/* * Architecture-specific unaligned trap handling. * * Copyright (C) 1999 Hewlett-Packard Co * Copyright (C) 1999 Stephane Eranian */ #include #include #include #include #include #include #include extern void die_if_kernel(char *str, struct pt_regs *regs, long err) __attribute__ ((noreturn)); #undef DEBUG_UNALIGNED_TRAP #ifdef DEBUG_UNALIGNED_TRAP #define DPRINT(a) { printk("%s, line %d: ", __FUNCTION__, __LINE__); printk a;} #else #define DPRINT(a) #endif #define IA64_FIRST_STACKED_GR 32 #define IA64_FIRST_ROTATING_FR 32 #define SIGN_EXT9 __IA64_UL(0xffffffffffffff00) /* * For M-unit: * * opcode | m | x6 | * --------|------|---------| * [40-37] | [36] | [35:30] | * --------|------|---------| * 4 | 1 | 6 | = 11 bits * -------------------------- * However bits [31:30] are not directly useful to distinguish between * load/store so we can use [35:32] instead, which gives the following * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer * checking the m-bit until later in the load/store emulation. */ #define IA64_OPCODE_MASK 0x1ef00000000 /* * Table C-28 Integer Load/Store * * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF * * ld8.fill, st8.fill MUST be aligned because the RNATs are based on * the address (bits [8:3]), so we must failed. */ #define LD_OP 0x08000000000 #define LDS_OP 0x08100000000 #define LDA_OP 0x08200000000 #define LDSA_OP 0x08300000000 #define LDBIAS_OP 0x08400000000 #define LDACQ_OP 0x08500000000 /* 0x086, 0x087 are not relevant */ #define LDCCLR_OP 0x08800000000 #define LDCNC_OP 0x08900000000 #define LDCCLRACQ_OP 0x08a00000000 #define ST_OP 0x08c00000000 #define STREL_OP 0x08d00000000 /* 0x08e,0x8f are not relevant */ /* * Table C-29 Integer Load +Reg * * we use the ld->m (bit [36:36]) field to determine whether or not we have * a load/store of this form. */ /* * Table C-30 Integer Load/Store +Imm * * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF * * ld8.fill, st8.fill must be aligned because the Nat register are based on * the address, so we must fail and the program must be fixed. */ #define LD_IMM_OP 0x0a000000000 #define LDS_IMM_OP 0x0a100000000 #define LDA_IMM_OP 0x0a200000000 #define LDSA_IMM_OP 0x0a300000000 #define LDBIAS_IMM_OP 0x0a400000000 #define LDACQ_IMM_OP 0x0a500000000 /* 0x0a6, 0xa7 are not relevant */ #define LDCCLR_IMM_OP 0x0a800000000 #define LDCNC_IMM_OP 0x0a900000000 #define LDCCLRACQ_IMM_OP 0x0aa00000000 #define ST_IMM_OP 0x0ac00000000 #define STREL_IMM_OP 0x0ad00000000 /* 0x0ae,0xaf are not relevant */ /* * Table C-32 Floating-point Load/Store */ #define LDF_OP 0x0c000000000 #define LDFS_OP 0x0c100000000 #define LDFA_OP 0x0c200000000 #define LDFSA_OP 0x0c300000000 /* 0x0c6 is irrelevant */ #define LDFCCLR_OP 0x0c800000000 #define LDFCNC_OP 0x0c900000000 /* 0x0cb is irrelevant */ #define STF_OP 0x0cc00000000 /* * Table C-33 Floating-point Load +Reg * * we use the ld->m (bit [36:36]) field to determine whether or not we have * a load/store of this form. */ /* * Table C-34 Floating-point Load/Store +Imm */ #define LDF_IMM_OP 0x0e000000000 #define LDFS_IMM_OP 0x0e100000000 #define LDFA_IMM_OP 0x0e200000000 #define LDFSA_IMM_OP 0x0e300000000 /* 0x0e6 is irrelevant */ #define LDFCCLR_IMM_OP 0x0e800000000 #define LDFCNC_IMM_OP 0x0e900000000 #define STF_IMM_OP 0x0ec00000000 typedef struct { unsigned long qp:6; /* [0:5] */ unsigned long r1:7; /* [6:12] */ unsigned long imm:7; /* [13:19] */ unsigned long r3:7; /* [20:26] */ unsigned long x:1; /* [27:27] */ unsigned long hint:2; /* [28:29] */ unsigned long x6_sz:2; /* [30:31] */ unsigned long x6_op:4; /* [32:35], x6 = x6_sz|x6_op */ unsigned long m:1; /* [36:36] */ unsigned long op:4; /* [37:40] */ unsigned long pad:23; /* [41:63] */ } load_store_t; typedef enum { UPD_IMMEDIATE, /* ldXZ r1=[r3],imm(9) */ UPD_REG /* ldXZ r1=[r3],r2 */ } update_t; /* * We use tables to keep track of the offsets of registers in the saved state. * This way we save having big switch/case statements. * * We use bit 0 to indicate switch_stack or pt_regs. * The offset is simply shifted by 1 bit. * A 2-byte value should be enough to hold any kind of offset * * In case the calling convention changes (and thus pt_regs/switch_stack) * simply use RSW instead of RPT or vice-versa. */ #define RPO(x) ((size_t) &((struct pt_regs *)0)->x) #define RSO(x) ((size_t) &((struct switch_stack *)0)->x) #define RPT(x) (RPO(x) << 1) #define RSW(x) (1| RSO(x)<<1) #define GR_OFFS(x) (gr_info[x]>>1) #define GR_IN_SW(x) (gr_info[x] & 0x1) #define FR_OFFS(x) (fr_info[x]>>1) #define FR_IN_SW(x) (fr_info[x] & 0x1) static u16 gr_info[32]={ 0, /* r0 is read-only : WE SHOULD NEVER GET THIS */ RPT(r1), RPT(r2), RPT(r3), RSW(r4), RSW(r5), RSW(r6), RSW(r7), RPT(r8), RPT(r9), RPT(r10), RPT(r11), RPT(r12), RPT(r13), RPT(r14), RPT(r15), RPT(r16), RPT(r17), RPT(r18), RPT(r19), RPT(r20), RPT(r21), RPT(r22), RPT(r23), RPT(r24), RPT(r25), RPT(r26), RPT(r27), RPT(r28), RPT(r29), RPT(r30), RPT(r31) }; static