/* $Id: linux32.c,v 1.14 2000/03/23 00:30:53 ulfc Exp $ * * Conversion between 32-bit and 64-bit native system calls. * * Copyright (C) 2000 Silicon Graphics, Inc. * Written by Ulf Carlsson (ulfc@engr.sgi.com) * sys32_execve from ia64/ia32 code, Feb 2000, Kanoj Sarcar (kanoj@sgi.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define A(__x) ((unsigned long)(__x)) #if 1 static inline int putstat(struct stat32 *ubuf, struct stat *kbuf) { int err; err = put_user (kbuf->st_dev, &ubuf->st_dev); err |= __put_user (kbuf->st_ino, &ubuf->st_ino); err |= __put_user (kbuf->st_mode, &ubuf->st_mode); err |= __put_user (kbuf->st_nlink, &ubuf->st_nlink); err |= __put_user (kbuf->st_uid, &ubuf->st_uid); err |= __put_user (kbuf->st_gid, &ubuf->st_gid); err |= __put_user (kbuf->st_rdev, &ubuf->st_rdev); err |= __put_user (kbuf->st_size, &ubuf->st_size); err |= __put_user (kbuf->st_atime, &ubuf->st_atime); err |= __put_user (kbuf->st_mtime, &ubuf->st_mtime); err |= __put_user (kbuf->st_ctime, &ubuf->st_ctime); err |= __put_user (kbuf->st_blksize, &ubuf->st_blksize); err |= __put_user (kbuf->st_blocks, &ubuf->st_blocks); return err; } extern asmlinkage long sys_newstat(char * filename, struct stat * statbuf); asmlinkage int sys32_newstat(char * filename, struct stat32 *statbuf) { int ret; struct stat s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_newstat(filename, &s); set_fs (old_fs); if (putstat (statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newlstat(char * filename, struct stat * statbuf); asmlinkage int sys32_newlstat(char * filename, struct stat32 *statbuf) { int ret; struct stat s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_newlstat(filename, &s); set_fs (old_fs); if (putstat (statbuf, &s)) return -EFAULT; return ret; } extern asmlinkage long sys_newfstat(unsigned int fd, struct stat * statbuf); asmlinkage int sys32_newfstat(unsigned int fd, struct stat32 *statbuf) { int ret; struct stat s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_newfstat(fd, &s); set_fs (old_fs); if (putstat (statbuf, &s)) return -EFAULT; return ret; } #else /* * Revalidate the inode. This is required for proper NFS attribute caching. */ static __inline__ int do_revalidate(struct dentry *dentry) { struct inode * inode = dentry->d_inode; if (inode->i_op && inode->i_op->revalidate) return inode->i_op->revalidate(dentry); return 0; } static int cp_new_stat32(struct inode * inode, struct stat32 * statbuf) { struct stat32 tmp; unsigned int blocks, indirect; memset(&tmp, 0, sizeof(tmp)); tmp.st_dev = kdev_t_to_nr(inode->i_dev); tmp.st_ino = inode->i_ino; tmp.st_mode = inode->i_mode; tmp.st_nlink = inode->i_nlink; SET_STAT_UID(tmp, inode->i_uid); SET_STAT_GID(tmp, inode->i_gid); tmp.st_rdev = kdev_t_to_nr(inode->i_rdev); tmp.st_size = inode->i_size; tmp.st_atime = inode->i_atime; tmp.st_mtime = inode->i_mtime; tmp.st_ctime = inode->i_ctime; /* * st_blocks and st_blksize are approximated with a simple algorithm if * they aren't supported directly by the filesystem. The minix and msdos * filesystems don't keep track of blocks, so they would either have to * be counted explicitly (by delving into the file itself), or by using * this simple algorithm to get a reasonable (although not 100% accurate) * value. */ /* * Use minix fs values for the number of direct and indirect blocks. The * count is now exact for the minix fs except that it counts zero blocks. * Everything is in units of BLOCK_SIZE until the assignment to * tmp.st_blksize. */ #define D_B 7 #define I_B (BLOCK_SIZE / sizeof(unsigned short)) if (!inode->i_blksize) { blocks = (tmp.st_size + BLOCK_SIZE - 1) / BLOCK_SIZE; if (blocks > D_B) { indirect = (blocks - D_B + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) { indirect = (indirect - 1 + I_B - 1) / I_B; blocks += indirect; if (indirect > 1) blocks++; } } tmp.st_blocks = (BLOCK_SIZE / 512) * blocks; tmp.st_blksize = BLOCK_SIZE; } else { tmp.st_blocks = inode->i_blocks; tmp.st_blksize = inode->i_blksize; } return copy_to_user(statbuf,&tmp,sizeof(tmp)) ? -EFAULT : 0; } asmlinkage int sys32_newstat(char * filename, struct stat32 *statbuf) { struct dentry * dentry; int error; lock_kernel(); dentry = namei(filename); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { error = do_revalidate(dentry); if (!error) error = cp_new_stat32(dentry->d_inode, statbuf); dput(dentry); } unlock_kernel(); return error; } asmlinkage int sys32_newlstat(char *filename, struct stat32 * statbuf) { struct dentry * dentry; int error; lock_kernel(); dentry = lnamei(filename); error = PTR_ERR(dentry); if (!IS_ERR(dentry)) { error = do_revalidate(dentry); if (!error) error = cp_new_stat32(dentry->d_inode, statbuf); dput(dentry); } unlock_kernel(); return error; } asmlinkage int sys32_newfstat(unsigned int fd, struct stat32 * statbuf) { struct file * f; int err = -EBADF; lock_kernel(); f = fget(fd); if (f) { struct dentry * dentry = f->f_dentry; err = do_revalidate(dentry); if (!err) err = cp_new_stat32(dentry->d_inode, statbuf); fput(f); } unlock_kernel(); return err; } #endif asmlinkage int sys_mmap2(void) {return 0;} asmlinkage long sys_truncate(const char * path, unsigned long length); asmlinkage int sys_truncate64(const char *path, unsigned int high, unsigned int low) { if ((int)high < 0) return -EINVAL; return sys_truncate(path, (high << 32) | low); } asmlinkage long sys_ftruncate(unsigned int fd, unsigned long length); asmlinkage int sys_ftruncate64(unsigned int fd, unsigned int high, unsigned int low) { if ((int)high < 0) return -EINVAL; return sys_ftruncate(fd, (high << 32) | low); } asmlinkage long sys_newstat(char * filename, struct stat * statbuf); asmlinkage int sys_stat64(char * filename, struct stat *statbuf) { return sys_newstat(filename, statbuf); } asmlinkage long sys_newlstat(char * filename, struct stat * statbuf); asmlinkage int sys_lstat64(char * filename, struct stat *statbuf) { return sys_newlstat(filename, statbuf); } asmlinkage long sys_newfstat(unsigned int fd, struct stat * statbuf); asmlinkage int sys_fstat64(unsigned int fd, struct stat *statbuf) { return sys_newfstat(fd, statbuf); } #if 0 /* * count32() counts the number of arguments/envelopes */ static int count32(u32 * argv, int max) { int i = 0; if (argv != NULL) { for (;;) { u32 p; /* egcs is stupid */ if (!access_ok(VERIFY_READ, argv, sizeof (u32))) return -EFAULT; __get_user(p,argv); if (!p) break; argv++; if(++i > max) return -E2BIG; } } return i; } /* * 'copy_strings32()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. */ int copy_strings32(int argc, u32 * argv, struct linux_binprm *bprm) { while (argc-- > 0) { u32 str; int len; unsigned long pos; if (get_user(str, argv+argc) || !str || !(len = strnlen_user((char *)A(str), bprm->p))) return -EFAULT; if (bprm->p < len) return -E2BIG; bprm->p -= len; /* XXX: add architecture specific overflow check here. */ pos = bprm->p; while (len > 0) { char *kaddr; int i, new, err; struct page *page; int offset, bytes_to_copy; offset = pos % PAGE_SIZE; i = pos/PAGE_SIZE; page = bprm->page[i]; new = 0; if (!page) { page = alloc_page(GFP_HIGHUSER); bprm->page[i] = page; if (!page) return -ENOMEM; new = 1; } kaddr = (char *)kmap(page); if (new && offset) memset(kaddr, 0, offset); bytes_to_copy = PAGE_SIZE - offset; if (bytes_to_copy > len) { bytes_to_copy = len; if (new) memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len); } err = copy_from_user(kaddr + offset, (char *)A(str), bytes_to_copy); flush_page_to_ram(page); kunmap(page); if (err) return -EFAULT; pos += bytes_to_copy; str += bytes_to_copy; len -= bytes_to_copy; } } return 0; } /* * sys_execve32() executes a new program. */ int do_execve32(char * filename, u32 * argv, u32 * envp, struct pt_regs * regs) { struct linux_binprm bprm; struct dentry * dentry; int retval; int i; bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0])); dentry = open_namei(filename, 0, 0); retval = PTR_ERR(dentry); if (IS_ERR(dentry)) return retval; bprm.dentry = dentry; bprm.filename = filename; bprm.sh_bang = 0; bprm.loader = 0; bprm.exec = 0; if ((bprm.argc = count32(argv, bprm.p / sizeof(u32))) < 0) { dput(dentry); return bprm.argc; } if ((bprm.envc = count32(envp, bprm.p / sizeof(u32))) < 0) { dput(dentry); return bprm.envc; } retval = prepare_binprm(&bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm.filename, &bprm); if (retval < 0) goto out; bprm.exec = bprm.p; retval = copy_strings32(bprm.envc, envp, &bprm); if (retval < 0) goto out; retval = copy_strings32(bprm.argc, argv, &bprm); if (retval < 0) goto out; retval = search_binary_handler(&bprm,regs); if (retval >= 0) /* execve success */ return retval; out: /* Something went wrong, return the inode and free the argument pages*/ if (bprm.dentry) dput(bprm.dentry); /* Assumes that free_page() can take a NULL argument. */ /* I hope this is ok for all architectures */ for (i = 0 ; i < MAX_ARG_PAGES ; i++) if (bprm.page[i]) __free_page(bprm.page[i]); return retval; } /* * sys_execve() executes a new program. */ asmlinkage int sys32_execve(abi64_no_regargs, struct pt_regs regs) { int error; char * filename; filename = getname((char *) (long)regs.regs[4]); printk("Executing: %s\n", filename); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; error = do_execve32(filename, (u32 *) (long)regs.regs[5], (u32 *) (long)regs.regs[6], ®s); putname(filename); out: return error; } #else static int nargs(unsigned int arg, char **ap) { char *ptr; int n; n = 0; do { /* egcs is stupid */ if (!access_ok(VERIFY_READ, arg, sizeof (unsigned int))) return -EFAULT; __get_user((long)ptr,(int *)A(arg)); if (ap) *ap++ = ptr; arg += sizeof(unsigned int); n++; } while (ptr); return(n - 1); } asmlinkage int sys32_execve(abi64_no_regargs, struct pt_regs regs) { extern asmlinkage int sys_execve(abi64_no_regargs, struct pt_regs regs); extern asmlinkage long sys_munmap(unsigned long addr, size_t len); unsigned int argv = (unsigned int)regs.regs[5]; unsigned int envp = (unsigned int)regs.regs[6]; char **av, **ae; int na, ne, r, len; char * filename; na = nargs(argv, NULL); ne = nargs(envp, NULL); len = (na + ne + 2) * sizeof(*av); /* * kmalloc won't work because the `sys_exec' code will attempt * to do a `get_user' on the arg list and `get_user' will fail * on a kernel address (simplifies `get_user'). Instead we * do an mmap to get a user address. Note that since a successful * `execve' frees all current memory we only have to do an * `munmap' if the `execve' failes. */ down(¤t->mm->mmap_sem); lock_kernel(); av = (char **) do_mmap_pgoff(0, 0, len, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0); unlock_kernel(); up(¤t->mm->mmap_sem); if (IS_ERR(av)) return((long) av); ae = av + na + 1; av[na] = (char *)0; ae[ne] = (char *)0; (void)nargs(argv, av); (void)nargs(envp, ae); filename = getname((char *) (long)regs.regs[4]); r = PTR_ERR(filename); if (IS_ERR(filename)) return(r); r = do_execve(filename, av, ae, ®s); putname(filename); if (IS_ERR(r)) sys_munmap((unsigned long)av, len); return(r); } #endif struct dirent32 { unsigned int d_ino; unsigned int d_off; unsigned short d_reclen; char d_name[NAME_MAX + 1]; }; static void xlate_dirent(void *dirent64, void *dirent32, long n) { long off; struct dirent *dirp; struct dirent32 *dirp32; off = 0; while (off < n) { dirp = (struct dirent *)(dirent64 + off); dirp32 = (struct dirent32 *)(dirent32 + off); off += dirp->d_reclen; dirp32->d_ino = dirp->d_ino; dirp32->d_off = (unsigned int)dirp->d_off; dirp32->d_reclen = dirp->d_reclen; strncpy(dirp32->d_name, dirp->d_name, dirp->d_reclen - ((3 * 4) + 2)); } return; } asmlinkage long sys_getdents(unsigned int fd, void * dirent, unsigned int count); asmlinkage long sys32_getdents(unsigned int fd, void * dirent32, unsigned int count) { long n; void *dirent64; dirent64 = (void *)((unsigned long)(dirent32 + (sizeof(long) - 1)) & ~(sizeof(long) - 1)); if ((n = sys_getdents(fd, dirent64, count - (dirent64 - dirent32))) < 0) return(n); xlate_dirent(dirent64, dirent32, n); return(n); } asmlinkage int old_readdir(unsigned int fd, void * dirent, unsigned int count); asmlinkage int sys32_readdir(unsigned int fd, void * dirent32, unsigned int count) { int n; struct dirent dirent64; if ((n = old_readdir(fd, &dirent64, count)) < 0) return(n); xlate_dirent(&dirent64, dirent32, dirent64.d_reclen); return(n); } struct timeval32 { int tv_sec, tv_usec; }; struct itimerval32 { struct timeval32 it_interval; struct timeval32 it_value; }; struct rusage32 { struct timeval32 ru_utime; struct timeval32 ru_stime; int ru_maxrss; int ru_ixrss; int ru_idrss; int ru_isrss; int ru_minflt; int ru_majflt; int ru_nswap; int ru_inblock; int ru_oublock; int ru_msgsnd; int ru_msgrcv; int ru_nsignals; int ru_nvcsw; int ru_nivcsw; }; static int put_rusage (struct rusage32 *ru, struct rusage *r) { int err; err = put_user (r->ru_utime.tv_sec, &ru->ru_utime.tv_sec); err |= __put_user (r->ru_utime.tv_usec, &ru->ru_utime.tv_usec); err |= __put_user (r->ru_stime.tv_sec, &ru->ru_stime.tv_sec); err |= __put_user (r->ru_stime.tv_usec, &ru->ru_stime.tv_usec); err |= __put_user (r->ru_maxrss, &ru->ru_maxrss); err |= __put_user (r->ru_ixrss, &ru->ru_ixrss); err |= __put_user (r->ru_idrss, &ru->ru_idrss); err |= __put_user (r->ru_isrss, &ru->ru_isrss); err |= __put_user (r->ru_minflt, &ru->ru_minflt); err |= __put_user (r->ru_majflt, &ru->ru_majflt); err |= __put_user (r->ru_nswap, &ru->ru_nswap); err |= __put_user (r->ru_inblock, &ru->ru_inblock); err |= __put_user (r->ru_oublock, &ru->ru_oublock); err |= __put_user (r->ru_msgsnd, &ru->ru_msgsnd); err |= __put_user (r->ru_msgrcv, &ru->ru_msgrcv); err |= __put_user (r->ru_nsignals, &ru->ru_nsignals); err |= __put_user (r->ru_nvcsw, &ru->ru_nvcsw); err |= __put_user (r->ru_nivcsw, &ru->ru_nivcsw); return err; } extern asmlinkage int sys_wait4(pid_t pid, unsigned int * stat_addr, int options, struct rusage * ru); asmlinkage int sys32_wait4(__kernel_pid_t32 pid, unsigned int * stat_addr, int options, struct rusage32 * ru) { if (!ru) return sys_wait4(pid, stat_addr, options, NULL); else { struct rusage r; int ret; unsigned int status; mm_segment_t old_fs = get_fs(); set_fs(KERNEL_DS); ret = sys_wait4(pid, stat_addr ? &status : NULL, options, &r); set_fs(old_fs); if (put_rusage (ru, &r)) return -EFAULT; if (stat_addr && put_user (status, stat_addr)) return -EFAULT; return ret; } } asmlinkage int sys32_waitpid(__kernel_pid_t32 pid, unsigned int *stat_addr, int options) { return sys32_wait4(pid, stat_addr, options, NULL); } #define RLIM_INFINITY32 0x7fffffff #define RESOURCE32(x) ((x > RLIM_INFINITY32) ? RLIM_INFINITY32 : x) struct rlimit32 { int rlim_cur; int rlim_max; }; extern asmlinkage int sys_old_getrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_getrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_old_getrlimit(resource, &r); set_fs (old_fs); if (!ret) { ret = put_user (RESOURCE32(r.rlim_cur), &rlim->rlim_cur); ret |= __put_user (RESOURCE32(r.rlim_max), &rlim->rlim_max); } return ret; } extern asmlinkage int sys_setrlimit(unsigned int resource, struct