/* * Dynamic DMA mapping support. * * This implementation is for IA-64 platforms that do not support * I/O TLBs (aka DMA address translation hardware). * Copyright (C) 2000 Asit Mallick * Copyright (C) 2000 Goutham Rao * * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid * unnecessary i-cache flushing. */ #include #include #include #include #include #include #include #include #include #include #define ALIGN(val, align) ((unsigned long) \ (((unsigned long) (val) + ((align) - 1)) & ~((align) - 1))) /* * log of the size of each IO TLB slab. The number of slabs is command line controllable. */ #define IO_TLB_SHIFT 11 /* * Used to do a quick range check in swiotlb_unmap_single and swiotlb_sync_single, to see * if the memory was in fact allocated by this API. */ static char *io_tlb_start, *io_tlb_end; /* * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and io_tlb_end. * This is command line adjustable via setup_io_tlb_npages. */ static unsigned long io_tlb_nslabs = 1024; /* * This is a free list describing the number of free entries available from each index */ static unsigned int *io_tlb_list; static unsigned int io_tlb_index; /* * We need to save away the original address corresponding to a mapped entry for the sync * operations. */ static unsigned char **io_tlb_orig_addr; /* * Protect the above data structures in the map and unmap calls */ static spinlock_t io_tlb_lock = SPIN_LOCK_UNLOCKED; static int __init setup_io_tlb_npages (char *str) { io_tlb_nslabs = simple_strtoul(str, NULL, 0) << (PAGE_SHIFT - IO_TLB_SHIFT); return 1; } __setup("swiotlb=", setup_io_tlb_npages); /* * Statically reserve bounce buffer space and initialize bounce buffer data structures for * the software IO TLB used to implement the PCI DMA API. */ void swiotlb_init (void) { int i; /* * Get IO TLB memory from the low pages */ io_tlb_start = alloc_bootmem_low_pages(io_tlb_nslabs * (1 << IO_TLB_SHIFT)); if (!io_tlb_start) BUG(); io_tlb_end = io_tlb_start + io_tlb_nslabs * (1 << IO_TLB_SHIFT); /* * Allocate and initialize the free list array. This array is used * to find contiguous free memory regions of size 2^IO_TLB_SHIFT between * io_tlb_start and io_tlb_end. */ io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int)); for (i = 0; i < io_tlb_nslabs; i++) io_tlb_list[i] = io_tlb_nslabs - i; io_tlb_index = 0; io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(char *)); printk("Placing software IO TLB between 0x%p - 0x%p\n", (void *) io_tlb_start, (void *) io_tlb_end); } /* * Allocates bounce buffer and returns its kernel virtual address. */ static void * map_single (struct pci_dev *hwdev, char *buffer, size_t size, int direction) { unsigned long flags; char *dma_addr; unsigned int nslots, stride, index, wrap; int i; /* * For mappings greater than a page size, we limit the stride (and hence alignment) * to a page size. */ nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; if (size > (1 << PAGE_SHIFT)) stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT)); else stride = nslots; if (!nslots) BUG(); /* * Find suitable number of IO TLB entries size that will fit this request and * allocate a buffer from that IO TLB pool. */ spin_lock_irqsave(&io_tlb_lock, flags); { wrap = index = ALIGN(io_tlb_index, stride); if (index >= io_tlb_nslabs) wrap = index = 0; do { /* * If we find a slot that indicates we have 'nslots' number of * contiguous buffers, we allocate the buffers from that slot and * mark the entries as '0' indicating unavailable. */ if (io_tlb_list[index] >= nslots) { int count = 0; for (i = index; i < index + nslots; i++) io_tlb_list[i] = 0; for (i = index - 1; (i >= 0) && io_tlb_list[i]; i--) io_tlb_list[i] = ++count; dma_addr = io_tlb_start + (index << IO_TLB_SHIFT); /* * Update the indices to avoid searching in the next round. */ io_tlb_index = ((index + nslots) < io_tlb_nslabs ? (index + nslots) : 0); goto found; } index += stride; if (index >= io_tlb_nslabs) index = 0; } while (index != wrap); /* * XXX What is a suitable recovery mechanism here? We cannot * sleep