u16 fr_info[32]={ 0, /* constant : WE SHOULD NEVER GET THIS */ 0, /* constant : WE SHOULD NEVER GET THIS */ RSW(f2), RSW(f3), RSW(f4), RSW(f5), RPT(f6), RPT(f7), RPT(f8), RPT(f9), RSW(f10), RSW(f11), RSW(f12), RSW(f13), RSW(f14), RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19), RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24), RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29), RSW(f30), RSW(f31) }; /* Invalidate ALAT entry for integer register REGNO. */ static void invala_gr (int regno) { # define F(reg) case reg: __asm__ __volatile__ ("invala.e r%0" :: "i"(reg)); break switch (regno) { F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); } # undef F } /* Invalidate ALAT entry for floating-point register REGNO. */ static void invala_fr (int regno) { # define F(reg) case reg: __asm__ __volatile__ ("invala.e f%0" :: "i"(reg)); break switch (regno) { F( 0); F( 1); F( 2); F( 3); F( 4); F( 5); F( 6); F( 7); F( 8); F( 9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15); F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23); F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31); F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39); F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47); F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55); F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63); F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71); F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79); F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87); F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95); F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103); F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111); F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119); F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127); } # undef F } static void set_rse_reg(struct pt_regs *regs, unsigned long r1, unsigned long val, int nat) { struct switch_stack *sw = (struct switch_stack *)regs - 1; unsigned long *kbs = ((unsigned long *)current) + IA64_RBS_OFFSET/8; unsigned long on_kbs; unsigned long *bsp, *bspstore, *addr, *ubs_end, *slot; unsigned long rnats; long nlocals; /* * cr_ifs=[rv:ifm], ifm=[....:sof(6)] * nlocal=number of locals (in+loc) register of the faulting function */ nlocals = (regs->cr_ifs) & 0x7f; DPRINT(("sw.bsptore=%lx pt.bspstore=%lx\n", sw->ar_bspstore, regs->ar_bspstore)); DPRINT(("cr.ifs=%lx sof=%ld sol=%ld\n", regs->cr_ifs, regs->cr_ifs &0x7f, (regs->cr_ifs>>7)&0x7f)); on_kbs = ia64_rse_num_regs(kbs, (unsigned long *)sw->ar_bspstore); bspstore = (unsigned long *)regs->ar_bspstore; DPRINT(("rse_slot_num=0x%lx\n",ia64_rse_slot_num((unsigned long *)sw->ar_bspstore))); DPRINT(("kbs=%p nlocals=%ld\n", kbs, nlocals)); DPRINT(("bspstore next rnat slot %p\n", ia64_rse_rnat_addr((unsigned long *)sw->ar_bspstore))); DPRINT(("on_kbs=%ld rnats=%ld\n", on_kbs, ((sw->ar_bspstore-(unsigned long)kbs)>>3) - on_kbs)); /* * See get_rse_reg() for an explanation on the following instructions */ ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); bsp = ia64_rse_skip_regs(ubs_end, -nlocals); addr = slot = ia64_rse_skip_regs(bsp, r1 - 32); DPRINT(("ubs_end=%p bsp=%p addr=%p slot=0x%lx\n", ubs_end, bsp, addr, ia64_rse_slot_num(addr))); ia64_poke(regs, current, (unsigned long)addr, val); /* * addr will now contain the address of the RNAT for the register */ addr = ia64_rse_rnat_addr(addr); ia64_peek(regs, current, (unsigned long)addr, &rnats); DPRINT(("rnat @%p = 0x%lx nat=%d rnatval=%lx\n", addr, rnats, nat, rnats &ia64_rse_slot_num(slot))); if ( nat ) { rnats |= __IA64_UL(1) << ia64_rse_slot_num(slot); } else { rnats &= ~(__IA64_UL(1) << ia64_rse_slot_num(slot)); } ia64_poke(regs, current, (unsigned long)addr, rnats); DPRINT(("rnat changed to @%p = 0x%lx\n", addr, rnats)); } static void get_rse_reg(struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat) { struct switch_stack *sw = (struct switch_stack *)regs - 1; unsigned long *kbs = (unsigned long *)current + IA64_RBS_OFFSET/8; unsigned long on_kbs; long nlocals; unsigned long *bsp, *addr, *ubs_end, *slot, *bspstore; unsigned long rnats; /* * cr_ifs=[rv:ifm], ifm=[....:sof(6)] * nlocals=number of local registers in the faulting function */ nlocals = (regs->cr_ifs) & 0x7f; /* * save_switch_stack does a flushrs and saves bspstore. * on_kbs = actual number of registers saved on kernel backing store * (taking into accound potential RNATs) * * Note that this number can be greater than nlocals if the dirty * parititions included more than one stack frame at the time we * switched to KBS */ on_kbs = ia64_rse_num_regs(kbs, (unsigned long *)sw->ar_bspstore); bspstore = (unsigned long *)regs->ar_bspstore; /* * To simplify the logic, we