/* * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. * * This program is free software; you can distribute it and/or modify it * under the terms of the GNU General Public License (Version 2) as * published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. * * MIPS32 CPU variant specific MMU/Cache routines. */ #include #include #include #include #include #include #include #include #include #include #include #include /* CP0 hazard avoidance. */ #define BARRIER __asm__ __volatile__(".set noreorder\n\t" \ "nop; nop; nop; nop; nop; nop;\n\t" \ ".set reorder\n\t") /* Primary cache parameters. */ static int icache_size, dcache_size; /* Size in bytes */ static int ic_lsize, dc_lsize; /* LineSize in bytes */ /* Secondary cache (if present) parameters. */ static unsigned int scache_size, sc_lsize; /* Again, in bytes */ #include #include #undef DEBUG_CACHE /* * Dummy cache handling routines for machines without boardcaches */ static void no_sc_noop(void) {} static struct bcache_ops no_sc_ops = { (void *)no_sc_noop, (void *)no_sc_noop, (void *)no_sc_noop, (void *)no_sc_noop }; struct bcache_ops *bcops = &no_sc_ops; /* * Zero an entire page. */ static void mips32_clear_page_dc(unsigned long page) { unsigned long i; if (mips_cpu.options & MIPS_CPU_CACHE_CDEX) { for (i=page; icontext == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if(mm->context != current->mm->context) { mips32_flush_cache_all_sc(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void mips32_flush_cache_range_pc(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != 0) { unsigned long flags; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif __save_and_cli(flags); blast_dcache(); blast_icache(); __restore_flags(flags); } } /* * On architectures like the Sparc, we could get rid of lines in * the cache created only by a certain context, but on the MIPS * (and actually certain Sparc's) we cannot. */ static void mips32_flush_cache_mm_sc(struct mm_struct *mm) { if(mm->context != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif mips32_flush_cache_all_sc(); } } static void mips32_flush_cache_mm_pc(struct mm_struct *mm) { if(mm->context != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif mips32_flush_cache_all_pc(); } } static void mips32_flush_cache_page_sc(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (mm->context == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if (!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (mm->context != current->active_mm->context) { /* * Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache_page_indexed(page); blast_scache_page_indexed(page); } else blast_scache_page(page); out: __restore_flags(flags); } static void mips32_flush_cache_page_pc(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (mm->context == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if (!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since Mips32 caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (mm == current->active_mm) { blast_dcache_page(page); } else { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (dcache_size - 1))); blast_dcache_page_indexed(page); } out: __restore_flags(flags); } /* If the addresses passed to these routines are valid, they are * either: * * 1) In KSEG0, so we can do a direct flush of the page. * 2) In KSEG2, and since every process can translate those * addresses all the time in kernel mode we can do a direct * flush. * 3) In KSEG1, no flush necessary. */ static void mips32_flush_page_to_ram_sc(struct page *page) { blast_scache_page((unsigned long)page_address(page)); } static void mips32_flush_page_to_ram_pc(struct page *page) { blast_dcache_page((unsigned long)page_address(page)); } static void mips32_flush_icache_page_s(struct vm_area_struct *vma, struct page *page) { /* * We did an scache flush therefore PI is already clean. */ } static void mips32_flush_icache_range(unsigned long start, unsigned long end) { flush_cache_all(); } static void mips32_flush_icache_page(struct vm_area_struct *vma, struct page *page) { int address; if (!