because we are called from with in interrupts! */ panic("map_single: could not allocate software IO TLB (%ld bytes)", size); found: } spin_unlock_irqrestore(&io_tlb_lock, flags); /* * Save away the mapping from the original address to the DMA address. This is * needed when we sync the memory. Then we sync the buffer if needed. */ io_tlb_orig_addr[index] = buffer; if (direction == PCI_DMA_TODEVICE || direction == PCI_DMA_BIDIRECTIONAL) memcpy(dma_addr, buffer, size); return dma_addr; } /* * dma_addr is the kernel virtual address of the bounce buffer to unmap. */ static void unmap_single (struct pci_dev *hwdev, char *dma_addr, size_t size, int direction) { unsigned long flags; int i, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT; int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; char *buffer = io_tlb_orig_addr[index]; /* * First, sync the memory before unmapping the entry */ if ((direction == PCI_DMA_FROMDEVICE) || (direction == PCI_DMA_BIDIRECTIONAL)) /* * bounce... copy the data back into the original buffer * and delete the * bounce buffer. */ memcpy(buffer, dma_addr, size); /* * Return the buffer to the free list by setting the corresponding entries to * indicate the number of contigous entries available. While returning the * entries to the free list, we merge the entries with slots below and above the * pool being returned. */ spin_lock_irqsave(&io_tlb_lock, flags); { int count = ((index + nslots) < io_tlb_nslabs ? io_tlb_list[index + nslots] : 0); /* * Step 1: return the slots to the free list, merging the slots with * superceeding slots */ for (i = index + nslots - 1; i >= index; i--) io_tlb_list[i] = ++count; /* * Step 2: merge the returned slots with the preceeding slots, if * available (non zero) */ for (i = index - 1; (i >= 0) && io_tlb_list[i]; i--) io_tlb_list[i] = ++count; } spin_unlock_irqrestore(&io_tlb_lock, flags); } static void sync_single (struct pci_dev *hwdev, char *dma_addr, size_t size, int direction) { int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT; char *buffer = io_tlb_orig_addr[index]; /* * bounce... copy the data back into/from the original buffer * XXX How do you handle PCI_DMA_BIDIRECTIONAL here ? */ if (direction == PCI_DMA_FROMDEVICE) memcpy(buffer, dma_addr, size); else if (direction == PCI_DMA_TODEVICE) memcpy(dma_addr, buffer, size); else BUG(); } void * swiotlb_alloc_consistent (struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle) { unsigned long pci_addr; int gfp = GFP_ATOMIC; void *ret; if (!hwdev || hwdev->dma_mask <= 0xffffffff) gfp |= GFP_DMA; /* XXX fix me: should change this to GFP_32BIT or ZONE_32BIT */ ret = (void *)__get_free_pages(gfp, get_order(size)); if (!ret) return NULL; memset(ret, 0, size); pci_addr = virt_to_phys(ret); if ((pci_addr & ~hwdev->dma_mask) != 0) panic("swiotlb_alloc_consistent: allocated memory is out of range for PCI device"); *dma_handle = pci_addr; return ret; } void swiotlb_free_consistent (struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle) { free_pages((unsigned long) vaddr, get_order(size)); } /* * Map a single buffer of the indicated size for DMA in streaming mode. The PCI address * to use is returned. * * Once the device is given the dma address, the device owns this memory until either * swiotlb_unmap_single or swiotlb_dma_sync_single is performed. */ dma_addr_t swiotlb_map_single (struct pci_dev *hwdev, void *ptr, size_t size, int direction) { unsigned long pci_addr = virt_to_phys(ptr); if (direction == PCI_DMA_NONE) BUG(); /* * Check if the PCI device can DMA to ptr... if so, just return ptr */ if ((pci_addr & ~hwdev->dma_mask) == 0) /* * Device is bit capable of DMA'ing to the buffer... just return the PCI * address of ptr */ return pci_addr; /* * get a bounce buffer: */ pci_addr = virt_to_phys(map_single(hwdev, ptr, size, direction)); /* * Ensure that the address returned is DMA'ble: */ if ((pci_addr & ~hwdev->dma_mask) != 0) panic("map_single: bounce buffer is not DMA'ble"); return pci_addr; } /* * Since DMA is i-cache coherent, any (complete) pages that were written via * DMA can be marked as "clean" so that update_mmu_cache() doesn't have to * flush them when they get mapped into an executable vm-area. */ static void mark_clean (void *addr, size_t size) { unsigned long pg_addr, end; pg_addr = PAGE_ALIGN((unsigned long) addr); end = (unsigned long) addr + size; while (pg_addr + PAGE_SIZE <= end) { #if 0 set_bit(PG_arch_1, virt_to_page(pg_addr)); #else if (!VALID_PAGE(virt_to_page(pg_addr))) printk("Invalid addr %lx!!!