calculate everything as if there was only * one backing store i.e., the user one (UBS). We let it to peek/poke * to figure out whether the register we're looking for really is * on the UBS or on KBS. * * regs->ar_bsptore = address of last register saved on UBS (before switch) * * ubs_end = virtual end of the UBS (if everything had been spilled there) * * We know that ubs_end is the point where the last register on the * stack frame we're interested in as been saved. So we need to walk * our way backward to figure out what the BSP "was" for that frame, * this will give us the location of r32. * * bsp = "virtual UBS" address of r32 for our frame * * Finally, get compute the address of the register we're looking for * using bsp as our base (move up again). * * Please note that in our case, we know that the register is necessarily * on the KBS because we are only interested in the current frame at the moment * we got the exception i.e., bsp is not changed until we switch to KBS. */ ubs_end = ia64_rse_skip_regs(bspstore, on_kbs); bsp = ia64_rse_skip_regs(ubs_end, -nlocals); addr = slot = ia64_rse_skip_regs(bsp, r1 - 32); DPRINT(("ubs_end=%p bsp=%p addr=%p slot=0x%lx\n", ubs_end, bsp, addr, ia64_rse_slot_num(addr))); ia64_peek(regs, current, (unsigned long)addr, val); /* * addr will now contain the address of the RNAT for the register */ addr = ia64_rse_rnat_addr(addr); ia64_peek(regs, current, (unsigned long)addr, &rnats); DPRINT(("rnat @%p = 0x%lx\n", addr, rnats)); if ( nat ) *nat = rnats >> ia64_rse_slot_num(slot) & 0x1; } static void setreg(unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *)regs -1; unsigned long addr; unsigned long bitmask; unsigned long *unat; /* * First takes care of stacked registers */ if ( regnum >= IA64_FIRST_STACKED_GR ) { set_rse_reg(regs, regnum, val, nat); return; } /* * Using r0 as a target raises a General Exception fault which has * higher priority than the Unaligned Reference fault. */ /* * Now look at registers in [0-31] range and init correct UNAT */ if ( GR_IN_SW(regnum) ) { addr = (unsigned long)sw; unat = &sw->ar_unat; } else { addr = (unsigned long)regs; unat = &sw->caller_unat; } DPRINT(("tmp_base=%lx switch_stack=%s offset=%d\n", addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum))); /* * add offset from base of struct * and do it ! */ addr += GR_OFFS(regnum); *(unsigned long *)addr = val; /* * We need to clear the corresponding UNAT bit to fully emulate the load * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4 */ bitmask = __IA64_UL(1) << (addr >> 3 & 0x3f); DPRINT(("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, unat, *unat)); if ( nat ) { *unat |= bitmask; } else { *unat &= ~bitmask; } DPRINT(("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, unat,*unat)); } #define IA64_FPH_OFFS(r) (r - IA64_FIRST_ROTATING_FR) static void setfpreg(unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *)regs - 1; unsigned long addr; /* * From EAS-2.5: FPDisableFault has higher priority than * Unaligned Fault. Thus, when we get here, we know the partition is * enabled. * * The registers [32-127] are ususally saved in the tss. When get here, * they are NECESSARY live because they are only saved explicitely. * We have 3 ways of updating the values: force a save of the range * in tss, use a gigantic switch/case statement or generate code on the * fly to store to the right register. * For now, we are using the (slow) save/restore way. */ if ( regnum >= IA64_FIRST_ROTATING_FR ) { /* * force a save of [32-127] to tss * we use the __() form to avoid fiddling with the dfh bit */ __ia64_save_fpu(¤t->thread.fph[0]); current->thread.fph[IA64_FPH_OFFS(regnum)] = *fpval; __ia64_load_fpu(¤t->thread.fph[0]); /* * mark the high partition as being used now * * This is REQUIRED because the disabled_fph_fault() does * not set it, it's relying on the faulting instruction to * do it. In our case the faulty instruction never gets executed * completely, so we need to toggle the bit. */ regs->cr_ipsr |= IA64_PSR_MFH; } else { /* * pt_regs or switch_stack ? */ if ( FR_IN_SW(regnum) ) { addr = (unsigned long)sw; } else { addr = (unsigned long)regs; } DPRINT(("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum))); addr += FR_OFFS(regnum); *(struct ia64_fpreg *)addr = *fpval; /* * mark the low partition as being used now * * It is highly unlikely that this bit is not already set, but * let's do it for safety. */ regs->cr_ipsr |= IA64_PSR_MFL; } } /* * Those 2 inline functions generate the spilled versions of the constant floating point * registers which can be used with stfX */ static inline void float_spill_f0(struct ia64_fpreg *final) { __asm__ __volatile__ ("stf.spill [%0]=f0" :: "r"(final) : "memory"); } static inline void float_spill_f1(struct ia64_fpreg *final) { __asm__ __volatile__ ("stf.spill [%0]=f1" :: "r"(final) : "memory"); } static void getfpreg(unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *)regs -1; unsigned long addr; /* * From EAS-2.5: FPDisableFault has higher priority than * Unaligned Fault. Thus, when we get here, we know the partition is * enabled. * * When regnum > 31, the register is still live and * we need to force a save to the tss to get access to it. * See discussion in setfpreg() for reasons and other ways of doing this. */ if ( regnum >= IA64_FIRST_ROTATING_FR ) { /* * force a save of [32-127] to tss * we use the__ia64_save_fpu() form to avoid fiddling with * the dfh bit. */ __ia64_save_fpu(¤t->thread.fph[0]); *fpval = current->thread.fph[IA64_FPH_OFFS(regnum)]; } else { /* * f0 = 0.0, f1= 1.0. Those registers are constant and are thus * not saved, we must generate their spilled form on the fly */ switch(regnum) { case 0: float_spill_f0(fpval); break; case 1: float_spill_f1(fpval); break; default: /* * pt_regs or switch_stack ? */ addr = FR_IN_SW(regnum) ? (unsigned long)sw : (unsigned long)regs; DPRINT(("is_sw=%d tmp_base=%lx offset=0x%x\n", FR_IN_SW(regnum), addr, FR_OFFS(regnum))); addr += FR_OFFS(regnum); *fpval = *(struct ia64_fpreg *)addr; } } } static void getreg(unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs) { struct switch_stack *sw = (struct switch_stack *)regs -1; unsigned long addr, *unat; if ( regnum >= IA64_FIRST_STACKED_GR ) { get_rse_reg(regs, regnum, val, nat); return; } /* * take care of r0 (read-only always evaluate to 0) */ if ( regnum == 0 ) { *val = 0; *nat = 0; return; } /* * Now look at registers in [0-31] range and init correct UNAT */ if ( GR_IN_SW(regnum) ) { addr = (unsigned long)sw; unat = &sw->ar_unat; } else { addr = (unsigned long)regs; unat = &sw->caller_unat; } DPRINT(("addr_base=%lx offset=0x%x\n", addr, GR_OFFS(regnum))); addr += GR_OFFS(regnum); *val = *(unsigned long *)addr; /* * do it only when requested */ if ( nat ) *nat = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL; } static void emulate_load_updates(update_t type, load_store_t *ld, struct pt_regs *regs, unsigned long ifa) { /* * IMPORTANT: * Given the way we handle unaligned speculative loads, we should * not get to this point in the code but we keep this sanity check, * just in case. */ if ( ld->x6_op == 1 || ld->x6_op == 3 ) { printk(KERN_ERR __FUNCTION__": register update on speculative load, error\n"); die_if_kernel("unaligned reference on specualtive load with register update\n", regs, 30); } /* * at this point, we know that the base register to update is valid i.e., * it's not r0 */ if ( type == UPD_IMMEDIATE ) { unsigned long imm; /* * Load +Imm: ldXZ r1=[r3],imm(9) * * * form imm9: [13:19] contain the first 7 bits */ imm = ld->x << 7 | ld->imm; /* * sign extend (1+8bits) if m set */ if (ld->m) imm |= SIGN_EXT9; /* * ifa == r3 and we know that the NaT bit on r3 was clear so * we can directly use ifa. */ ifa += imm; setreg(ld->r3, ifa, 0, regs); DPRINT(("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld->x, ld->m, imm, ifa)); } else if ( ld->m ) { unsigned long r2; int nat_r2; /* * Load +Reg Opcode: ldXZ r1=[r3],r2 * * Note: that we update r3 even in the case of ldfX.a * (where the load does not happen) * * The way the load algorithm works, we know that r3 does not * have its NaT bit set (would have gotten NaT consumption * before getting the unaligned fault). So we can use ifa * which equals r3 at this point. * * IMPORTANT: * The above statement holds ONLY because we know that we * never reach this code when trying to do a ldX.s. * If we ever make it to here on an ldfX.s then */ getreg(ld->imm, &r2, &nat_r2, regs); ifa += r2; /* * propagate Nat r2 -> r3 */ setreg(ld->r3, ifa, nat_r2, regs); DPRINT(("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld->imm, r2, ifa, nat_r2)); } } static int emulate_load_int(unsigned long ifa, load_store_t *ld, struct pt_regs *regs) { unsigned long val; unsigned int len = 1<< ld->x6_sz; /* * the macro supposes sequential access (which is the case) * if the first byte is an invalid address we return here. Otherwise * there is a guard page at the top of the user's address page and * the first access would generate a NaT consumption fault and return * with a SIGSEGV, which is what we want. * * Note: the first argument is ignored */ if ( access_ok(VERIFY_READ, (void *)ifa, len) < 0 ) { DPRINT(("verify area failed on %lx\n", ifa)); return -1; } /* * r0, as target, doesn't need to be checked because Illegal Instruction * faults have higher priority than unaligned faults. * * r0 cannot be found as the base as it would never generate an * unaligned reference. */ /* * ldX.a we don't try to emulate anything but we must * invalidate the ALAT entry. * See comment below for explanation on how we handle ldX.a */ if ( ld->x6_op != 0x2 ) { /* * we rely on the macros in unaligned.h