); set_fs (old_fs); if (tbuf) { err = put_user (IA32_TICK(t.tms_utime), &tbuf->tms_utime); err |= __put_user (IA32_TICK(t.tms_stime), &tbuf->tms_stime); err |= __put_user (IA32_TICK(t.tms_cutime), &tbuf->tms_cutime); err |= __put_user (IA32_TICK(t.tms_cstime), &tbuf->tms_cstime); if (err) ret = -EFAULT; } return IA32_TICK(ret); } unsigned int ia32_peek (struct pt_regs *regs, struct task_struct *child, unsigned long addr, unsigned int *val) { size_t copied; unsigned int ret; copied = access_process_vm(child, addr, val, sizeof(*val), 0); return(copied != sizeof(ret) ? -EIO : 0); } unsigned int ia32_poke (struct pt_regs *regs, struct task_struct *child, unsigned long addr, unsigned int val) { if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) return -EIO; return 0; } /* * The order in which registers are stored in the ptrace regs structure */ #define PT_EBX 0 #define PT_ECX 1 #define PT_EDX 2 #define PT_ESI 3 #define PT_EDI 4 #define PT_EBP 5 #define PT_EAX 6 #define PT_DS 7 #define PT_ES 8 #define PT_FS 9 #define PT_GS 10 #define PT_ORIG_EAX 11 #define PT_EIP 12 #define PT_CS 13 #define PT_EFL 14 #define PT_UESP 15 #define PT_SS 16 unsigned int getreg(struct task_struct *child, int regno) { struct pt_regs *child_regs; child_regs = ia64_task_regs(child); switch (regno / sizeof(int)) { case PT_EBX: return(child_regs->r11); case PT_ECX: return(child_regs->r9); case PT_EDX: return(child_regs->r10); case PT_ESI: return(child_regs->r14); case PT_EDI: return(child_regs->r15); case PT_EBP: return(child_regs->r13); case PT_EAX: case PT_ORIG_EAX: return(child_regs->r8); case PT_EIP: return(child_regs->cr_iip); case PT_UESP: return(child_regs->r12); case PT_EFL: return(child->thread.eflag); case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: return((unsigned int)__USER_DS); case PT_CS: return((unsigned int)__USER_CS); default: printk("getregs:unknown register %d\n", regno); break; } return(0); } void putreg(struct task_struct *child, int regno, unsigned int value) { struct pt_regs *child_regs; child_regs = ia64_task_regs(child); switch (regno / sizeof(int)) { case PT_EBX: child_regs->r11 = value; break; case PT_ECX: child_regs->r9 = value; break; case PT_EDX: child_regs->r10 = value; break; case PT_ESI: child_regs->r14 = value; break; case PT_EDI: child_regs->r15 = value; break; case PT_EBP: child_regs->r13 = value; break; case PT_EAX: case PT_ORIG_EAX: child_regs->r8 = value; break; case PT_EIP: child_regs->cr_iip = value; break; case PT_UESP: child_regs->r12 = value; break; case PT_EFL: child->thread.eflag = value; break; case PT_DS: case PT_ES: case PT_FS: case PT_GS: case PT_SS: if (value != __USER_DS) printk("setregs:try to set invalid segment register %d = %x\n", regno, value); break; case PT_CS: if (value != __USER_CS) printk("setregs:try to set invalid segment register %d = %x\n", regno, value); break; default: printk("getregs:unknown register %d\n", regno); break; } } static inline void ia32f2ia64f(void *dst, void *src) { __asm__ ("ldfe f6=[%1] ;;\n\t" "stf.spill [%0]=f6" : : "r"(dst), "r"(src)); return; } static inline void ia64f2ia32f(void *dst, void *src) { __asm__ ("ldf.fill f6=[%1] ;;\n\t" "stfe [%0]=f6" : : "r"(dst), "r"(src)); return; } void put_fpreg(int regno, struct _fpreg_ia32 *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { struct _fpreg_ia32 *f; char buf[32]; f = (struct _fpreg_ia32 *)(((unsigned long)buf + 15) & ~15); if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: ia64f2ia32f(f, &ptp->f8); break; case 1: ia64f2ia32f(f, &ptp->f9); break; case 2: case 3: case 4: case 5: case 6: case 7: ia64f2ia32f(f, &swp->f10 + (regno - 2)); break; } __copy_to_user(reg, f, sizeof(*reg)); return; } void get_fpreg(int regno, struct _fpreg_ia32 *reg, struct pt_regs *ptp, struct switch_stack *swp, int tos) { if ((regno += tos) >= 8) regno -= 8; switch (regno) { case 0: __copy_from_user(&ptp->f8, reg, sizeof(*reg)); break; case 1: __copy_from_user(&ptp->f9, reg, sizeof(*reg)); break; case 2: case 3: case 4: case 5: case 6: case 7: __copy_from_user(&swp->f10 + (regno - 2), reg, sizeof(*reg)); break; } return; } int save_ia32_fpstate(struct task_struct *tsk, struct _fpstate_ia32 *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos; if (!access_ok(VERIFY_WRITE, save, sizeof(*save))) return(-EIO); __put_user(tsk->thread.fcr, &save->cw); __put_user(tsk->thread.fsr, &save->sw); __put_user(tsk->thread.fsr >> 32, &save->tag); __put_user(tsk->thread.fir, &save->ipoff); __put_user(__USER_CS, &save->cssel); __put_user(tsk->thread.fdr, &save->dataoff); __put_user(__USER_DS, &save->datasel); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = ia64_task_regs(tsk); tos = (tsk->thread.fsr >> 11) & 3; for (i = 0; i < 8; i++) put_fpreg(i, &save->_st[i], ptp, swp, tos); return(0); } int restore_ia32_fpstate(struct task_struct *tsk, struct _fpstate_ia32 *save) { struct switch_stack *swp; struct pt_regs *ptp; int i, tos, ret; int fsrlo, fsrhi; if (!access_ok(VERIFY_READ, save, sizeof(*save))) return(-EIO); ret = __get_user(tsk->thread.fcr, (unsigned int *)&save->cw); ret |= __get_user(fsrlo, (unsigned int *)&save->sw); ret |= __get_user(fsrhi, (unsigned int *)&save->tag); tsk->thread.fsr = ((long)fsrhi << 32) | (long)fsrlo; ret |= __get_user(tsk->thread.fir, (unsigned int *)&save->ipoff); ret |= __get_user(tsk->thread.fdr, (unsigned int *)&save->dataoff); /* * Stack frames start with 16-bytes of temp space */ swp = (struct switch_stack *)(tsk->thread.ksp + 16); ptp = ia64_task_regs(tsk); tos = (tsk->thread.fsr >> 11) & 3; for (i = 0; i < 8; i++) get_fpreg(i, &save->_st[i], ptp, swp, tos); return(ret ? -EFAULT : 0); } asmlinkage long sys_ptrace(long, pid_t, unsigned long, unsigned long, long, long, long, long, long); /* * Note that the IA32 version of `ptrace' calls the IA64 routine for * many of the requests. This will only work for requests that do * not need access to the calling processes `pt_regs' which is located * at the address of `stack'. Once we call the IA64 `sys_ptrace' then * the address of `stack' will not be the address of the `pt_regs'. */ asmlinkage long sys32_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data, long arg4, long arg5, long arg6, long arg7, long stack) { struct pt_regs *regs = (struct pt_regs *) &stack; struct task_struct *child; long i, ret; unsigned int value; lock_kernel(); if (request == PTRACE_TRACEME) { ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack); goto out; } ret = -ESRCH; read_lock(&tasklist_lock); child = find_task_by_pid(pid); read_unlock(&tasklist_lock); if (!child) goto out; ret = -EPERM; if (pid == 1) /* no messing around with init! */ goto out; if (request == PTRACE_ATTACH) { ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack); goto out; } ret = -ESRCH; if (!(child->ptrace & PT_PTRACED)) goto out; if (child->state != TASK_STOPPED) { if (request != PTRACE_KILL) goto out; } if (child->p_pptr != current) goto out; switch (request) { case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: /* read word at location addr */ ret = ia32_peek(regs, child, addr, &value); if (ret == 0) ret = put_user(value, (unsigned int *)data); else ret = -EIO; goto out; case PTRACE_POKETEXT: case PTRACE_POKEDATA: /* write the word at location addr */ ret = ia32_poke(regs, child, addr, (unsigned int)data); goto out; case PTRACE_PEEKUSR: /* read word at addr in USER area */ ret = 0; break; case PTRACE_POKEUSR: /* write word at addr in USER area */ ret = 0; break; case IA32_PTRACE_GETREGS: if (!access_ok(VERIFY_WRITE, (int *)data, 17*sizeof(int))) { ret = -EIO; break; } for ( i = 0; i < 17*sizeof(int); i += sizeof(int) ) { __put_user(getreg(child, i),(unsigned int *) data); data += sizeof(int); } ret = 0; break; case IA32_PTRACE_SETREGS: { unsigned int tmp; if (!access_ok(VERIFY_READ, (int *)data, 17*sizeof(int))) { ret = -EIO; break; } for ( i = 0; i < 17*sizeof(int); i += sizeof(int) ) { __get_user(tmp, (unsigned int *) data); putreg(child, i, tmp); data += sizeof(int); } ret = 0; break; } case