/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * Copyright (C) 1994 - 2000 by Ralf Baechle * Copyright (C) 2000 Silicon Graphics, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_BLK_DEV_INITRD #include #endif #include #include #include #include #include #include #include #include #ifdef CONFIG_SGI_IP22 #include #endif #include static unsigned long totalram_pages; extern void prom_fixup_mem_map(unsigned long start, unsigned long end); extern void prom_free_prom_memory(void); void __bad_pte_kernel(pmd_t *pmd) { printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, BAD_PAGETABLE); } void __bad_pte(pmd_t *pmd) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); pmd_set(pmd, BAD_PAGETABLE); } pte_t *get_pte_kernel_slow(pmd_t *pmd, unsigned long offset) { pte_t *page; page = (pte_t *) __get_free_page(GFP_USER); if (pmd_none(*pmd)) { if (page) { clear_page(page); pmd_val(*pmd) = (unsigned long)page; return page + offset; } pmd_set(pmd, BAD_PAGETABLE); return NULL; } free_page((unsigned long)page); if (pmd_bad(*pmd)) { __bad_pte_kernel(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + offset; } pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset) { pte_t *page; page = (pte_t *) __get_free_page(GFP_KERNEL); if (pmd_none(*pmd)) { if (page) { clear_page(page); pmd_val(*pmd) = (unsigned long)page; return page + offset; } pmd_set(pmd, BAD_PAGETABLE); return NULL; } free_page((unsigned long)page); if (pmd_bad(*pmd)) { __bad_pte(pmd); return NULL; } return (pte_t *) pmd_page(*pmd) + offset; } asmlinkage int sys_cacheflush(void *addr, int bytes, int cache) { /* XXX Just get it working for now... */ flush_cache_all(); return 0; } /* * We have upto 8 empty zeroed pages so we can map one of the right colour * when needed. This is necessary only on R4000 / R4400 SC and MC versions * where we have to avoid VCED / VECI exceptions for good performance at * any price. Since page is never written to after the initialization we * don't have to care about aliases on other CPUs. */ unsigned long empty_zero_page, zero_page_mask; static inline unsigned long setup_zero_pages(void) { unsigned long order, size; struct page *page; switch (mips_cpu.cputype) { case CPU_R4000SC: case CPU_R4000MC: case CPU_R4400SC: case CPU_R4400MC: order = 3; break; default: order = 0; } empty_zero_page = __get_free_pages(GFP_KERNEL, order); if (!empty_zero_page) panic("Oh boy, that early out of memory?"); page = virt_to_page(empty_zero_page); while (page < virt_to_page(empty_zero_page + (PAGE_SIZE << order))) { set_bit(PG_reserved, &page->flags); set_page_count(page, 0); page++; } size = PAGE_SIZE << order; zero_page_mask = (size - 1) & PAGE_MASK; memset((void *)empty_zero_page, 0, size); return 1UL << order; } int do_check_pgt_cache(int low, int high) { int freed = 0; if(pgtable_cache_size > high) { do { if(pgd_quicklist) free_pgd_slow(get_pgd_fast()), freed++; if(pmd_quicklist) free_pmd_slow(get_pmd_fast()), freed++; if(pte_quicklist) free_pte_slow(get_pte_fast()), freed++; } while(pgtable_cache_size > low); } return freed; } /* * BAD_PAGE is the page that is used for page faults when linux * is out-of-memory. Older versions of linux just did a * do_exit(), but using this instead means there is less risk * for a process dying in kernel mode, possibly leaving a inode * unused etc.. * * BAD_PAGETABLE is the accompanying page-table: it is initialized * to point to BAD_PAGE entries. * * ZERO_PAGE is a special page that is used for zero-initialized * data and COW. */ pte_t * __bad_pagetable(void) { extern char empty_bad_page_table[PAGE_SIZE]; unsigned long page, dummy1, dummy2; page = (unsigned long) empty_bad_page_table; __asm__ __volatile__( ".set\tnoreorder\n" "1:\tsw\t%2,(%0)\n\t" "subu\t%1,1\n\t" "bnez\t%1,1b\n\t" "addiu\t%0,4\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2) :"r" (pte_val(BAD_PAGE)), "0" (page), "1" (PAGE_SIZE/4) :"$1"); return (pte_t *)page; } pte_t __bad_page(void) { extern char empty_bad_page[PAGE_SIZE]; unsigned long page = (unsigned long) empty_bad_page; clear_page((void *)page); return pte_mkdirty(mk_pte_phys(__pa(page), PAGE_SHARED)); } void show_mem(void) { int i, free = 0, total = 0, reserved = 0; int shared = 0, cached = 0; printk("Mem-info:\n"); show_free_areas(); printk("Free swap: %6dkB\n", nr_swap_pages<<(PAGE_SHIFT-10)); i = max_mapnr; while (i-- > 0) { total++; if (PageReserved(mem_map+i)) reserved++; else if (PageSwapCache(mem_map+i)) cached++; else if (!page_count(mem_map + i)) free++; else shared += page_count(mem_map + i) - 1; } printk("%d pages of RAM\n", total); printk("%d reserved pages\n", reserved); printk("%d pages shared\n", shared); printk("%d pages swap cached\n",cached); printk("%ld pages in page table cache\n",pgtable_cache_size); printk("%d free pages\n", free); show_buffers(); } /* References to section boundaries */ extern char _ftext, _etext, _fdata, _edata; extern char __init_begin, __init_end; void __init paging_init(void) { unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0}; unsigned long max_dma, low; /* Initialize the entire pgd. */ pgd_init((unsigned long)swapper_pg_dir); pgd_init((unsigned long)swapper_pg_dir + PAGE_SIZE / 2); max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; low = max_low_pfn; #if defined(CONFIG_PCI) || defined(CONFIG_ISA) if (low < max_dma) zones_size[ZONE_DMA] = low; else { zones_size[ZONE_DMA] = max_dma; zones_size[ZONE_NORMAL] = low - max_dma; } #else zones_size[ZONE_DMA] = low; #endif free_area_init(zones_size); } extern int page_is_ram(unsigned long pagenr); void __init mem_init(void) { unsigned long codesize, reservedpages, datasize, initsize; unsigned long tmp, ram; max_mapnr = num_physpages = max_low_pfn; high_memory = (void *) __va(max_mapnr << PAGE_SHIFT); totalram_pages += free_all_bootmem(); totalram_pages -= setup_zero_pages(); /* Setup zeroed pages. */ reservedpages = ram = 0; for (tmp = 0; tmp < max_low_pfn; tmp++) if (page_is_ram(tmp)) { ram++; if (PageReserved(mem_map+tmp)) reservedpages++; } codesize = (unsigned long) &_etext - (unsigned long) &_ftext; datasize = (unsigned long) &_edata - (unsigned long) &_fdata; initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin; printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, " "%ldk data, %ldk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT-10), ram << (PAGE_SHIFT-10), codesize >> 10, reservedpages << (PAGE_SHIFT-10), datasize >> 10, initsize >> 10); } #ifdef CONFIG_BLK_DEV_INITRD void free_initrd_mem(unsigned long start, unsigned long end) { for (; start < end; start += PAGE_SIZE) { ClearPageReserved(virt_to_page(start)); set_page_count(virt_to_page(start), 1); free_page(start); totalram_pages++; } printk ("Freeing initrd memory: %ldk freed\n", (end - start) >> 10); } #endif extern char __init_begin, __init_end; extern void prom_free_prom_memory(void); void free_initmem(void) { unsigned long addr; prom_free_prom_memory (); addr = (unsigned long) &__init_begin; while (addr < (unsigned long) &__init_end) { ClearPageReserved(virt_to_page(addr)); set_page_count(virt_to_page(addr), 1); free_page(addr); totalram_pages++; addr += PAGE_SIZE; } printk("Freeing unused kernel memory: %dk freed\n", (&__init_end - &__init_begin) >> 10); } void si_meminfo(struct sysinfo *val) { val->totalram = totalram_pages; val->sharedram = 0; val->freeram = nr_free_pages(); val->bufferram = atomic_read(&buffermem_pages); val->totalhigh = 0; val->freehigh = nr_free_highpages(); val->mem_unit = PAGE_SIZE; return; }