for now i.e., * we let the compiler figure out how to read memory gracefully. * * We need this switch/case because the way the inline function * works. The code is optimized by the compiler and looks like * a single switch/case. */ switch(len) { case 2: val = ia64_get_unaligned((void *)ifa, 2); break; case 4: val = ia64_get_unaligned((void *)ifa, 4); break; case 8: val = ia64_get_unaligned((void *)ifa, 8); break; default: DPRINT(("unknown size: x6=%d\n", ld->x6_sz)); return -1; } setreg(ld->r1, val, 0, regs); } /* * check for updates on any kind of loads */ if ( ld->op == 0x5 || ld->m ) emulate_load_updates(ld->op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); /* * handling of various loads (based on EAS2.4): * * ldX.acq (ordered load): * - acquire semantics would have been used, so force fence instead. * * * ldX.c.clr (check load and clear): * - if we get to this handler, it's because the entry was not in the ALAT. * Therefore the operation reverts to a normal load * * ldX.c.nc (check load no clear): * - same as previous one * * ldX.c.clr.acq (ordered check load and clear): * - same as above for c.clr part. The load needs to have acquire semantics. So * we use the fence semantics which is stronger and thus ensures correctness. * * ldX.a (advanced load): * - suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the * address doesn't match requested size alignement. This means that we would * possibly need more than one load to get the result. * * The load part can be handled just like a normal load, however the difficult * part is to get the right thing into the ALAT. The critical piece of information * in the base address of the load & size. To do that, a ld.a must be executed, * clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now * if we use the same target register, we will be okay for the check.a instruction. * If we look at the store, basically a stX [r3]=r1 checks the ALAT for any entry * which would overlap within [r3,r3+X] (the size of the load was store in the * ALAT). If such an entry is found the entry is invalidated. But this is not good * enough, take the following example: * r3=3 * ld4.a r1=[r3] * * Could be emulated by doing: * ld1.a r1=[r3],1 * store to temporary; * ld1.a r1=[r3],1 * store & shift to temporary; * ld1.a r1=[r3],1 * store & shift to temporary; * ld1.a r1=[r3] * store & shift to temporary; * r1=temporary * * So int this case, you would get the right value is r1 but the wrong info in * the ALAT. Notice that you could do it in reverse to finish with address 3 * but you would still get the size wrong. To get the size right, one needs to * execute exactly the same kind of load. You could do it from a aligned * temporary location, but you would get the address wrong. * * So no matter what, it is not possible to emulate an advanced load * correctly. But is that really critical ? * * * Now one has to look at how ld.a is used, one must either do a ld.c.* or * chck.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no * entry found in ALAT), and that's perfectly ok because: * * - ld.c.*, if the entry is not present a normal load is executed * - chk.a.*, if the entry is not present, execution jumps to recovery code * * In either case, the load can be potentially retried in another form. * * So it's okay NOT to do any actual load on an unaligned ld.a. However the ALAT * must be invalidated for the register (so that's chck.a.*,ld.c.* don't pick up * a stale entry later) The register base update MUST also be performed. * * Now what is the content of the register and its NaT bit in the case we don't * do the load ? EAS2.4, says (in case an actual load is needed) * * - r1 = [r3], Nat = 0 if succeeds * - r1 = 0 Nat = 0 if trying to access non-speculative memory * * For us, there is nothing to do, because both ld.c.* and chk.a.* are going to * retry and thus eventually reload the register thereby changing Nat and * register content. */ /* * when the load has the .acq completer then * use ordering fence. */ if (ld->x6_op == 0x5 || ld->x6_op == 0xa) mb(); /* * invalidate ALAT entry in case of advanced load */ if (ld->x6_op == 0x2) invala_gr(ld->r1); return 0; } static int emulate_store_int(unsigned long ifa, load_store_t *ld, struct pt_regs *regs) { unsigned long r2; unsigned int len = 1<< ld->x6_sz; /* * the macro supposes sequential access (which is the case) * if the first byte is an invalid address we return here. Otherwise * there is a guard page at the top of the user's address page and * the first access would generate a NaT consumption fault and return * with a SIGSEGV, which is what we want. * * Note: the first argument is ignored */ if ( access_ok(VERIFY_WRITE, (void *)ifa, len) < 0 ) { DPRINT(("verify area failed on %lx\n",ifa)); return -1; } /* * if we get to this handler, Nat bits on both r3 and r2 have already * been checked. so we don't need to do it * * extract the value to be stored */ getreg(ld->imm, &r2, 0, regs); /* * we rely on the macros in unaligned.h for now i.e., * we let the compiler figure out how to read memory gracefully. * * We need this switch/case because the way the inline function * works. The code is optimized by the compiler and looks like * a single switch/case. */ DPRINT(("st%d [%lx]=%lx\n", len, ifa, r2)); switch(len) { case 2: ia64_put_unaligned(r2, (void *)ifa, 2); break; case 4: ia64_put_unaligned(r2, (void *)ifa, 4); break; case 8: ia64_put_unaligned(r2, (void *)ifa, 8); break; default: DPRINT(("unknown size: x6=%d\n", ld->x6_sz)); return -1; } /* * stX [r3]=r2,imm(9) * * NOTE: * ld->r3 can never be r0, because r0 would not generate an * unaligned access. */ if ( ld->op == 0x5 ) { unsigned long imm; /* * form imm9: [12:6] contain first 7bits */ imm = ld->x << 7 | ld->r1; /* * sign extend (8bits) if m set */ if ( ld->m ) imm |= SIGN_EXT9; /* * ifa == r3 (NaT is necessarily cleared) */ ifa += imm; DPRINT(("imm=%lx r3=%lx\n", imm, ifa)); setreg(ld->r3, ifa, 0, regs); } /* * we don't have alat_invalidate_multiple() so we need * to do the complete flush :-<< */ ia64_invala(); /* * stX.rel: use fence instead of release */ if ( ld->x6_op == 0xd ) mb(); return 0; } /* * floating point operations sizes in bytes */ static const unsigned short float_fsz[4]={ 16, /* extended precision (e) */ 8, /* integer (8) */ 4, /* single precision (s) */ 8 /* double precision (d) */ }; static inline void mem2float_extended(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldfe f6=[%0];; stf.spill [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static inline void mem2float_integer(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldf8 f6=[%0];; stf.spill [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static inline void mem2float_single(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldfs f6=[%0];; stf.spill [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static inline void mem2float_double(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldfd f6=[%0];; stf.spill [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static inline void float2mem_extended(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldf.fill f6=[%0];; stfe [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static inline void float2mem_integer(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldf.fill f6=[%0];; stf8 [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static inline void float2mem_single(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldf.fill f6=[%0];; stfs [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static inline void float2mem_double(struct ia64_fpreg *init, struct ia64_fpreg *final) { __asm__ __volatile__ ("ldf.fill f6=[%0];; stfd [%1]=f6" :: "r"(init), "r"(final) : "f6","memory"); } static int emulate_load_floatpair(unsigned long ifa, load_store_t *ld, struct pt_regs *regs) { struct ia64_fpreg fpr_init[2]; struct ia64_fpreg fpr_final[2]; unsigned long len = float_fsz[ld->x6_sz]; if ( access_ok(VERIFY_READ, (void *)ifa, len<<1) < 0 ) { DPRINT(("verify area failed on %lx\n", ifa)); return -1; } /* * fr0 & fr1 don't need to be checked because Illegal Instruction * faults have higher priority than unaligned faults. * * r0 cannot be found as the base as it would never generate an * unaligned reference. */ /* * make sure we get clean buffers */ memset(&fpr_init,0, sizeof(fpr_init)); memset(&fpr_final,0, sizeof(fpr_final)); /* * ldfpX.a: we don't try to emulate anything but we must * invalidate the ALAT entry and execute updates, if any. */ if ( ld->x6_op != 0x2 ) { /* * does the unaligned access */ memcpy(&fpr_init[0], (void *)ifa, len); memcpy(&fpr_init[1], (void *)(ifa+len), len); DPRINT(("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld->r1, ld->imm, ld->x6_sz)); #ifdef DEBUG_UNALIGNED_TRAP { int i; char *c = (char *)&fpr_init; printk("fpr_init= "); for(i=0; i < len<<1; i++ ) { printk("%02x ", c[i]&0xff); } printk("\n"); } #endif /* * XXX fixme * Could optimize inlines by using ldfpX & 2 spills */ switch( ld->x6_sz ) { case 0: mem2float_extended(&fpr_init[0], &fpr_final[0]); mem2float_extended(&fpr_init[1], &fpr_final[1]); break; case 1: mem2float_integer(&fpr_init[0], &fpr_final[0]); mem2float_integer(&fpr_init[1], &fpr_final[1]); break; case 2: mem2float_single(&fpr_init[0], &fpr_final[0]); mem2float_single(&fpr_init[1], &fpr_final[1]); break; case 3: mem2float_double(&fpr_init[0], &fpr_final[0]); mem2float_double(&fpr_init[1], &fpr_final[1]); break; } #ifdef DEBUG_UNALIGNED_TRAP { int i; char *c = (char *)&fpr_final; printk("fpr_final= "); for(i=0; i < len<<1; i++ ) { printk("%02x ", c[i]&0xff); } printk("\n"); } #endif /* * XXX fixme * * A possible optimization would be to drop fpr_final * and directly use