IA32_PTRACE_GETFPREGS: ret = save_ia32_fpstate(child, (struct _fpstate_ia32 *)data); break; case IA32_PTRACE_SETFPREGS: ret = restore_ia32_fpstate(child, (struct _fpstate_ia32 *)data); break; case PTRACE_SYSCALL: /* continue, stop after next syscall */ case PTRACE_CONT: /* restart after signal. */ case PTRACE_KILL: case PTRACE_SINGLESTEP: /* execute chile for one instruction */ case PTRACE_DETACH: /* detach a process */ unlock_kernel(); ret = sys_ptrace(request, pid, addr, data, arg4, arg5, arg6, arg7, stack); return(ret); default: ret = -EIO; break; } out: unlock_kernel(); return ret; } static inline int get_flock32(struct flock *kfl, struct flock32 *ufl) { int err; err = get_user(kfl->l_type, &ufl->l_type); err |= __get_user(kfl->l_whence, &ufl->l_whence); err |= __get_user(kfl->l_start, &ufl->l_start); err |= __get_user(kfl->l_len, &ufl->l_len); err |= __get_user(kfl->l_pid, &ufl->l_pid); return err; } static inline int put_flock32(struct flock *kfl, struct flock32 *ufl) { int err; err = __put_user(kfl->l_type, &ufl->l_type); err |= __put_user(kfl->l_whence, &ufl->l_whence); err |= __put_user(kfl->l_start, &ufl->l_start); err |= __put_user(kfl->l_len, &ufl->l_len); err |= __put_user(kfl->l_pid, &ufl->l_pid); return err; } extern asmlinkage long sys_fcntl(unsigned int fd, unsigned int cmd, unsigned long arg); asmlinkage long sys32_fcntl(unsigned int fd, unsigned int cmd, int arg) { struct flock f; mm_segment_t old_fs; long ret; switch (cmd) { case F_GETLK: case F_SETLK: case F_SETLKW: if(cmd != F_GETLK && get_flock32(&f, (struct flock32 *)((long)arg))) return -EFAULT; old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_fcntl(fd, cmd, (unsigned long)&f); set_fs(old_fs); if(cmd == F_GETLK && put_flock32(&f, (struct flock32 *)((long)arg))) return -EFAULT; return ret; default: /* * `sys_fcntl' lies about arg, for the F_SETOWN * sub-function arg can have a negative value. */ return sys_fcntl(fd, cmd, (unsigned long)((long)arg)); } } asmlinkage long sys32_sigaction (int sig, struct old_sigaction32 *act, struct old_sigaction32 *oact) { struct k_sigaction new_ka, old_ka; int ret; if (act) { old_sigset32_t mask; ret = get_user((long)new_ka.sa.sa_handler, &act->sa_handler); ret |= __get_user(new_ka.sa.sa_flags, &act->sa_flags); ret |= __get_user(mask, &act->sa_mask); if (ret) return ret; siginitset(&new_ka.sa.sa_mask, mask); } ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL); if (!ret && oact) { ret = put_user((long)old_ka.sa.sa_handler, &oact->sa_handler); ret |= __put_user(old_ka.sa.sa_flags, &oact->sa_flags); ret |= __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask); } return ret; } asmlinkage long sys_ni_syscall(void); asmlinkage long sys32_ni_syscall(int dummy0, int dummy1, int dummy2, int dummy3, int dummy4, int dummy5, int dummy6, int dummy7, int stack) { struct pt_regs *regs = (struct pt_regs *)&stack; printk("IA32 syscall #%d issued, maybe we should implement it\n", (int)regs->r1); return(sys_ni_syscall()); } /* * The IA64 maps 4 I/O ports for each 4K page */ #define IOLEN ((65536 / 4) * 4096) asmlinkage long sys_iopl (int level, long arg1, long arg2, long arg3) { extern unsigned long ia64_iobase; int fd; struct file * file; unsigned int old; unsigned long addr; mm_segment_t old_fs = get_fs (); if (level != 3) return(-EINVAL); /* Trying to gain more privileges? */ __asm__ __volatile__("mov %0=ar.eflag ;;" : "=r"(old)); if (level > ((old >> 12) & 3)) { if (!capable(CAP_SYS_RAWIO)) return -EPERM; } set_fs(KERNEL_DS); fd = sys_open("/dev/mem", O_SYNC | O_RDWR, 0); set_fs(old_fs); if (fd < 0) return fd; file = fget(fd); if (file == NULL) { sys_close(fd); return(-EFAULT); } down(¤t->mm->mmap_sem); lock_kernel(); addr = do_mmap_pgoff(file, IA32_IOBASE, IOLEN, PROT_READ|PROT_WRITE, MAP_SHARED, (ia64_iobase & ~PAGE_OFFSET) >> PAGE_SHIFT); unlock_kernel(); up(¤t->mm->mmap_sem); if (addr >= 0) { __asm__ __volatile__("mov ar.k0=%0 ;;" :: "r"(addr)); old = (old & ~0x3000) | (level << 12); __asm__ __volatile__("mov ar.eflag=%0 ;;" :: "r"(old)); } fput(file); sys_close(fd); return 0; } asmlinkage long sys_ioperm (unsigned long from, unsigned long num, int on) { /* * Since IA64 doesn't have permission bits we'd have to go to * a lot of trouble to simulate them in software. There's * no point, only trusted programs can make this call so we'll * just turn it into an iopl call and let the process have * access to all I/O ports. * * XXX proper ioperm() support should be emulated by * manipulating the page protections... */ return(sys_iopl(3, 0, 0, 0)); } typedef struct { unsigned int ss_sp; unsigned int ss_flags; unsigned int ss_size; } ia32_stack_t; asmlinkage long sys32_sigaltstack (const ia32_stack_t *uss32, ia32_stack_t *uoss32, long arg2, long arg3, long arg4, long arg5, long arg6, long arg7, long stack) { struct pt_regs *pt = (struct pt_regs *) &stack; stack_t uss, uoss; ia32_stack_t buf32; int ret; mm_segment_t old_fs = get_fs(); if (uss32) if (copy_from_user(&buf32, (void *)A(uss32), sizeof(ia32_stack_t))) return(-EFAULT); uss.ss_sp = (void *) (long) buf32.ss_sp; uss.ss_flags = buf32.ss_flags; uss.ss_size = buf32.ss_size; set_fs(KERNEL_DS); ret = do_sigaltstack(uss32 ? &uss : NULL, &uoss, pt->r12); set_fs(old_fs); if (ret < 0) return(ret); if (uoss32) { buf32.ss_sp = (long) uoss.ss_sp; buf32.ss_flags = uoss.ss_flags; buf32.ss_size = uoss.ss_size; if (copy_to_user((void*)A(uoss32), &buf32, sizeof(ia32_stack_t))) return(-EFAULT); } return(ret); } asmlinkage int sys_pause (void) { current->state = TASK_INTERRUPTIBLE; schedule(); return -ERESTARTNOHAND; } #ifdef NOTYET /* UNTESTED FOR IA64 FROM HERE DOWN */ /* In order to reduce some races, while at the same time doing additional * checking and hopefully speeding things up, we copy filenames to the * kernel data space before using them.. * * POSIX.1 2.4: an empty pathname is invalid (ENOENT). */ static inline int do_getname32(const char *filename, char *page) { int retval; /* 32bit pointer will be always far below TASK_SIZE :)) */ retval = strncpy_from_user((char *)page, (char *)filename, PAGE_SIZE); if (retval > 0) { if (retval < PAGE_SIZE) return 0; return -ENAMETOOLONG; } else if (!retval) retval = -ENOENT; return retval; } char * getname32(const char *filename) { char *tmp, *result; result = ERR_PTR(-ENOMEM); tmp = (char *)__get_free_page(GFP_KERNEL); if (tmp) { int retval = do_getname32(filename, tmp); result = tmp; if (retval < 0) { putname(tmp); result = ERR_PTR(retval); } } return result; } /* 32-bit timeval and related flotsam. */ extern asmlinkage long sys_ioperm(unsigned long from, unsigned long num, int on); asmlinkage long sys32_ioperm(u32 from, u32 num, int on) { return sys_ioperm((unsigned long)from, (unsigned long)num, on); } struct dqblk32 { __u32 dqb_bhardlimit; __u32 dqb_bsoftlimit; __u32 dqb_curblocks; __u32 dqb_ihardlimit; __u32 dqb_isoftlimit; __u32 dqb_curinodes; __kernel_time_t32 dqb_btime; __kernel_time_t32 dqb_itime; }; extern asmlinkage long sys_quotactl(int cmd, const char *special, int id, caddr_t addr); asmlinkage long sys32_quotactl(int cmd, const char *special, int id, unsigned long addr) { int cmds = cmd >> SUBCMDSHIFT; int err; struct dqblk d; mm_segment_t old_fs; char *spec; switch (cmds) { case Q_GETQUOTA: break; case Q_SETQUOTA: case Q_SETUSE: case Q_SETQLIM: if (copy_from_user (&d, (struct dqblk32 *)addr, sizeof (struct dqblk32))) return -EFAULT; d.dqb_itime = ((struct dqblk32 *)&d)->dqb_itime; d.dqb_btime = ((struct dqblk32 *)&d)->dqb_btime; break; default: return sys_quotactl(cmd, special, id, (caddr_t)addr); } spec = getname32 (special); err = PTR_ERR(spec); if (IS_ERR(spec)) return err; old_fs = get_fs (); set_fs (KERNEL_DS); err = sys_quotactl(cmd, (const char *)spec, id, (caddr_t)&d); set_fs (old_fs); putname (spec); if (cmds == Q_GETQUOTA) { __kernel_time_t b = d.dqb_btime, i = d.dqb_itime; ((struct dqblk32 *)&d)->dqb_itime = i; ((struct dqblk32 *)&d)->dqb_btime = b; if (copy_to_user ((struct dqblk32 *)addr, &d, sizeof (struct dqblk32))) return -EFAULT; } return err; } extern asmlinkage long sys_utime(char * filename, struct utimbuf * times); struct utimbuf32 { __kernel_time_t32 actime, modtime; }; asmlinkage long sys32_utime(char * filename, struct utimbuf32 *times) { struct utimbuf t; mm_segment_t old_fs; int ret; char *filenam; if (!times) return sys_utime(filename, NULL); if (get_user (t.actime, ×->actime) || __get_user (t.modtime, ×->modtime)) return -EFAULT; filenam = getname32 (filename); ret = PTR_ERR(filenam); if (!IS_ERR(filenam)) { old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_utime(filenam, &t); set_fs (old_fs); putname (filenam); } return ret; } /* * Ooo, nasty. We need here to frob 32-bit unsigned longs to * 64-bit unsigned longs. */ static inline int get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset) { if (ufdset) { unsigned long odd; if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32))) return -EFAULT; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; __get_user(l, ufdset); __get_user(h, ufdset+1); ufdset += 2; *fdset++ = h << 32 | l; n -= 2; } if (odd) __get_user(*fdset, ufdset); } else { /* Tricky, must clear full unsigned long in the * kernel fdset at the end, this makes sure that * actually happens. */ memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32)); } return 0; } static inline void set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { unsigned long odd; if (!ufdset) return; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; l = *fdset++; h = l >> 32; __put_user(l, ufdset); __put_user(h, ufdset+1); ufdset += 2; n -= 2; } if (odd) __put_user(*fdset, ufdset); } extern asmlinkage long sys_sysfs(int option, unsigned long arg1, unsigned long arg2); asmlinkage long sys32_sysfs(int option, u32 arg1, u32 arg2) { return sys_sysfs(option, arg1, arg2); } struct ncp_mount_data32 { int version; unsigned int ncp_fd; __kernel_uid_t32 mounted_uid; __kernel_pid_t32 wdog_pid; unsigned char mounted_vol[NCP_VOLNAME_LEN + 1]; unsigned int time_out; unsigned int retry_count; unsigned int flags; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void * do_ncp_super_data_conv(void *raw_data) { struct ncp_mount_data *n = (struct ncp_mount_data *)raw_data; struct ncp_mount_data32 *n32 = (struct ncp_mount_data32 *)raw_data; n->dir_mode = n32->dir_mode; n->file_mode = n32->file_mode; n->gid = n32->gid; n->uid = n32->uid; memmove (n->mounted_vol, n32->mounted_vol, (sizeof (n32->mounted_vol) + 3 * sizeof (unsigned int))); n->wdog_pid = n32->wdog_pid; n->mounted_uid = n32->mounted_uid; return raw_data; } struct smb_mount_data32 { int version; __kernel_uid_t32 mounted_uid; __kernel_uid_t32 uid; __kernel_gid_t32 gid; __kernel_mode_t32 file_mode; __kernel_mode_t32 dir_mode; }; static void * do_smb_super_data_conv(void *raw_data) { struct smb_mount_data *s = (struct smb_mount_data *)raw_data; struct smb_mount_data32 *s32 = (struct smb_mount_data32 *)raw_data; s->version = s32->version; s->mounted_uid = s32->mounted_uid; s->uid = s32->uid; s->gid = s32->gid; s->file_mode = s32->file_mode; s->dir_mode = s32->dir_mode; return raw_data; } static int copy_mount_stuff_to_kernel(const void *user, unsigned long *kernel) { int i; unsigned long page; struct vm_area_struct *vma; *kernel = 0; if(!user) return 0; vma = find_vma(current->mm, (unsigned long)user); if(!vma || (unsigned long)user < vma->vm_start) return -EFAULT; if(!(vma->vm_flags & VM_READ)) return -EFAULT; i = vma->vm_end - (unsigned long) user; if(PAGE_SIZE <= (unsigned long) i) i = PAGE_SIZE - 1; if(!(page = __get_free_page(GFP_KERNEL))) return -ENOMEM; if(copy_from_user((void *) page, user, i)) { free_page(page); return -EFAULT; } *kernel = page; return 0; } extern asmlinkage long sys_mount(char * dev_name, char * dir_name, char * type, unsigned long new_flags, void *data); #define SMBFS_NAME "smbfs" #define NCPFS_NAME "ncpfs" asmlinkage long sys32_mount(char *dev_name, char *dir_name, char *type, unsigned long new_flags, u32 data) { unsigned long type_page; int err, is_smb, is_ncp; if(!capable(CAP_SYS_ADMIN)) return -EPERM; is_smb = is_ncp = 0; err = copy_mount_stuff_to_kernel((const void *)type, &type_page); if(err) return err; if(type_page) { is_smb = !strcmp((char *)type_page, SMBFS_NAME); is_ncp = !strcmp((char *)type_page, NCPFS_NAME); } if(!is_smb && !is_ncp) { if(type_page) free_page(type_page); return sys_mount(dev_name, dir_name, type, new_flags, (void *)AA(data)); } else { unsigned long dev_page, dir_page, data_page; err = copy_mount_stuff_to_kernel((const void *)dev_name, &dev_page); if(err) goto out; err = copy_mount_stuff_to_kernel((const void *)dir_name, &dir_page); if(err) goto dev_out; err = copy_mount_stuff_to_kernel((const void *)AA(data), &data_page); if(err) goto dir_out; if(is_ncp) do_ncp_super_data_conv((void *)data_page); else if(is_smb) do_smb_super_data_conv((void *)data_page); else panic("The problem is here..."); err = do_mount((char *)dev_page, (char *)dir_page, (char *)type_page, new_flags, (void *)data_page); if(data_page) free_page(data_page); dir_out: if(dir_page) free_page(dir_page); dev_out: if(dev_page) free_page(dev_page); out: if(type_page) free_page(type_page); return err; } } struct sysinfo32 { s32 uptime; u32 loads[3]; u32 totalram; u32 freeram; u32 sharedram; u32 bufferram; u32 totalswap; u32 freeswap; unsigned short procs; char _f[22]; }; extern asmlinkage long sys_sysinfo(struct sysinfo *info); asmlinkage long sys32_sysinfo(struct sysinfo32 *info) { struct sysinfo s; int ret, err; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sysinfo(&s); set_fs (old_fs); err = put_user (s.uptime, &info->uptime); err |= __put_user (s.loads[0], &info->loads[0]); err |= __put_user (s.loads[1], &info->loads[1]); err |= __put_user (s.loads[2], &info->loads[2]); err |= __put_user (s.totalram, &info->totalram); err |= __put_user (s.freeram, &info->freeram); err |= __put_user (s.sharedram, &info->sharedram); err |= __put_user (s.bufferram, &info->bufferram); err |= __put_user (s.totalswap, &info->totalswap); err |= __put_user (s.freeswap, &info->freeswap); err |= __put_user (s.procs, &info->procs); if (err) return -EFAULT; return ret; } extern asmlinkage long sys_sched_rr_get_interval(pid_t pid, struct timespec *interval); asmlinkage long sys32_sched_rr_get_interval(__kernel_pid_t32 pid, struct timespec32 *interval) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sched_rr_get_interval(pid, &t); set_fs (old_fs); if (put_user (t.tv_sec, &interval->tv_sec) || __put_user (t.tv_nsec, &interval->tv_nsec)) return -EFAULT; return ret; } extern asmlinkage long sys_sigprocmask(int how, old_sigset_t *set, old_sigset_t *oset); asmlinkage long sys32_sigprocmask(int how, old_sigset_t32 *set, old_sigset_t32 *oset) { old_sigset_t s; int ret; mm_segment_t old_fs = get_fs(); if (set && get_user (s, set)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_sigprocmask(how, set ? &s : NULL, oset ? &s : NULL); set_fs (old_fs); if (ret) return ret; if (oset && put_user (s, oset)) return -EFAULT; return 0; } extern asmlinkage long sys_sigpending(old_sigset_t *set); asmlinkage long sys32_sigpending(old_sigset_t32 *set) { old_sigset_t s; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_sigpending(&s); set_fs (old_fs); if (put_user (s, set)) return -EFAULT; return ret; } extern asmlinkage long sys_rt_sigpending(sigset_t *set, size_t sigsetsize); asmlinkage long sys32_rt_sigpending(sigset_t32 *set, __kernel_size_t32 sigsetsize) { sigset_t s; sigset_t32 s32; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_rt_sigpending(&s, sigsetsize); set_fs (old_fs); if (!ret) { switch (_NSIG_WORDS) { case 4: s32.sig[7] = (s.sig[3] >> 32); s32.sig[6] = s.sig[3]; case 3: s32.sig[5] = (s.sig[2] >> 32); s32.sig[4] = s.sig[2]; case 2: s32.sig[3] = (s.sig[1] >> 32); s32.sig[2] = s.sig[1]; case 1: s32.sig[1] = (s.sig[0] >> 32); s32.sig[0] = s.sig[0]; } if (copy_to_user (set, &s32, sizeof(sigset_t32))) return -EFAULT; } return ret; } siginfo_t32 * siginfo64to32(siginfo_t32 *d, siginfo_t *s) { memset (&d, 0, sizeof(siginfo_t32)); d->si_signo = s->si_signo; d->si_errno = s->si_errno; d->si_code = s->si_code; if (s->si_signo >= SIGRTMIN) { d->si_pid = s->si_pid; d->si_uid = s->si_uid; /* XXX: Ouch, how to find this out??? */ d->si_int = s->si_int; } else switch (s->si_signo) { /* XXX: What about POSIX1.b timers */ case SIGCHLD: d->si_pid = s->si_pid; d->si_status = s->si_status; d->si_utime = s->si_utime; d->si_stime = s->si_stime; break; case SIGSEGV: case SIGBUS: case SIGFPE: case SIGILL: d->si_addr = (long)(s->si_addr); /* XXX: Do we need to translate this from ia64 to ia32 traps? */ d->si_trapno = s->si_trapno; break; case SIGPOLL: d->si_band = s->si_band; d->si_fd = s->si_fd; break; default: d->si_pid = s->si_pid; d->si_uid = s->si_uid; break; } return d; } siginfo_t * siginfo32to64(siginfo_t *d, siginfo_t32 *s) { d->si_signo = s->si_signo; d->si_errno = s->si_errno; d->si_code = s->si_code; if (s->si_signo >= SIGRTMIN) { d->si_pid = s->si_pid; d->si_uid = s->si_uid; /* XXX: Ouch, how to find this out??? */ d->si_int = s->si_int; } else switch (s->si_signo) { /* XXX: What about POSIX1.b timers */ case SIGCHLD: d->si_pid = s->si_pid; d->si_status = s->si_status; d->si_utime = s->si_utime; d->si_stime = s->si_stime; break; case SIGSEGV: case SIGBUS: case SIGFPE: case SIGILL: d->si_addr = (void *)A(s->si_addr); /* XXX: Do we need to translate this from ia32 to ia64 traps? */ d->si_trapno = s->si_trapno; break; case SIGPOLL: d->si_band = s->si_band; d->si_fd = s->si_fd; break; default: d->si_pid = s->si_pid; d->si_uid = s->si_uid; break; } return d; } extern asmlinkage long sys_rt_sigtimedwait(const sigset_t *uthese, siginfo_t *uinfo, const struct timespec *uts, size_t sigsetsize); asmlinkage long sys32_rt_sigtimedwait(sigset_t32 *uthese, siginfo_t32 *uinfo, struct timespec32 *uts, __kernel_size_t32 sigsetsize) { sigset_t s; sigset_t32 s32; struct timespec t; int ret; mm_segment_t old_fs = get_fs(); siginfo_t info; siginfo_t32 info32; if (copy_from_user (&s32, uthese, sizeof(sigset_t32))) return -EFAULT; switch (_NSIG_WORDS) { case 4: s.sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32); case 3: s.sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32); case 2: s.sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32); case 1: s.sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32); } if (uts) { ret = get_user (t.tv_sec, &uts->tv_sec); ret |= __get_user (t.tv_nsec, &uts->tv_nsec); if (ret) return -EFAULT; } set_fs (KERNEL_DS); ret = sys_rt_sigtimedwait(&s, &info, &t, sigsetsize); set_fs (old_fs); if (ret >= 0 && uinfo) { if (copy_to_user (uinfo, siginfo64to32(&info32, &info), sizeof(siginfo_t32))) return -EFAULT; } return ret; } extern asmlinkage long sys_rt_sigqueueinfo(int pid, int sig, siginfo_t *uinfo); asmlinkage long sys32_rt_sigqueueinfo(int pid, int sig, siginfo_t32 *uinfo) { siginfo_t info; siginfo_t32 info32; int ret; mm_segment_t old_fs = get_fs(); if (copy_from_user (&info32, uinfo, sizeof(siginfo_t32))) return -EFAULT; /* XXX: Is this correct? */ siginfo32to64(&info, &info32); set_fs (KERNEL_DS); ret = sys_rt_sigqueueinfo(pid, sig, &info); set_fs (old_fs); return ret; } extern asmlinkage long sys_setreuid(uid_t ruid, uid_t euid); asmlinkage long sys32_setreuid(__kernel_uid_t32 ruid, __kernel_uid_t32 euid) { uid_t sruid, seuid; sruid = (ruid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)euid); return sys_setreuid(sruid, seuid); } extern asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid); asmlinkage long sys32_setresuid(__kernel_uid_t32 ruid, __kernel_uid_t32 euid, __kernel_uid_t32 suid) { uid_t sruid, seuid, ssuid; sruid = (ruid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)ruid); seuid = (euid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)euid); ssuid = (suid == (__kernel_uid_t32)-1) ? ((uid_t)-1) : ((uid_t)suid); return sys_setresuid(sruid, seuid, ssuid); } extern asmlinkage long sys_getresuid(uid_t *ruid, uid_t *euid, uid_t *suid); asmlinkage long sys32_getresuid(__kernel_uid_t32 *ruid, __kernel_uid_t32 *euid, __kernel_uid_t32 *suid) { uid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getresuid(&a, &b, &c); set_fs (old_fs); if (put_user (a, ruid) || put_user (b, euid) || put_user (c, suid)) return -EFAULT; return ret; } extern asmlinkage long sys_setregid(gid_t rgid, gid_t egid); asmlinkage long sys32_setregid(__kernel_gid_t32 rgid, __kernel_gid_t32 egid) { gid_t srgid, segid; srgid = (rgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)egid); return sys_setregid(srgid, segid); } extern asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid); asmlinkage long sys32_setresgid(__kernel_gid_t32 rgid, __kernel_gid_t32 egid, __kernel_gid_t32 sgid) { gid_t srgid, segid, ssgid; srgid = (rgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)rgid); segid = (egid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)egid); ssgid = (sgid == (__kernel_gid_t32)-1) ? ((gid_t)-1) : ((gid_t)sgid); return sys_setresgid(srgid, segid, ssgid); } extern asmlinkage long sys_getresgid(gid_t *rgid, gid_t *egid, gid_t *sgid); asmlinkage long sys32_getresgid(__kernel_gid_t32 *rgid, __kernel_gid_t32 *egid, __kernel_gid_t32 *sgid) { gid_t a, b, c; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getresgid(&a, &b, &c); set_fs (old_fs); if (!ret) { ret = put_user (a, rgid); ret |= put_user (b, egid); ret |= put_user (c, sgid); } return ret; } extern asmlinkage long sys_getgroups(int gidsetsize, gid_t *grouplist); asmlinkage long sys32_getgroups(int gidsetsize, __kernel_gid_t32 *grouplist) { gid_t gl[NGROUPS]; int ret, i; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_getgroups(gidsetsize, gl); set_fs (old_fs); if (gidsetsize && ret > 0 && ret <= NGROUPS) for (i = 0; i < ret; i++, grouplist++) if (__put_user (gl[i], grouplist)) return -EFAULT; return ret; } extern asmlinkage long sys_setgroups(int gidsetsize, gid_t *grouplist); asmlinkage long sys32_setgroups(int gidsetsize, __kernel_gid_t32 *grouplist) { gid_t gl[NGROUPS]; int ret, i; mm_segment_t old_fs = get_fs (); if ((unsigned) gidsetsize > NGROUPS) return -EINVAL; for (i = 0; i < gidsetsize; i++, grouplist++) if (__get_user (gl[i], grouplist)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_setgroups(gidsetsize, gl); set_fs (old_fs); return ret; } /* XXX These as well... */ extern __inline__ struct socket * socki_lookup(struct inode *inode) { return &inode->u.socket_i; } extern __inline__ struct socket * sockfd_lookup(int fd, int *err) { struct file *file; struct inode *inode; if (!(file = fget(fd))) { *err = -EBADF; return NULL; } inode = file->f_dentry->d_inode; if (!inode->i_sock || !socki_lookup(inode)) { *err = -ENOTSOCK; fput(file); return NULL; } return socki_lookup(inode); } struct msghdr32 { u32 msg_name; int msg_namelen; u32 msg_iov; __kernel_size_t32 msg_iovlen; u32 msg_control; __kernel_size_t32 msg_controllen; unsigned msg_flags; }; struct cmsghdr32 { __kernel_size_t32 cmsg_len; int cmsg_level; int cmsg_type; }; /* Bleech... */ #define __CMSG32_NXTHDR(ctl, len, cmsg, cmsglen) \ __cmsg32_nxthdr((ctl),(len),(cmsg),(cmsglen)) #define CMSG32_NXTHDR(mhdr, cmsg, cmsglen) \ cmsg32_nxthdr((mhdr), (cmsg), (cmsglen)) #define CMSG32_ALIGN(len) ( ((len)+sizeof(int)-1) & ~(sizeof(int)-1) ) #define CMSG32_DATA(cmsg) \ ((void *)((char *)(cmsg) + CMSG32_ALIGN(sizeof(struct cmsghdr32)))) #define CMSG32_SPACE(len) \ (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + CMSG32_ALIGN(len)) #define CMSG32_LEN(len) (CMSG32_ALIGN(sizeof(struct cmsghdr32)) + (len)) #define __CMSG32_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr32) ? \ (struct cmsghdr32 *)(ctl) : \ (struct cmsghdr32 *)NULL) #define CMSG32_FIRSTHDR(msg) \ __CMSG32_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen) __inline__ struct cmsghdr32 * __cmsg32_nxthdr(void *__ctl, __kernel_size_t __size, struct cmsghdr32 *__cmsg, int __cmsg_len) { struct cmsghdr32 * __ptr; __ptr = (struct cmsghdr32 *)(((unsigned char *) __cmsg) + CMSG32_ALIGN(__cmsg_len)); if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size) return NULL; return __ptr; } __inline__ struct cmsghdr32 * cmsg32_nxthdr (struct msghdr *__msg, struct cmsghdr32 *__cmsg, int __cmsg_len) { return __cmsg32_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg, __cmsg_len); } static inline int iov_from_user32_to_kern(struct iovec *kiov, struct iovec32 *uiov32, int niov) { int tot_len = 0; while(niov > 0) { u32 len, buf; if(get_user(len, &uiov32->iov_len) || get_user(buf, &uiov32->iov_base)) { tot_len = -EFAULT; break; } tot_len += len; kiov->iov_base = (void *)A(buf); kiov->iov_len = (__kernel_size_t) len; uiov32++; kiov++; niov--; } return tot_len; } static inline int msghdr_from_user32_to_kern(struct msghdr *kmsg, struct msghdr32 *umsg) { u32 tmp1, tmp2, tmp3; int err; err = get_user(tmp1, &umsg->msg_name); err |= __get_user(tmp2, &umsg->msg_iov); err |= __get_user(tmp3, &umsg->msg_control); if (err) return -EFAULT; kmsg->msg_name = (void *)A(tmp1); kmsg->msg_iov = (struct iovec *)A(tmp2); kmsg->msg_control = (void *)A(tmp3); err = get_user(kmsg->msg_namelen, &umsg->msg_namelen); err |= get_user(kmsg->msg_iovlen, &umsg->msg_iovlen); err |= get_user(kmsg->msg_controllen, &umsg->msg_controllen); err |= get_user(kmsg->msg_flags, &umsg->msg_flags); return err; } /* I've named the args so it is easy to tell whose space the pointers are in. */ static int verify_iovec32(struct msghdr *kern_msg, struct iovec *kern_iov, char *kern_address, int mode) { int tot_len; if(kern_msg->msg_namelen) { if(mode==VERIFY_READ) { int err = move_addr_to_kernel(kern_msg->msg_name, kern_msg->msg_namelen, kern_address); if(err < 0) return err; } kern_msg->msg_name = kern_address; } else kern_msg->msg_name = NULL; if(kern_msg->msg_iovlen > UIO_FASTIOV) { kern_iov = kmalloc(kern_msg->msg_iovlen * sizeof(struct iovec), GFP_KERNEL); if(!kern_iov) return -ENOMEM; } tot_len = iov_from_user32_to_kern(kern_iov, (struct iovec32 *)kern_msg->msg_iov, kern_msg->msg_iovlen); if(tot_len >= 0) kern_msg->msg_iov = kern_iov; else if(kern_msg->msg_iovlen > UIO_FASTIOV) kfree(kern_iov); return tot_len; } /* There is a lot of hair here because the alignment rules (and * thus placement) of cmsg headers and length are different for * 32-bit apps. -DaveM */ static int cmsghdr_from_user32_to_kern(struct msghdr *kmsg, unsigned char *stackbuf, int stackbuf_size) { struct cmsghdr32 *ucmsg; struct cmsghdr *kcmsg, *kcmsg_base; __kernel_size_t32 ucmlen; __kernel_size_t kcmlen, tmp; kcmlen = 0; kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf; ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { if(get_user(ucmlen, &ucmsg->cmsg_len)) return -EFAULT; /* Catch bogons. */ if(CMSG32_ALIGN(ucmlen) < CMSG32_ALIGN(sizeof(struct cmsghdr32))) return -EINVAL; if((unsigned long)(((char *)ucmsg - (char *)kmsg->msg_control) + ucmlen) > kmsg->msg_controllen) return -EINVAL; tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmlen += tmp; ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } if(kcmlen == 0) return -EINVAL; /* The kcmlen holds the 64-bit version of the control length. * It may not be modified as we do not stick it into the kmsg * until we have successfully copied over all of the data * from the user. */ if(kcmlen > stackbuf_size) kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL); if(kcmsg == NULL) return -ENOBUFS; /* Now copy them over neatly. */ memset(kcmsg, 0, kcmlen); ucmsg = CMSG32_FIRSTHDR(kmsg); while(ucmsg != NULL) { __get_user(ucmlen, &ucmsg->cmsg_len); tmp = ((ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))) + CMSG_ALIGN(sizeof(struct cmsghdr))); kcmsg->cmsg_len = tmp; __get_user(kcmsg->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg->cmsg_type, &ucmsg->cmsg_type); /* Copy over the data. */ if(copy_from_user(CMSG_DATA(kcmsg), CMSG32_DATA(ucmsg), (ucmlen - CMSG32_ALIGN(sizeof(*ucmsg))))) goto out_free_efault; /* Advance. */ kcmsg = (struct cmsghdr *)((char *)kcmsg + CMSG_ALIGN(tmp)); ucmsg = CMSG32_NXTHDR(kmsg, ucmsg, ucmlen); } /* Ok, looks like we made it. Hook it up and return success. */ kmsg->msg_control = kcmsg_base; kmsg->msg_controllen = kcmlen; return 0; out_free_efault: if(kcmsg_base != (struct cmsghdr *)stackbuf) kfree(kcmsg_base); return -EFAULT; } static void put_cmsg32(struct msghdr *kmsg, int level, int type, int len, void *data) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; struct cmsghdr32 cmhdr; int cmlen = CMSG32_LEN(len); if(cm == NULL || kmsg->msg_controllen < sizeof(*cm)) { kmsg->msg_flags |= MSG_CTRUNC; return; } if(kmsg->msg_controllen < cmlen) { kmsg->msg_flags |= MSG_CTRUNC; cmlen = kmsg->msg_controllen; } cmhdr.cmsg_level = level; cmhdr.cmsg_type = type; cmhdr.cmsg_len = cmlen; if(copy_to_user(cm, &cmhdr, sizeof cmhdr)) return; if(copy_to_user(CMSG32_DATA(cm), data, cmlen - sizeof(struct cmsghdr32))) return; cmlen = CMSG32_SPACE(len); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } static void scm_detach_fds32(struct msghdr *kmsg, struct scm_cookie *scm) { struct cmsghdr32 *cm = (struct cmsghdr32 *) kmsg->msg_control; int fdmax = (kmsg->msg_controllen - sizeof(struct cmsghdr32)) / sizeof(int); int fdnum = scm->fp->count; struct file **fp = scm->fp->fp; int *cmfptr; int err = 0, i; if (fdnum < fdmax) fdmax = fdnum; for (i = 0, cmfptr = (int *) CMSG32_DATA(cm); i < fdmax; i++, cmfptr++) { int new_fd; err = get_unused_fd(); if (err < 0) break; new_fd = err; err = put_user(new_fd, cmfptr); if (err) { put_unused_fd(new_fd); break; } /* Bump the usage count and install the file. */ fp[i]->f_count++; current->files->fd[new_fd] = fp[i]; } if (i > 0) { int cmlen = CMSG32_LEN(i * sizeof(int)); if (!err) err = put_user(SOL_SOCKET, &cm->cmsg_level); if (!err) err = put_user(SCM_RIGHTS, &cm->cmsg_type); if (!err) err = put_user(cmlen, &cm->cmsg_len); if (!err) { cmlen = CMSG32_SPACE(i * sizeof(int)); kmsg->msg_control += cmlen; kmsg->msg_controllen -= cmlen; } } if (i < fdnum) kmsg->msg_flags |= MSG_CTRUNC; /* * All of the files that fit in the message have had their * usage counts incremented, so we just free the list. */ __scm_destroy(scm); } /* In these cases we (currently) can just copy to data over verbatim * because all CMSGs created by the kernel have well defined types which * have the same layout in both the 32-bit and 64-bit API. One must add * some special cased conversions here if we start sending control messages * with incompatible types. * * SCM_RIGHTS and SCM_CREDENTIALS are done by hand in recvmsg32 right after * we do our work. The remaining cases are: * * SOL_IP IP_PKTINFO struct in_pktinfo 32-bit clean * IP_TTL int 32-bit clean * IP_TOS __u8 32-bit clean * IP_RECVOPTS variable length 32-bit clean * IP_RETOPTS variable length 32-bit clean * (these last two are clean because the types are defined * by the IPv4 protocol) * IP_RECVERR struct sock_extended_err + * struct sockaddr_in 32-bit clean * SOL_IPV6 IPV6_RECVERR struct sock_extended_err + * struct sockaddr_in6 32-bit clean * IPV6_PKTINFO struct in6_pktinfo 32-bit clean * IPV6_HOPLIMIT int 32-bit clean * IPV6_FLOWINFO u32 32-bit clean * IPV6_HOPOPTS ipv6 hop exthdr 32-bit clean * IPV6_DSTOPTS ipv6 dst exthdr(s) 32-bit clean * IPV6_RTHDR ipv6 routing exthdr 32-bit clean * IPV6_AUTHHDR ipv6 auth exthdr 32-bit clean */ static void cmsg32_recvmsg_fixup(struct msghdr *kmsg, unsigned long orig_cmsg_uptr) { unsigned char *workbuf, *wp; unsigned long bufsz, space_avail; struct cmsghdr *ucmsg; bufsz = ((unsigned long)kmsg->msg_control) - orig_cmsg_uptr; space_avail = kmsg->msg_controllen + bufsz; wp = workbuf = kmalloc(bufsz, GFP_KERNEL); if(workbuf == NULL) goto fail; /* To make this more sane we assume the kernel sends back properly * formatted control messages. Because of how the kernel will truncate * the cmsg_len for MSG_TRUNC cases, we need not check that case either. */ ucmsg = (struct cmsghdr *) orig_cmsg_uptr; while(((unsigned long)ucmsg) < ((unsigned long)kmsg->msg_control)) { struct cmsghdr32 *kcmsg32 = (struct cmsghdr32 *) wp; int clen64, clen32; /* UCMSG