\n", pg_addr); #endif pg_addr += PAGE_SIZE; } } /* * Unmap a single streaming mode DMA translation. The dma_addr and size must match what * was provided for in a previous swiotlb_map_single call. All other usages are * undefined. * * After this call, reads by the cpu to the buffer are guarenteed to see whatever the * device wrote there. */ void swiotlb_unmap_single (struct pci_dev *hwdev, dma_addr_t pci_addr, size_t size, int direction) { char *dma_addr = phys_to_virt(pci_addr); if (direction == PCI_DMA_NONE) BUG(); if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) unmap_single(hwdev, dma_addr, size, direction); else if (direction == PCI_DMA_FROMDEVICE) mark_clean(dma_addr, size); } /* * Make physical memory consistent for a single streaming mode DMA translation after a * transfer. * * If you perform a swiotlb_map_single() but wish to interrogate the buffer using the cpu, * yet do not wish to teardown the PCI dma mapping, you must call this function before * doing so. At the next point you give the PCI dma address back to the card, the device * again owns the buffer. */ void swiotlb_sync_single (struct pci_dev *hwdev, dma_addr_t pci_addr, size_t size, int direction) { char *dma_addr = phys_to_virt(pci_addr); if (direction == PCI_DMA_NONE) BUG(); if (dma_addr >= io_tlb_start && dma_addr < io_tlb_end) sync_single(hwdev, dma_addr, size, direction); else if (direction == PCI_DMA_FROMDEVICE) mark_clean(dma_addr, size); } /* * Map a set of buffers described by scatterlist in streaming mode for DMA. This is the * scather-gather version of the above swiotlb_map_single interface. Here the scatter * gather list elements are each tagged with the appropriate dma address and length. They * are obtained via sg_dma_{address,length}(SG). * * NOTE: An implementation may be able to use a smaller number of * DMA address/length pairs than there are SG table elements. * (for example via virtual mapping capabilities) * The routine returns the number of addr/length pairs actually * used, at most nents. * * Device ownership issues as mentioned above for swiotlb_map_single are the same here. */ int swiotlb_map_sg (struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction) { int i; if (direction == PCI_DMA_NONE) BUG(); for (i = 0; i < nelems; i++, sg++) { sg->orig_address = sg->address; if ((virt_to_phys(sg->address) & ~hwdev->dma_mask) != 0) { sg->address = map_single(hwdev, sg->address, sg->length, direction); } } return nelems; } /* * Unmap a set of streaming mode DMA translations. Again, cpu read rules concerning calls * here are the same as for swiotlb_unmap_single() above. */ void swiotlb_unmap_sg (struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction) { int i; if (direction == PCI_DMA_NONE) BUG(); for (i = 0; i < nelems; i++, sg++) if (sg->orig_address != sg->address) { unmap_single(hwdev, sg->address, sg->length, direction); sg->address = sg->orig_address; } else if (direction == PCI_DMA_FROMDEVICE) mark_clean(sg->address, sg->length); } /* * Make physical memory consistent for a set of streaming mode DMA translations after a * transfer. * * The same as swiotlb_dma_sync_single but for a scatter-gather list, same rules and * usage. */ void swiotlb_sync_sg (struct pci_dev *hwdev, struct scatterlist *sg, int nelems, int direction) { int i; if (direction == PCI_DMA_NONE) BUG(); for (i = 0; i < nelems; i++, sg++) if (sg->orig_address != sg->address) sync_single(hwdev, sg->address, sg->length, direction); } unsigned long swiotlb_dma_address (struct scatterlist *sg) { return virt_to_phys(sg->address); }