the storage from the saved context i.e., * the actual final destination (pt_regs, switch_stack or tss). */ setfpreg(ld->r1, &fpr_final[0], regs); setfpreg(ld->imm, &fpr_final[1], regs); } /* * Check for updates: only immediate updates are available for this * instruction. */ if ( ld->m ) { /* * the immediate is implicit given the ldsz of the operation: * single: 8 (2x4) and for all others it's 16 (2x8) */ ifa += len<<1; /* * IMPORTANT: * the fact that we force the NaT of r3 to zero is ONLY valid * as long as we don't come here with a ldfpX.s. * For this reason we keep this sanity check */ if ( ld->x6_op == 1 || ld->x6_op == 3 ) { printk(KERN_ERR "%s: register update on speculative load pair, error\n", __FUNCTION__); } setreg(ld->r3, ifa, 0, regs); } /* * Invalidate ALAT entries, if any, for both registers. */ if ( ld->x6_op == 0x2 ) { invala_fr(ld->r1); invala_fr(ld->imm); } return 0; } static int emulate_load_float(unsigned long ifa, load_store_t *ld, struct pt_regs *regs) { struct ia64_fpreg fpr_init; struct ia64_fpreg fpr_final; unsigned long len = float_fsz[ld->x6_sz]; /* * check for load pair because our masking scheme is not fine grain enough if ( ld->x == 1 ) return emulate_load_floatpair(ifa,ld,regs); */ if ( access_ok(VERIFY_READ, (void *)ifa, len) < 0 ) { DPRINT(("verify area failed on %lx\n", ifa)); return -1; } /* * fr0 & fr1 don't need to be checked because Illegal Instruction * faults have higher priority than unaligned faults. * * r0 cannot be found as the base as it would never generate an * unaligned reference. */ /* * make sure we get clean buffers */ memset(&fpr_init,0, sizeof(fpr_init)); memset(&fpr_final,0, sizeof(fpr_final)); /* * ldfX.a we don't try to emulate anything but we must * invalidate the ALAT entry. * See comments in ldX for descriptions on how the various loads are handled. */ if ( ld->x6_op != 0x2 ) { /* * does the unaligned access */ memcpy(&fpr_init, (void *)ifa, len); DPRINT(("ld.r1=%d x6_sz=%d\n", ld->r1, ld->x6_sz)); #ifdef DEBUG_UNALIGNED_TRAP { int i; char *c = (char *)&fpr_init; printk("fpr_init= "); for(i=0; i < len; i++ ) { printk("%02x ", c[i]&0xff); } printk("\n"); } #endif /* * we only do something for x6_op={0,8,9} */ switch( ld->x6_sz ) { case 0: mem2float_extended(&fpr_init, &fpr_final); break; case 1: mem2float_integer(&fpr_init, &fpr_final); break; case 2: mem2float_single(&fpr_init, &fpr_final); break; case 3: mem2float_double(&fpr_init, &fpr_final); break; } #ifdef DEBUG_UNALIGNED_TRAP { int i; char *c = (char *)&fpr_final; printk("fpr_final= "); for(i=0; i < len; i++ ) { printk("%02x ", c[i]&0xff); } printk("\n"); } #endif /* * XXX fixme * * A possible optimization would be to drop fpr_final * and directly use the storage from the saved context i.e., * the actual final destination (pt_regs, switch_stack or tss). */ setfpreg(ld->r1, &fpr_final, regs); } /* * check for updates on any loads */ if ( ld->op == 0x7 || ld->m ) emulate_load_updates(ld->op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa); /* * invalidate ALAT entry in case of advanced floating point loads */ if (ld->x6_op == 0x2) invala_fr(ld->r1); return 0; } static int emulate_store_float(unsigned long ifa, load_store_t *ld, struct pt_regs *regs) { struct ia64_fpreg fpr_init; struct ia64_fpreg fpr_final; unsigned long len = float_fsz[ld->x6_sz]; /* * the macro supposes sequential access (which is the case) * if the first byte is an invalid address we return here. Otherwise * there is a guard page at the top of the user's address page and * the first access would generate a NaT consumption fault and return * with a SIGSEGV, which is what we want. * * Note: the first argument is ignored */ if ( access_ok(VERIFY_WRITE, (void *)ifa, len) < 0 ) { DPRINT(("verify area failed on %lx\n",ifa)); return -1; } /* * make sure we get clean buffers */ memset(&fpr_init,0, sizeof(fpr_init)); memset(&fpr_final,0, sizeof(fpr_final)); /* * if we get to this handler, Nat bits on both r3 and r2 have already * been checked. so we don't need to do it * * extract the value to be stored */ getfpreg(ld->imm, &fpr_init, regs); /* * during this step, we extract the spilled registers from the saved * context i.e., we refill. Then we store (no spill) to temporary * aligned location */ switch( ld->x6_sz ) { case 0: float2mem_extended(&fpr_init, &fpr_final); break; case 1: float2mem_integer(&fpr_init, &fpr_final); break; case 2: float2mem_single(&fpr_init, &fpr_final); break; case 3: float2mem_double(&fpr_init, &fpr_final); break; } DPRINT(("ld.r1=%d x6_sz=%d\n", ld->r1, ld->x6_sz)); #ifdef DEBUG_UNALIGNED_TRAP { int i; char *c = (char *)&fpr_init; printk("fpr_init= "); for(i=0; i < len; i++ ) { printk("%02x ", c[i]&0xff); } printk("\n"); } { int i; char *c = (char *)&fpr_final; printk("fpr_final= "); for(i=0; i < len; i++ ) { printk("%02x ", c[i]&0xff); } printk("\n"); } #endif /* * does the unaligned store */ memcpy((void *)ifa, &fpr_final, len); /* * stfX [r3]=r2,imm(9) * * NOTE: * ld->r3 can never be r0, because r0 would not generate an * unaligned access. */ if ( ld->op == 0x7 ) { unsigned long imm; /* * form imm9: [12:6] contain first 7bits */ imm = ld->x << 7 | ld->r1; /* * sign extend (8bits) if m set */ if ( ld->m ) imm |= SIGN_EXT9; /* * ifa == r3 (NaT is necessarily cleared) */ ifa += imm; DPRINT(("imm=%lx r3=%lx\n", imm, ifa)); setreg(ld->r3, ifa, 0, regs); } /* * we don't have alat_invalidate_multiple() so we need * to do the complete flush :-<< */ ia64_invala(); return 0; } void ia64_handle_unaligned(unsigned long ifa, struct pt_regs *regs) { static unsigned long unalign_count; static long last_time; struct ia64_psr *ipsr = ia64_psr(regs); unsigned long *bundle_addr; unsigned long opcode; unsigned long op; load_store_t *insn; int ret = -1; if (current->thread.flags & IA64_THREAD_UAC_SIGBUS) { struct siginfo si; si.si_signo = SIGBUS; si.si_errno = 0; si.si_code = BUS_ADRALN; si.si_addr = (void *) ifa; send_sig_info (SIGBUS, &si, current); return; } if (!(current->thread.flags & IA64_THREAD_UAC_NOPRINT)) { /* * Make sure we log the unaligned access, so that * user/sysadmin can notice it and eventually fix the * program. * * We don't want to do that for every access so we * pace it with jiffies. */ if (unalign_count > 5 && jiffies - last_time > 5*HZ) unalign_count = 0; if (++unalign_count < 5) { last_time = jiffies; printk("%s(%d): unaligned trap accessing %016lx (ip=%016lx)\n", current->comm, current->pid, ifa, regs->cr_iip + ipsr->ri); } } DPRINT(("iip=%lx ifa=%lx isr=%lx\n", regs->cr_iip, ifa, regs->cr_ipsr)); DPRINT(("ISR.ei=%d ISR.sp=%d\n", ipsr->ri, ipsr->it)); bundle_addr = (unsigned long *)(regs->cr_iip); /* * extract the instruction from the bundle given the slot number */ switch ( ipsr->ri ) { case 0: op = *bundle_addr >> 5; break; case 1: op = *bundle_addr >> 46 | (*(bundle_addr+1) & 0x7fffff)<<18; break; case 2: op = *(bundle_addr+1) >> 23; break; } insn = (load_store_t *)&op; opcode = op & IA64_OPCODE_MASK; DPRINT(("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d " "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, insn->qp, insn->r1, insn->imm, insn->r3, insn->x, insn->hint, insn->x6_sz, insn->m, insn->op)); /* * IMPORTANT: * Notice that the swictch statement DOES not cover all possible instructions * that DO generate unaligned references. This is made on purpose because for some * instructions it DOES NOT make sense to try and emulate the access. Sometimes it * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e., * the program will get a signal and die: * * load/store: * - ldX.spill * - stX.spill * Reason: RNATs are based on addresses * * synchronization: * - cmpxchg * - fetchadd * - xchg * Reason: ATOMIC operations cannot be emulated properly using multiple * instructions. * * speculative loads: * - ldX.sZ * Reason: side effects, code must be ready to deal with failure so simpler * to let the load fail. * --------------------------------------------------------------------------------- * XXX fixme * * I would like to get rid of this switch case and do something * more elegant. */ switch(opcode) { case LDS_OP: case LDSA_OP: case LDS_IMM_OP: case LDSA_IMM_OP: case LDFS_OP: case LDFSA_OP: case LDFS_IMM_OP: /* * The instruction will be retried with defered exceptions * turned on, and we should get Nat bit installed * * IMPORTANT: * When PSR_ED is set, the register & immediate update * forms are actually executed even though the operation * failed. So we don't need to take care of this. */ DPRINT(("forcing PSR_ED\n")); regs->cr_ipsr |= IA64_PSR_ED; return; case LD_OP: case LDA_OP: case LDBIAS_OP: case LDACQ_OP: case LDCCLR_OP: case LDCNC_OP: case LDCCLRACQ_OP: case LD_IMM_OP: case LDA_IMM_OP: case LDBIAS_IMM_OP: case LDACQ_IMM_OP: case LDCCLR_IMM_OP: case LDCNC_IMM_OP: case LDCCLRACQ_IMM_OP: ret = emulate_load_int(ifa, insn, regs); break; case ST_OP: case STREL_OP: case ST_IMM_OP: case STREL_IMM_OP: ret = emulate_store_int(ifa, insn, regs); break; case LDF_OP: case LDFA_OP: case LDFCCLR_OP: case LDFCNC_OP: case LDF_IMM_OP: case LDFA_IMM_OP: case LDFCCLR_IMM_OP: case LDFCNC_IMM_OP: ret = insn->x ? emulate_load_floatpair(ifa, insn, regs): emulate_load_float(ifa, insn, regs); break; case STF_OP: case STF_IMM_OP: ret = emulate_store_float(ifa, insn, regs); } DPRINT(("ret=%d\n", ret)); if ( ret ) { lock_kernel(); force_sig(SIGSEGV, current); unlock_kernel(); } else { /* * given today's architecture this case is not likely to happen * because a memory access instruction (M) can never be in the * last slot of a bundle. But let's keep it for now. */ if ( ipsr->ri == 2 ) regs->cr_iip += 16; ipsr->ri = ++ipsr->ri & 3; } DPRINT(("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip)); }