(vma->vm_flags & VM_EXEC)) return; address = KSEG0 + ((unsigned long)page_address(page) & PAGE_MASK & (dcache_size - 1)); blast_icache_page_indexed(address); } /* * Writeback and invalidate the primary cache dcache before DMA. */ static void mips32_dma_cache_wback_inv_pc(unsigned long addr, unsigned long size) { unsigned long end, a; unsigned int flags; if (size >= dcache_size) { flush_cache_all(); } else { __save_and_cli(flags); a = addr & ~(dc_lsize - 1); end = (addr + size) & ~(dc_lsize - 1); while (1) { flush_dcache_line(a); /* Hit_Writeback_Inv_D */ if (a == end) break; a += dc_lsize; } __restore_flags(flags); } bc_wback_inv(addr, size); } static void mips32_dma_cache_wback_inv_sc(unsigned long addr, unsigned long size) { unsigned long end, a; if (size >= scache_size) { flush_cache_all(); return; } a = addr & ~(sc_lsize - 1); end = (addr + size) & ~(sc_lsize - 1); while (1) { flush_scache_line(a); /* Hit_Writeback_Inv_SD */ if (a == end) break; a += sc_lsize; } } static void mips32_dma_cache_inv_pc(unsigned long addr, unsigned long size) { unsigned long end, a; unsigned int flags; if (size >= dcache_size) { flush_cache_all(); } else { __save_and_cli(flags); a = addr & ~(dc_lsize - 1); end = (addr + size) & ~(dc_lsize - 1); while (1) { flush_dcache_line(a); /* Hit_Writeback_Inv_D */ if (a == end) break; a += dc_lsize; } __restore_flags(flags); } bc_inv(addr, size); } static void mips32_dma_cache_inv_sc(unsigned long addr, unsigned long size) { unsigned long end, a; if (size >= scache_size) { flush_cache_all(); return; } a = addr & ~(sc_lsize - 1); end = (addr + size) & ~(sc_lsize - 1); while (1) { flush_scache_line(a); /* Hit_Writeback_Inv_SD */ if (a == end) break; a += sc_lsize; } } static void mips32_dma_cache_wback(unsigned long addr, unsigned long size) { panic("mips32_dma_cache called - should not happen.\n"); } /* * While we're protected against bad userland addresses we don't care * very much about what happens in that case. Usually a segmentation * fault will dump the process later on anyway ... */ static void mips32_flush_cache_sigtramp(unsigned long addr) { unsigned long daddr, iaddr; daddr = addr & ~(dc_lsize - 1); protected_writeback_dcache_line(daddr); protected_writeback_dcache_line(daddr + dc_lsize); iaddr = addr & ~(ic_lsize - 1); protected_flush_icache_line(iaddr); protected_flush_icache_line(iaddr + ic_lsize); } #undef DEBUG_TLB #undef DEBUG_TLBUPDATE void flush_tlb_all(void) { unsigned long flags; unsigned long old_ctx; int entry; #ifdef DEBUG_TLB printk("[tlball]"); #endif __save_and_cli(flags); /* Save old context and create impossible VPN2 value */ old_ctx = (get_entryhi() & 0xff); set_entryhi(KSEG0); set_entrylo0(0); set_entrylo1(0); BARRIER; entry = get_wired(); /* Blast 'em all away. */ while(entry < mips_cpu.tlbsize) { /* Make sure all entries differ. */ set_entryhi(KSEG0+entry*0x2000); set_index(entry); BARRIER; tlb_write_indexed(); BARRIER; entry++; } BARRIER; set_entryhi(old_ctx); __restore_flags(flags); } void flush_tlb_mm(struct mm_struct *mm) { if (mm->context != 0) { unsigned long flags; #ifdef DEBUG_TLB printk("[tlbmm<%d>]", mm->context); #endif __save_and_cli(flags); get_new_mmu_context(mm, asid_cache); if (mm == current->active_mm) set_entryhi(mm->context & 0xff); __restore_flags(flags); } } void flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != 0) { unsigned long flags; int size; #ifdef DEBUG_TLB printk("[tlbrange<%02x,%08lx,%08lx>]", (mm->context & 0xff), start, end); #endif __save_and_cli(flags); size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT; size = (size + 1) >> 1; if(size <= mips_cpu.tlbsize/2) { int oldpid = (get_entryhi() & 0xff); int newpid = (mm->context & 0xff); start &= (PAGE_MASK << 1); end += ((PAGE_SIZE << 1) - 1); end &= (PAGE_MASK << 1); while(start < end) { int idx; set_entryhi(start | newpid); start += (PAGE_SIZE << 1); BARRIER; tlb_probe(); BARRIER; idx = get_index(); set_entrylo0(0); set_entrylo1(0); if(idx < 0) continue; /* Make sure all entries differ. */ set_entryhi(KSEG0+idx*0x2000); BARRIER; tlb_write_indexed(); BARRIER; } set_entryhi(oldpid); } else { get_new_mmu_context(mm, asid_cache); if (mm == current->active_mm) set_entryhi(mm->context & 0xff); } __restore_flags(flags); } } void flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if (vma->vm_mm->context != 0) { unsigned long flags; int oldpid, newpid, idx; #ifdef DEBUG_TLB printk("[tlbpage<%d,%08lx>]", vma->vm_mm->context, page); #endif newpid = (vma->vm_mm->context & 0xff); page &= (PAGE_MASK << 1); __save_and_cli(flags); oldpid = (get_entryhi() & 0xff); set_entryhi(page | newpid); BARRIER; tlb_probe(); BARRIER; idx = get_index(); set_entrylo0(0); set_entrylo1(0); if(idx < 0) goto finish; /* Make sure all entries differ. */ set_entryhi(KSEG0+idx*0x2000); BARRIER; tlb_write_indexed(); finish: BARRIER; set_entryhi(oldpid); __restore_flags(flags); } } void pgd_init(unsigned long page) { unsigned long *p = (unsigned long *) page; int i; for(i = 0; i < USER_PTRS_PER_PGD; i+=8) { p[i + 0] = (unsigned long) invalid_pte_table; p[i + 1] = (unsigned long) invalid_pte_table; p[i + 2] = (unsigned long) invalid_pte_table; p[i + 3] = (unsigned long) invalid_pte_table; p[i + 4] = (unsigned long) invalid_pte_table; p[i + 5] = (unsigned long) invalid_pte_table; p[i + 6] = (unsigned long) invalid_pte_table; p[i + 7] = (unsigned long) invalid_pte_table; } } /* * Updates the TLB with the new pte(s). */ void update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; int idx, pid; /* * Handle debugger faulting in for debugee. */ if (current->active_mm != vma->vm_mm) return; pid = get_entryhi() & 0xff; #ifdef DEBUG_TLB if((pid != (vma->vm_mm->context & 0xff)) || (vma->vm_mm->context == 0)) { printk("update_mmu_cache: Wheee, bogus tlbpid mmpid=%d tlbpid=%d\n", (int) (vma->vm_mm->context & 0xff), pid); } #endif __save_and_cli(flags); address &= (PAGE_MASK << 1); set_entryhi(address | (pid)); pgdp = pgd_offset(vma->vm_mm, address); BARRIER; tlb_probe(); BARRIER; pmdp = pmd_offset(pgdp, address); idx = get_index(); ptep = pte_offset(pmdp, address); BARRIER; set_entrylo0(pte_val(*ptep++) >> 6); set_entrylo1(pte_val(*ptep) >> 6); set_entryhi(address | (pid)); BARRIER; if(idx < 0) { tlb_write_random(); } else { tlb_write_indexed(); } BARRIER; set_entryhi(pid); BARRIER; __restore_flags(flags); } void show_regs(struct pt_regs * regs) { /* Saved main processor registers. */ printk("$0 : %08lx %08lx %08lx %08lx\n", 0UL, regs->regs[1], regs->regs[2], regs->regs[3]); printk("$4 : %08lx %08lx %08lx %08lx\n", regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]); printk("$8 : %08lx %08lx %08lx %08lx\n", regs->regs[8], regs->regs[9], regs->regs[10], regs->regs[11]); printk("$12: %08lx %08lx %08lx %08lx\n", regs->regs[12], regs->regs[13], regs->regs[14], regs->regs[15]); printk("$16: %08lx %08lx %08lx %08lx\n", regs->regs[16], regs->regs[17], regs->regs[18], regs->regs[19]); printk("$20: %08lx %08lx %08lx %08lx\n", regs->regs[20], regs->regs[21], regs->regs[22], regs->regs[23]); printk("$24: %08lx %08lx\n", regs->regs[24], regs->regs[25]); printk("$28: %08lx %08lx %08lx %08lx\n", regs->regs[28], regs->regs[29], regs->regs[30], regs->regs[31]); /* Saved cp0 registers. */ printk("epc : %08lx\nStatus: %08lx\nCause : %08lx\n", regs->cp0_epc, regs->cp0_status, regs->cp0_cause); } void add_wired_entry(unsigned long entrylo0, unsigned long entrylo1, unsigned long entryhi, unsigned long pagemask) { unsigned long flags; unsigned long wired; unsigned long old_pagemask; unsigned long