is the 64-bit format CMSG entry in user-space. * KCMSG32 is within the kernel space temporary buffer * we use to convert into a 32-bit style CMSG. */ __get_user(kcmsg32->cmsg_len, &ucmsg->cmsg_len); __get_user(kcmsg32->cmsg_level, &ucmsg->cmsg_level); __get_user(kcmsg32->cmsg_type, &ucmsg->cmsg_type); clen64 = kcmsg32->cmsg_len; copy_from_user(CMSG32_DATA(kcmsg32), CMSG_DATA(ucmsg), clen64 - CMSG_ALIGN(sizeof(*ucmsg))); clen32 = ((clen64 - CMSG_ALIGN(sizeof(*ucmsg))) + CMSG32_ALIGN(sizeof(struct cmsghdr32))); kcmsg32->cmsg_len = clen32; ucmsg = (struct cmsghdr *) (((char *)ucmsg) + CMSG_ALIGN(clen64)); wp = (((char *)kcmsg32) + CMSG32_ALIGN(clen32)); } /* Copy back fixed up data, and adjust pointers. */ bufsz = (wp - workbuf); copy_to_user((void *)orig_cmsg_uptr, workbuf, bufsz); kmsg->msg_control = (struct cmsghdr *) (((char *)orig_cmsg_uptr) + bufsz); kmsg->msg_controllen = space_avail - bufsz; kfree(workbuf); return; fail: /* If we leave the 64-bit format CMSG chunks in there, * the application could get confused and crash. So to * ensure greater recovery, we report no CMSGs. */ kmsg->msg_controllen += bufsz; kmsg->msg_control = (void *) orig_cmsg_uptr; } asmlinkage long sys32_sendmsg(int fd, struct msghdr32 *user_msg, unsigned user_flags) { struct socket *sock; char address[MAX_SOCK_ADDR]; struct iovec iov[UIO_FASTIOV]; unsigned char ctl[sizeof(struct cmsghdr) + 20]; unsigned char *ctl_buf = ctl; struct msghdr kern_msg; int err, total_len; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; err = verify_iovec32(&kern_msg, iov, address, VERIFY_READ); if (err < 0) goto out; total_len = err; if(kern_msg.msg_controllen) { err = cmsghdr_from_user32_to_kern(&kern_msg, ctl, sizeof(ctl)); if(err) goto out_freeiov; ctl_buf = kern_msg.msg_control; } kern_msg.msg_flags = user_flags; sock = sockfd_lookup(fd, &err); if (sock != NULL) { if (sock->file->f_flags & O_NONBLOCK) kern_msg.msg_flags |= MSG_DONTWAIT; err = sock_sendmsg(sock, &kern_msg, total_len); sockfd_put(sock); } /* N.B. Use kfree here, as kern_msg.msg_controllen might change? */ if(ctl_buf != ctl) kfree(ctl_buf); out_freeiov: if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: return err; } asmlinkage long sys32_recvmsg(int fd, struct msghdr32 *user_msg, unsigned int user_flags) { struct iovec iovstack[UIO_FASTIOV]; struct msghdr kern_msg; char addr[MAX_SOCK_ADDR]; struct socket *sock; struct iovec *iov = iovstack; struct sockaddr *uaddr; int *uaddr_len; unsigned long cmsg_ptr; int err, total_len, len = 0; if(msghdr_from_user32_to_kern(&kern_msg, user_msg)) return -EFAULT; if(kern_msg.msg_iovlen > UIO_MAXIOV) return -EINVAL; uaddr = kern_msg.msg_name; uaddr_len = &user_msg->msg_namelen; err = verify_iovec32(&kern_msg, iov, addr, VERIFY_WRITE); if (err < 0) goto out; total_len = err; cmsg_ptr = (unsigned long) kern_msg.msg_control; kern_msg.msg_flags = 0; sock = sockfd_lookup(fd, &err); if (sock != NULL) { struct scm_cookie scm; if (sock->file->f_flags & O_NONBLOCK) user_flags |= MSG_DONTWAIT; memset(&scm, 0, sizeof(scm)); lock_kernel(); err = sock->ops->recvmsg(sock, &kern_msg, total_len, user_flags, &scm); if(err >= 0) { len = err; if(!kern_msg.msg_control) { if(sock->passcred || scm.fp) kern_msg.msg_flags |= MSG_CTRUNC; if(scm.fp) __scm_destroy(&scm); } else { /* If recvmsg processing itself placed some * control messages into user space, it's is * using 64-bit CMSG processing, so we need * to fix it up before we tack on more stuff. */ if((unsigned long) kern_msg.msg_control != cmsg_ptr) cmsg32_recvmsg_fixup(&kern_msg, cmsg_ptr); /* Wheee... */ if(sock->passcred) put_cmsg32(&kern_msg, SOL_SOCKET, SCM_CREDENTIALS, sizeof(scm.creds), &scm.creds); if(scm.fp != NULL) scm_detach_fds32(&kern_msg, &scm); } } unlock_kernel(); sockfd_put(sock); } if(uaddr != NULL && err >= 0) err = move_addr_to_user(addr, kern_msg.msg_namelen, uaddr, uaddr_len); if(cmsg_ptr != 0 && err >= 0) { unsigned long ucmsg_ptr = ((unsigned long)kern_msg.msg_control); __kernel_size_t32 uclen = (__kernel_size_t32) (ucmsg_ptr - cmsg_ptr); err |= __put_user(uclen, &user_msg->msg_controllen); } if(err >= 0) err = __put_user(kern_msg.msg_flags, &user_msg->msg_flags); if(kern_msg.msg_iov != iov) kfree(kern_msg.msg_iov); out: if(err < 0) return err; return len; } extern void check_pending(int signum); #ifdef CONFIG_MODULES extern asmlinkage unsigned long sys_create_module(const char *name_user, size_t size); asmlinkage unsigned long sys32_create_module(const char *name_user, __kernel_size_t32 size) { return sys_create_module(name_user, (size_t)size); } extern asmlinkage long sys_init_module(const char *name_user, struct module *mod_user); /* Hey, when you're trying to init module, take time and prepare us a nice 64bit * module structure, even if from 32bit modutils... Why to pollute kernel... :)) */ asmlinkage long sys32_init_module(const char *name_user, struct module *mod_user) { return sys_init_module(name_user, mod_user); } extern asmlinkage long sys_delete_module(const char *name_user); asmlinkage long sys32_delete_module(const char *name_user) { return sys_delete_module(name_user); } struct module_info32 { u32 addr; u32 size; u32 flags; s32 usecount; }; /* Query various bits about modules. */ static inline long get_mod_name(const char *user_name, char **buf) { unsigned long page; long retval; if ((unsigned long)user_name >= TASK_SIZE && !segment_eq(get_fs (), KERNEL_DS)) return -EFAULT; page = __get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; retval = strncpy_from_user((char *)page, user_name, PAGE_SIZE); if (retval > 0) { if (retval < PAGE_SIZE) { *buf = (char *)page; return retval; } retval = -ENAMETOOLONG; } else if (!retval) retval = -EINVAL; free_page(page); return retval; } static inline void put_mod_name(char *buf) { free_page((unsigned long)buf); } static __inline__ struct module * find_module(const char *name) { struct module *mod; for (mod = module_list; mod ; mod = mod->next) { if (mod->flags & MOD_DELETED) continue; if (!strcmp(mod->name, name)) break; } return mod; } static int qm_modules(char *buf, size_t bufsize, __kernel_size_t32 *ret) { struct module *mod; size_t nmod, space, len; nmod = space = 0; for (mod = module_list; mod->next != NULL; mod = mod->next, ++nmod) { len = strlen(mod->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, mod->name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nmod, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((mod = mod->next)->next != NULL) space += strlen(mod->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_deps(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; if (mod->next == NULL) return -EINVAL; if ((mod->flags & (MOD_RUNNING | MOD_DELETED)) != MOD_RUNNING) if (put_user(0, ret)) return -EFAULT; else return 0; space = 0; for (i = 0; i < mod->ndeps; ++i) { const char *dep_name = mod->deps[i].dep->name; len = strlen(dep_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, dep_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(i, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while (++i < mod->ndeps) space += strlen(mod->deps[i].dep->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static int qm_refs(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t nrefs, space, len; struct module_ref *ref; if (mod->next == NULL) return -EINVAL; if ((mod->flags & (MOD_RUNNING | MOD_DELETED)) != MOD_RUNNING) if (put_user(0, ret)) return -EFAULT; else return 0; space = 0; for (nrefs = 0, ref = mod->refs; ref ; ++nrefs, ref = ref->next_ref) { const char *ref_name = ref->ref->name; len = strlen(ref_name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(buf, ref_name, len)) return -EFAULT; buf += len; bufsize -= len; space += len; } if (put_user(nrefs, ret)) return -EFAULT; else return 0; calc_space_needed: space += len; while ((ref = ref->next_ref) != NULL) space += strlen(ref->ref->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_symbols(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { size_t i, space, len; struct