rlimit *rlim); asmlinkage int sys32_setrlimit(unsigned int resource, struct rlimit32 *rlim) { struct rlimit r; int ret; mm_segment_t old_fs = get_fs (); if (resource >= RLIM_NLIMITS) return -EINVAL; if (get_user (r.rlim_cur, &rlim->rlim_cur) || __get_user (r.rlim_max, &rlim->rlim_max)) return -EFAULT; if (r.rlim_cur == RLIM_INFINITY32) r.rlim_cur = RLIM_INFINITY; if (r.rlim_max == RLIM_INFINITY32) r.rlim_max = RLIM_INFINITY; set_fs (KERNEL_DS); ret = sys_setrlimit(resource, &r); set_fs (old_fs); return ret; } struct statfs32 { int f_type; int f_bsize; int f_frsize; int f_blocks; int f_bfree; int f_files; int f_ffree; int f_bavail; __kernel_fsid_t32 f_fsid; int f_namelen; int f_spare[6]; }; static inline int put_statfs (struct statfs32 *ubuf, struct statfs *kbuf) { int err; err = put_user (kbuf->f_type, &ubuf->f_type); err |= __put_user (kbuf->f_bsize, &ubuf->f_bsize); err |= __put_user (kbuf->f_blocks, &ubuf->f_blocks); err |= __put_user (kbuf->f_bfree, &ubuf->f_bfree); err |= __put_user (kbuf->f_bavail, &ubuf->f_bavail); err |= __put_user (kbuf->f_files, &ubuf->f_files); err |= __put_user (kbuf->f_ffree, &ubuf->f_ffree); err |= __put_user (kbuf->f_namelen, &ubuf->f_namelen); err |= __put_user (kbuf->f_fsid.val[0], &ubuf->f_fsid.val[0]); err |= __put_user (kbuf->f_fsid.val[1], &ubuf->f_fsid.val[1]); return err; } extern asmlinkage int sys_statfs(const char * path, struct statfs * buf); asmlinkage int sys32_statfs(const char * path, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_statfs((const char *)path, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } extern asmlinkage int sys_fstatfs(unsigned int fd, struct statfs * buf); asmlinkage int sys32_fstatfs(unsigned int fd, struct statfs32 *buf) { int ret; struct statfs s; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_fstatfs(fd, &s); set_fs (old_fs); if (put_statfs(buf, &s)) return -EFAULT; return ret; } extern asmlinkage int sys_getrusage(int who, struct rusage *ru); asmlinkage int sys32_getrusage(int who, struct rusage32 *ru) { struct rusage r; int ret; mm_segment_t old_fs = get_fs(); set_fs (KERNEL_DS); ret = sys_getrusage(who, &r); set_fs (old_fs); if (put_rusage (ru, &r)) return -EFAULT; return ret; } static inline long get_tv32(struct timeval *o, struct timeval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->tv_sec, &i->tv_sec) | __get_user(o->tv_usec, &i->tv_usec))); return ENOSYS; } static inline long get_it32(struct itimerval *o, struct itimerval32 *i) { return (!access_ok(VERIFY_READ, i, sizeof(*i)) || (__get_user(o->it_interval.tv_sec, &i->it_interval.tv_sec) | __get_user(o->it_interval.tv_usec, &i->it_interval.tv_usec) | __get_user(o->it_value.tv_sec, &i->it_value.tv_sec) | __get_user(o->it_value.tv_usec, &i->it_value.tv_usec))); return ENOSYS; } static inline long put_tv32(struct timeval32 *o, struct timeval *i) { return (!access_ok(VERIFY_WRITE, o, sizeof(*o)) || (__put_user(i->tv_sec, &o->tv_sec) | __put_user(i->tv_usec, &o->tv_usec))); } static inline long put_it32(struct itimerval32 *o, struct itimerval *i) { return (!access_ok(VERIFY_WRITE, i, sizeof(*i)) || (__put_user(i->it_interval.tv_sec, &o->it_interval.tv_sec) | __put_user(i->it_interval.tv_usec, &o->it_interval.tv_usec) | __put_user(i->it_value.tv_sec, &o->it_value.tv_sec) | __put_user(i->it_value.tv_usec, &o->it_value.tv_usec))); return ENOSYS; } extern int do_getitimer(int which, struct itimerval *value); asmlinkage int sys32_getitimer(int which, struct itimerval32 *it) { struct itimerval kit; int error; error = do_getitimer(which, &kit); if (!error && put_it32(it, &kit)) error = -EFAULT; return error; } extern int do_setitimer(int which, struct itimerval *, struct itimerval *); asmlinkage int sys32_setitimer(int which, struct