old_ctx; __save_and_cli(flags); /* Save old context and create impossible VPN2 value */ old_ctx = (get_entryhi() & 0xff); old_pagemask = get_pagemask(); wired = get_wired(); set_wired (wired + 1); set_index (wired); BARRIER; set_pagemask (pagemask); set_entryhi(entryhi); set_entrylo0(entrylo0); set_entrylo1(entrylo1); BARRIER; tlb_write_indexed(); BARRIER; set_entryhi(old_ctx); BARRIER; set_pagemask (old_pagemask); flush_tlb_all(); __restore_flags(flags); } /* Detect and size the various caches. */ static void __init probe_icache(unsigned long config) { unsigned long config1; unsigned int lsize; if (!(config & (1 << 31))) { /* * Not a MIPS32 complainant CPU. * Config 1 register not supported, we assume R4k style. */ icache_size = 1 << (12 + ((config >> 9) & 7)); ic_lsize = 16 << ((config >> 5) & 1); mips_cpu.icache.linesz = ic_lsize; /* * We cannot infer associativity - assume direct map * unless probe template indicates otherwise */ if(!mips_cpu.icache.ways) mips_cpu.icache.ways = 1; mips_cpu.icache.sets = (icache_size / ic_lsize) / mips_cpu.icache.ways; } else { config1 = read_mips32_cp0_config1(); if ((lsize = ((config1 >> 19) & 7))) mips_cpu.icache.linesz = 2 << lsize; else mips_cpu.icache.linesz = lsize; mips_cpu.icache.sets = 64 << ((config1 >> 22) & 7); mips_cpu.icache.ways = 1 + ((config1 >> 16) & 7); ic_lsize = mips_cpu.icache.linesz; icache_size = mips_cpu.icache.sets * mips_cpu.icache.ways * ic_lsize; } printk("Primary instruction cache %dkb, linesize %d bytes (%d ways)\n", icache_size >> 10, ic_lsize, mips_cpu.icache.ways); } static void __init probe_dcache(unsigned long config) { unsigned long config1; unsigned int lsize; if (!(config & (1 << 31))) { /* * Not a MIPS32 complainant CPU. * Config 1 register not supported, we assume R4k style. */ dcache_size = 1 << (12 + ((config >> 6) & 7)); dc_lsize = 16 << ((config >> 4) & 1); mips_cpu.dcache.linesz = dc_lsize; /* * We cannot infer associativity - assume direct map * unless probe template indicates otherwise */ if(!mips_cpu.dcache.ways) mips_cpu.dcache.ways = 1; mips_cpu.dcache.sets = (dcache_size / dc_lsize) / mips_cpu.dcache.ways; } else { config1 = read_mips32_cp0_config1(); if ((lsize = ((config1 >> 10) & 7))) mips_cpu.dcache.linesz = 2 << lsize; else mips_cpu.dcache.linesz= lsize; mips_cpu.dcache.sets = 64 << ((config1 >> 13) & 7); mips_cpu.dcache.ways = 1 + ((config1 >> 7) & 7); dc_lsize = mips_cpu.dcache.linesz; dcache_size = mips_cpu.dcache.sets * mips_cpu.dcache.ways * dc_lsize; } printk("Primary data cache %dkb, linesize %d bytes (%d ways)\n", dcache_size >> 10, dc_lsize, mips_cpu.dcache.ways); } /* If you even _breathe_ on this function, look at the gcc output * and make sure it does not pop things on and off the stack for * the cache sizing loop that executes in KSEG1 space or else * you will crash and burn badly. You have been warned. */ static int __init probe_scache(unsigned long config) { extern unsigned long stext; unsigned long flags, addr, begin, end, pow2; int tmp; tmp = ((config >> 17) & 1); if(tmp) return 0; tmp = ((config >> 22) & 3); switch(tmp) { case 0: sc_lsize = 16; break; case 1: sc_lsize = 32; break; case 2: sc_lsize = 64; break; case 3: sc_lsize = 128; break; } begin = (unsigned long) &stext; begin &= ~((4 * 1024 * 1024) - 1); end = begin + (4 * 1024 * 1024); /* This is such a bitch, you'd think they would make it * easy to do this. Away you daemons of stupidity! */ __save_and_cli(flags); /* Fill each size-multiple cache line with a valid tag. */ pow2 = (64 * 1024); for(addr = begin; addr < end; addr = (begin + pow2)) { unsigned long *p = (unsigned long *) addr; __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ pow2 <<= 1; } /* Load first line with zero (therefore invalid) tag. */ set_taglo(0); set_taghi(0); __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 8, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (begin)); __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 9, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (begin)); __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 11, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (begin)); /* Now search for the wrap around point. */ pow2 = (128 * 1024); tmp = 0; for(addr = (begin + (128 * 1024)); addr < (end); addr = (begin + pow2)) { __asm__ __volatile__("\n\t.set noreorder\n\t" ".set mips3\n\t" "cache 7, (%0)\n\t" ".set mips0\n\t" ".set reorder\n\t" : : "r" (addr)); __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ if(!get_taglo()) break; pow2 <<= 1; } __restore_flags(flags); addr -= begin; printk("Secondary cache sized at %dK linesize %d bytes.\n", (int) (addr >> 10), sc_lsize); scache_size = addr; return 1; } static void __init setup_noscache_funcs(void) { _clear_page = (void *)mips32_clear_page_dc; _copy_page = (void *)mips32_copy_page_dc; _flush_cache_all = mips32_flush_cache_all_pc; ___flush_cache_all = mips32_flush_cache_all_pc; _flush_cache_mm = mips32_flush_cache_mm_pc; _flush_cache_range = mips32_flush_cache_range_pc; _flush_cache_page = mips32_flush_cache_page_pc; _flush_page_to_ram = mips32_flush_page_to_ram_pc; _flush_icache_page = mips32_flush_icache_page; _dma_cache_wback_inv = mips32_dma_cache_wback_inv_pc; _dma_cache_wback = mips32_dma_cache_wback; _dma_cache_inv = mips32_dma_cache_inv_pc; } static void __init setup_scache_funcs(void) { _flush_cache_all = mips32_flush_cache_all_sc; ___flush_cache_all = mips32_flush_cache_all_sc; _flush_cache_mm = mips32_flush_cache_mm_sc; _flush_cache_range = mips32_flush_cache_range_sc; _flush_cache_page = mips32_flush_cache_page_sc; _flush_page_to_ram = mips32_flush_page_to_ram_sc; _clear_page = (void *)mips32_clear_page_sc; _copy_page = (void *)mips32_copy_page_sc; _flush_icache_page = mips32_flush_icache_page_s; _dma_cache_wback_inv = mips32_dma_cache_wback_inv_sc; _dma_cache_wback = mips32_dma_cache_wback; _dma_cache_inv = mips32_dma_cache_inv_sc; } typedef int (*probe_func_t)(unsigned long); static inline void __init setup_scache(unsigned int config) { probe_func_t probe_scache_kseg1; int sc_present = 0; /* Maybe the cpu knows about a l2 cache? */ probe_scache_kseg1 = (probe_func_t) (KSEG1ADDR(&probe_scache)); sc_present = probe_scache_kseg1(config); if (sc_present) { mips_cpu.scache.linesz = sc_lsize; /* * We cannot infer associativity - assume direct map * unless probe template indicates otherwise */ if(!mips_cpu.scache.ways) mips_cpu.scache.ways = 1; mips_cpu.scache.sets = (scache_size / sc_lsize) / mips_cpu.scache.ways; setup_scache_funcs(); return; } setup_noscache_funcs(); } static void __init probe_tlb(unsigned long config) { unsigned long config1; if (!(config & (1 << 31))) { /* * Not a MIPS32 complainant CPU. * Config 1 register not supported, we assume R4k style. */ mips_cpu.tlbsize = 48; } else { config1 = read_mips32_cp0_config1(); if (!((config >> 7) & 3)) panic("No MMU present"); else mips_cpu.tlbsize = ((config1 >> 25) & 0x3f) + 1; } printk("Number of TLB entries %d.\n", mips_cpu.tlbsize); } void __init ld_mmu_mips32(void) { unsigned long config = read_32bit_cp0_register(CP0_CONFIG); printk("CPU revision is: %08x\n", read_32bit_cp0_register(CP0_PRID)); #ifdef CONFIG_MIPS_UNCACHED set_cp0_config(CONF_CM_CMASK, CONF_CM_UNCACHED); #else set_cp0_config(CONF_CM_CMASK, CONF_CM_CACHABLE_NONCOHERENT); #endif probe_icache(config); probe_dcache(config); setup_scache(config); probe_tlb(config); _flush_cache_sigtramp = mips32_flush_cache_sigtramp; _flush_icache_range = mips32_flush_icache_range; /* Ouch */ __flush_cache_all(); write_32bit_cp0_register(CP0_WIRED, 0); /* * You should never change this register: * - The entire mm handling assumes the c0_pagemask register to * be set for 4kb pages. */ write_32bit_cp0_register(CP0_PAGEMASK, PM_4K); flush_tlb_all(); }