module_symbol *s; char *strings; unsigned *vals; if ((mod->flags & (MOD_RUNNING | MOD_DELETED)) != MOD_RUNNING) if (put_user(0, ret)) return -EFAULT; else return 0; space = mod->nsyms * 2*sizeof(u32); i = len = 0; s = mod->syms; if (space > bufsize) goto calc_space_needed; if (!access_ok(VERIFY_WRITE, buf, space)) return -EFAULT; bufsize -= space; vals = (unsigned *)buf; strings = buf+space; for (; i < mod->nsyms ; ++i, ++s, vals += 2) { len = strlen(s->name)+1; if (len > bufsize) goto calc_space_needed; if (copy_to_user(strings, s->name, len) || __put_user(s->value, vals+0) || __put_user(space, vals+1)) return -EFAULT; strings += len; bufsize -= len; space += len; } if (put_user(i, ret)) return -EFAULT; else return 0; calc_space_needed: for (; i < mod->nsyms; ++i, ++s) space += strlen(s->name)+1; if (put_user(space, ret)) return -EFAULT; else return -ENOSPC; } static inline int qm_info(struct module *mod, char *buf, size_t bufsize, __kernel_size_t32 *ret) { int error = 0; if (mod->next == NULL) return -EINVAL; if (sizeof(struct module_info32) <= bufsize) { struct module_info32 info; info.addr = (unsigned long)mod; info.size = mod->size; info.flags = mod->flags; info.usecount = ((mod_member_present(mod, can_unload) && mod->can_unload) ? -1 : atomic_read(&mod->uc.usecount)); if (copy_to_user(buf, &info, sizeof(struct module_info32))) return -EFAULT; } else error = -ENOSPC; if (put_user(sizeof(struct module_info32), ret)) return -EFAULT; return error; } asmlinkage long sys32_query_module(char *name_user, int which, char *buf, __kernel_size_t32 bufsize, u32 ret) { struct module *mod; int err; lock_kernel(); if (name_user == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else { long namelen; char *name; if ((namelen = get_mod_name(name_user, &name)) < 0) { err = namelen; goto out; } err = -ENOENT; if (namelen == 0) { /* This finds "kernel_module" which is not exported. */ for(mod = module_list; mod->next != NULL; mod = mod->next) ; } else if ((mod = find_module(name)) == NULL) { put_mod_name(name); goto out; } put_mod_name(name); } switch (which) { case 0: err = 0; break; case QM_MODULES: err = qm_modules(buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_DEPS: err = qm_deps(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_REFS: err = qm_refs(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_SYMBOLS: err = qm_symbols(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; case QM_INFO: err = qm_info(mod, buf, bufsize, (__kernel_size_t32 *)AA(ret)); break; default: err = -EINVAL; break; } out: unlock_kernel(); return err; } struct kernel_sym32 { u32 value; char name[60]; }; extern asmlinkage long sys_get_kernel_syms(struct kernel_sym *table); asmlinkage long sys32_get_kernel_syms(struct kernel_sym32 *table) { int len, i; struct kernel_sym *tbl; mm_segment_t old_fs; len = sys_get_kernel_syms(NULL); if (!table) return len; tbl = kmalloc (len * sizeof (struct kernel_sym), GFP_KERNEL); if (!tbl) return -ENOMEM; old_fs = get_fs(); set_fs (KERNEL_DS); sys_get_kernel_syms(tbl); set_fs (old_fs); for (i = 0; i < len; i++, table += sizeof (struct kernel_sym32)) { if (put_user (tbl[i].value, &table->value) || copy_to_user (table->name, tbl[i].name, 60)) break; } kfree (tbl); return i; } #else /* CONFIG_MODULES */ asmlinkage unsigned long sys32_create_module(const char *name_user, size_t size) { return -ENOSYS; } asmlinkage long sys32_init_module(const char *name_user, struct module *mod_user) { return -ENOSYS; } asmlinkage long sys32_delete_module(const char *name_user) { return -ENOSYS; } asmlinkage long sys32_query_module(const char *name_user, int which, char *buf, size_t bufsize, size_t *ret) { /* Let the program know about the new interface. Not that it'll do them much good. */ if (which == 0) return 0; return -ENOSYS; } asmlinkage long sys32_get_kernel_syms(struct kernel_sym *table) { return -ENOSYS; } #endif /* CONFIG_MODULES */ /* Stuff for NFS server syscalls... */ struct nfsctl_svc32 { u16 svc32_port; s32 svc32_nthreads; }; struct nfsctl_client32 { s8 cl32_ident[NFSCLNT_IDMAX+1]; s32 cl32_naddr; struct in_addr cl32_addrlist[NFSCLNT_ADDRMAX]; s32 cl32_fhkeytype; s32 cl32_fhkeylen; u8 cl32_fhkey[NFSCLNT_KEYMAX]; }; struct nfsctl_export32 { s8 ex32_client[NFSCLNT_IDMAX+1]; s8 ex32_path[NFS_MAXPATHLEN+1]; __kernel_dev_t32 ex32_dev; __kernel_ino_t32 ex32_ino; s32 ex32_flags; __kernel_uid_t32 ex32_anon_uid; __kernel_gid_t32 ex32_anon_gid; }; struct nfsctl_uidmap32 { u32 ug32_ident; /* char * */ __kernel_uid_t32 ug32_uidbase; s32 ug32_uidlen; u32 ug32_udimap; /* uid_t * */ __kernel_uid_t32 ug32_gidbase; s32 ug32_gidlen; u32 ug32_gdimap; /* gid_t * */ }; struct nfsctl_fhparm32 { struct sockaddr gf32_addr; __kernel_dev_t32 gf32_dev; __kernel_ino_t32 gf32_ino; s32 gf32_version; }; struct nfsctl_arg32 { s32 ca32_version; /* safeguard */ union { struct nfsctl_svc32 u32_svc; struct nfsctl_client32 u32_client; struct nfsctl_export32 u32_export; struct nfsctl_uidmap32 u32_umap; struct nfsctl_fhparm32 u32_getfh; u32 u32_debug; } u; #define ca32_svc u.u32_svc #define ca32_client u.u32_client #define ca32_export u.u32_export #define ca32_umap u.u32_umap #define ca32_getfh u.u32_getfh #define ca32_authd u.u32_authd #define ca32_debug u.u32_debug }; union nfsctl_res32 { struct knfs_fh cr32_getfh; u32 cr32_debug; }; static int nfs_svc32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= __get_user(karg->ca_svc.svc_port, &arg32->ca32_svc.svc32_port); err |= __get_user(karg->ca_svc.svc_nthreads, &arg32->ca32_svc.svc32_nthreads); return err; } static int nfs_clnt32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_client.cl_ident[0], &arg32->ca32_client.cl32_ident[0], NFSCLNT_IDMAX); err |= __get_user(karg->ca_client.cl_naddr, &arg32->ca32_client.cl32_naddr); err |= copy_from_user(&karg->ca_client.cl_addrlist[0], &arg32->ca32_client.cl32_addrlist[0], (sizeof(struct in_addr) * NFSCLNT_ADDRMAX)); err |= __get_user(karg->ca_client.cl_fhkeytype, &arg32->ca32_client.cl32_fhkeytype); err |= __get_user(karg->ca_client.cl_fhkeylen, &arg32->ca32_client.cl32_fhkeylen); err |= copy_from_user(&karg->ca_client.cl_fhkey[0], &arg32->ca32_client.cl32_fhkey[0], NFSCLNT_KEYMAX); return err; } static int nfs_exp32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_export.ex_client[0], &arg32->ca32_export.ex32_client[0], NFSCLNT_IDMAX); err |= copy_from_user(&karg->ca_export.ex_path[0], &arg32->ca32_export.ex32_path[0], NFS_MAXPATHLEN); err |= __get_user(karg->ca_export.ex_dev, &arg32->ca32_export.ex32_dev); err |= __get_user(karg->ca_export.ex_ino, &arg32->ca32_export.ex32_ino); err |= __get_user(karg->ca_export.ex_flags, &arg32->ca32_export.ex32_flags); err |= __get_user(karg->ca_export.ex_anon_uid, &arg32->ca32_export.ex32_anon_uid); err |= __get_user(karg->ca_export.ex_anon_gid, &arg32->ca32_export.ex32_anon_gid); return err; } static int nfs_uud32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { u32 uaddr; int i; int err; memset(karg, 0, sizeof(*karg)); if(__get_user(karg->ca_version, &arg32->ca32_version)) return -EFAULT; karg->ca_umap.ug_ident = (char *)get_free_page(GFP_USER); if(!karg->ca_umap.ug_ident) return -ENOMEM; err = __get_user(uaddr, &arg32->ca32_umap.ug32_ident); if(strncpy_from_user(karg->ca_umap.ug_ident, (char *)A(uaddr), PAGE_SIZE) <= 0) return -EFAULT; err |= __get_user(karg->ca_umap.ug_uidbase, &arg32->ca32_umap.ug32_uidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_uidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_udimap); if (err) return -EFAULT; karg->ca_umap.ug_udimap = kmalloc((sizeof(uid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_udimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_uidlen; i++) err |= __get_user(karg->ca_umap.ug_udimap[i], &(((__kernel_uid_t32 *)A(uaddr))[i])); err |= __get_user(karg->ca_umap.ug_gidbase, &arg32->ca32_umap.ug32_gidbase); err |= __get_user(karg->ca_umap.ug_uidlen, &arg32->ca32_umap.ug32_gidlen); err |= __get_user(uaddr, &arg32->ca32_umap.ug32_gdimap); if (err) return -EFAULT; karg->ca_umap.ug_gdimap = kmalloc((sizeof(gid_t) * karg->ca_umap.ug_uidlen), GFP_USER); if(!karg->ca_umap.ug_gdimap) return -ENOMEM; for(i = 0; i < karg->ca_umap.ug_gidlen; i++) err |= __get_user(karg->ca_umap.ug_gdimap[i], &(((__kernel_gid_t32 *)A(uaddr))[i])); return err; } static int nfs_getfh32_trans(struct nfsctl_arg *karg, struct nfsctl_arg32 *arg32) { int err; err = __get_user(karg->ca_version, &arg32->ca32_version); err |= copy_from_user(&karg->ca_getfh.gf_addr, &arg32->ca32_getfh.gf32_addr, (sizeof(struct sockaddr))); err |= __get_user(karg->ca_getfh.gf_dev, &arg32->ca32_getfh.gf32_dev); err |= __get_user(karg->ca_getfh.gf_ino, &arg32->ca32_getfh.gf32_ino); err |= __get_user(karg->ca_getfh.gf_version, &arg32->ca32_getfh.gf32_version); return err; } static int nfs_getfh32_res_trans(union nfsctl_res *kres, union nfsctl_res32 *res32) { int err; err = copy_to_user(&res32->cr32_getfh, &kres->cr_getfh, sizeof(res32->cr32_getfh)); err |= __put_user(kres->cr_debug, &res32->cr32_debug); return err; } extern asmlinkage long sys_nfsservctl(int cmd, void *arg, void *resp); int asmlinkage sys32_nfsservctl(int cmd, struct nfsctl_arg32 *arg32, union nfsctl_res32 *res32) { struct nfsctl_arg *karg = NULL; union nfsctl_res *kres = NULL; mm_segment_t oldfs; int err; karg = kmalloc(sizeof(*karg), GFP_USER); if(!karg) return -ENOMEM; if(res32) { kres = kmalloc(sizeof(*kres), GFP_USER); if(!kres) { kfree(karg); return -ENOMEM; } } switch(cmd) { case NFSCTL_SVC: err = nfs_svc32_trans(karg, arg32); break; case NFSCTL_ADDCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_DELCLIENT: err = nfs_clnt32_trans(karg, arg32); break; case NFSCTL_EXPORT: err = nfs_exp32_trans(karg, arg32); break; /* This one is unimplemented, be we're ready for it. */ case NFSCTL_UGIDUPDATE: err = nfs_uud32_trans(karg, arg32); break; case NFSCTL_GETFH: err = nfs_getfh32_trans(karg, arg32); break; default: err = -EINVAL; break; } if(err) goto done; oldfs = get_fs(); set_fs(KERNEL_DS); err = sys_nfsservctl(cmd, karg, kres); set_fs(oldfs); if(!err && cmd == NFSCTL_GETFH) err = nfs_getfh32_res_trans(kres, res32); done: if(karg) { if(cmd == NFSCTL_UGIDUPDATE) { if(karg->ca_umap.ug_ident) kfree(karg->ca_umap.ug_ident); if(karg->ca_umap.ug_udimap) kfree(karg->ca_umap.ug_udimap); if(karg->ca_umap.ug_gdimap) kfree(karg->ca_umap.ug_gdimap); } kfree(karg); } if(kres) kfree(kres); return err; } asmlinkage long sys_utimes(char *, struct timeval *); asmlinkage long sys32_utimes(char *filename, struct timeval32 *tvs) { char *kfilename; struct timeval ktvs[2]; mm_segment_t old_fs; int ret; kfilename = getname32(filename); ret = PTR_ERR(kfilename); if (!IS_ERR(kfilename)) { if (tvs) { if (get_tv32(&ktvs[0], tvs) || get_tv32(&ktvs[1], 1+tvs)) return -EFAULT; } old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_utimes(kfilename, &ktvs[0]); set_fs(old_fs); putname(kfilename); } return ret; } /* These are here just in case some old ia32 binary calls it. */ asmlinkage long sys32_pause(void) { current->state = TASK_INTERRUPTIBLE; schedule(); return -ERESTARTNOHAND; } /* PCI config space poking. */ extern asmlinkage long sys_pciconfig_read(unsigned long bus, unsigned long dfn, unsigned long off, unsigned long len, unsigned char *buf); extern asmlinkage long sys_pciconfig_write(unsigned long bus, unsigned long dfn, unsigned long off, unsigned long len, unsigned char *buf); asmlinkage long sys32_pciconfig_read(u32 bus, u32 dfn, u32 off, u32 len, u32 ubuf) { return sys_pciconfig_read((unsigned long) bus, (unsigned long) dfn, (unsigned long) off, (unsigned long) len, (unsigned char *)AA(ubuf)); } asmlinkage long sys32_pciconfig_write(u32 bus, u32 dfn, u32 off, u32 len, u32 ubuf) { return sys_pciconfig_write((unsigned long) bus, (unsigned long) dfn, (unsigned long) off, (unsigned long) len, (unsigned char *)AA(ubuf)); } extern asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5); asmlinkage long sys32_prctl(int option, u32 arg2, u32 arg3, u32 arg4, u32 arg5) { return sys_prctl(option, (unsigned long) arg2, (unsigned long) arg3, (unsigned long) arg4, (unsigned long) arg5); } extern asmlinkage long sys_newuname(struct new_utsname * name); asmlinkage long sys32_newuname(struct new_utsname * name) { int ret = sys_newuname(name); if (current->personality == PER_LINUX32 && !ret) { ret = copy_to_user(name->machine, "sparc\0\0", 8); } return ret; } extern asmlinkage ssize_t sys_pread(unsigned int fd, char * buf, size_t count, loff_t pos); extern asmlinkage ssize_t sys_pwrite(unsigned int fd, const char * buf, size_t count, loff_t pos); typedef __kernel_ssize_t32 ssize_t32; asmlinkage ssize_t32 sys32_pread(unsigned int fd, char *ubuf, __kernel_size_t32 count, u32 poshi, u32 poslo) { return sys_pread(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo)); } asmlinkage ssize_t32 sys32_pwrite(unsigned int fd, char *ubuf, __kernel_size_t32 count, u32 poshi, u32 poslo) { return sys_pwrite(fd, ubuf, count, ((loff_t)AA(poshi) << 32) | AA(poslo)); } extern asmlinkage long sys_personality(unsigned long); asmlinkage long sys32_personality(unsigned long personality) { int ret; if (current->personality == PER_LINUX32 && personality == PER_LINUX) personality = PER_LINUX32; ret = sys_personality(personality); if (ret == PER_LINUX32) ret = PER_LINUX; return ret; } extern asmlinkage ssize_t sys_sendfile(int out_fd, int in_fd, off_t *offset, size_t count); asmlinkage long sys32_sendfile(int out_fd, int in_fd, __kernel_off_t32 *offset, s32 count) { mm_segment_t old_fs = get_fs(); int ret; off_t of; if (offset && get_user(of, offset)) return -EFAULT; set_fs(KERNEL_DS); ret = sys_sendfile(out_fd, in_fd, offset ? &of : NULL, count); set_fs(old_fs); if (!ret && offset && put_user(of, offset)) return -EFAULT; return ret; } /* Handle adjtimex compatability. */ struct timex32 { u32 modes; s32 offset, freq, maxerror, esterror; s32 status, constant, precision, tolerance; struct timeval32 time; s32 tick; s32 ppsfreq, jitter, shift, stabil; s32 jitcnt, calcnt, errcnt, stbcnt; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; s32 :32; }; extern int do_adjtimex(struct timex *); asmlinkage long sys32_adjtimex(struct timex32 *utp) { struct timex txc; int ret; memset(&txc, 0, sizeof(struct timex)); if(get_user(txc.modes, &utp->modes) || __get_user(txc.offset, &utp->offset) || __get_user(txc.freq, &utp->freq) || __get_user(txc.maxerror, &utp->maxerror) || __get_user(txc.esterror, &utp->esterror) || __get_user(txc.status, &utp->status) || __get_user(txc.constant, &utp->constant) || __get_user(txc.precision, &utp->precision) || __get_user(txc.tolerance, &utp->tolerance) || __get_user(txc.time.tv_sec, &utp->time.tv_sec) || __get_user(txc.time.tv_usec, &utp->time.tv_usec) || __get_user(txc.tick, &utp->tick) || __get_user(txc.ppsfreq, &utp->ppsfreq) || __get_user(txc.jitter, &utp->jitter) || __get_user(txc.shift, &utp->shift) || __get_user(txc.stabil, &utp->stabil) || __get_user(txc.jitcnt, &utp->jitcnt) || __get_user(txc.calcnt, &utp->calcnt) || __get_user(txc.errcnt, &utp->errcnt) || __get_user(txc.stbcnt, &utp->stbcnt)) return -EFAULT; ret = do_adjtimex(&txc); if(put_user(txc.modes, &utp->modes) || __put_user(txc.offset, &utp->offset) || __put_user(txc.freq, &utp->freq) || __put_user(txc.maxerror, &utp->maxerror) || __put_user(txc.esterror, &utp->esterror) || __put_user(txc.status, &utp->status) || __put_user(txc.constant, &utp->constant) || __put_user(txc.precision, &utp->precision) || __put_user(txc.tolerance, &utp->tolerance) || __put_user(txc.time.tv_sec, &utp->time.tv_sec) || __put_user(txc.time.tv_usec, &utp->time.tv_usec) || __put_user(txc.tick, &utp->tick) || __put_user(txc.ppsfreq, &utp->ppsfreq) || __put_user(txc.jitter, &utp->jitter) || __put_user(txc.shift, &utp->shift) || __put_user(txc.stabil, &utp->stabil) || __put_user(txc.jitcnt, &utp->jitcnt) || __put_user(txc.calcnt, &utp->calcnt) || __put_user(txc.errcnt, &utp->errcnt) || __put_user(txc.stbcnt, &utp->stbcnt)) ret = -EFAULT; return ret; } #endif // NOTYET