itimerval32 *in, struct itimerval32 *out) { struct itimerval kin, kout; int error; if (in) { if (get_it32(&kin, in)) return -EFAULT; } else memset(&kin, 0, sizeof(kin)); error = do_setitimer(which, &kin, out ? &kout : NULL); if (error || !out) return error; if (put_it32(out, &kout)) return -EFAULT; return 0; } asmlinkage unsigned long sys32_alarm(unsigned int seconds) { struct itimerval it_new, it_old; unsigned int oldalarm; it_new.it_interval.tv_sec = it_new.it_interval.tv_usec = 0; it_new.it_value.tv_sec = seconds; it_new.it_value.tv_usec = 0; do_setitimer(ITIMER_REAL, &it_new, &it_old); oldalarm = it_old.it_value.tv_sec; /* ehhh.. We can't return 0 if we have an alarm pending.. */ /* And we'd better return too much than too little anyway */ if (it_old.it_value.tv_usec) oldalarm++; return oldalarm; } /* Translations due to time_t size differences. Which affects all sorts of things, like timeval and itimerval. */ extern struct timezone sys_tz; extern int do_sys_settimeofday(struct timeval *tv, struct timezone *tz); asmlinkage int sys32_gettimeofday(struct timeval32 *tv, struct timezone *tz) { if (tv) { struct timeval ktv; do_gettimeofday(&ktv); if (put_tv32(tv, &ktv)) return -EFAULT; } if (tz) { if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) return -EFAULT; } return 0; } asmlinkage int sys32_settimeofday(struct timeval32 *tv, struct timezone *tz) { struct timeval ktv; struct timezone ktz; if (tv) { if (get_tv32(&ktv, tv)) return -EFAULT; } if (tz) { if (copy_from_user(&ktz, tz, sizeof(ktz))) return -EFAULT; } return do_sys_settimeofday(tv ? &ktv : NULL, tz ? &ktz : NULL); } extern asmlinkage long sys_llseek(unsigned int fd, unsigned long offset_high, unsigned long offset_low, loff_t * result, unsigned int origin); extern asmlinkage int sys32_llseek(unsigned int fd, unsigned int offset_high, unsigned int offset_low, loff_t * result, unsigned int origin) { return sys_llseek(fd, offset_high, offset_low, result, origin); } /* * Ooo, nasty. We need here to frob 32-bit unsigned longs to * 64-bit unsigned longs. */ static inline int get_fd_set32(unsigned long n, unsigned long *fdset, u32 *ufdset) { #ifdef __MIPSEB__ if (ufdset) { unsigned long odd; if (verify_area(VERIFY_WRITE, ufdset, n*sizeof(u32))) return -EFAULT; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; __get_user(l, ufdset); __get_user(h, ufdset+1); ufdset += 2; *fdset++ = h << 32 | l; n -= 2; } if (odd) __get_user(*fdset, ufdset); } else { /* Tricky, must clear full unsigned long in the * kernel fdset at the end, this makes sure that * actually happens. */ memset(fdset, 0, ((n + 1) & ~1)*sizeof(u32)); } return 0; #else <> #endif } static inline void set_fd_set32(unsigned long n, u32 *ufdset, unsigned long *fdset) { unsigned long odd; if (!ufdset) return; odd = n & 1UL; n &= ~1UL; while (n) { unsigned long h, l; l = *fdset++; h = l >> 32; __put_user(l, ufdset); __put_user(h, ufdset+1); ufdset += 2; n -= 2; } if (odd) __put_user(*fdset, ufdset); } /* * We can actually return ERESTARTSYS instead of EINTR, but I'd * like to be certain this leads to no problems. So I return * EINTR just for safety. * * Update: ERESTARTSYS breaks at least the xview clock binary, so * I'm trying ERESTARTNOHAND which restart only when you want to. */ #define MAX_SELECT_SECONDS \ ((unsigned long) (MAX_SCHEDULE_TIMEOUT / HZ)-1) asmlinkage int sys32_select(int n, u32 *inp, u32 *outp, u32 *exp, struct timeval32 *tvp) { fd_set_bits fds; char *bits; unsigned long nn; long timeout; int ret, size; timeout = MAX_SCHEDULE_TIMEOUT; if (tvp) { time_t sec, usec; if ((ret = verify_area(VERIFY_READ, tvp, sizeof(*tvp))) || (ret = __get_user(sec, &tvp->tv_sec)) || (ret = __get_user(usec, &tvp->tv_usec))) goto out_nofds; ret = -EINVAL; if(sec < 0 || usec < 0) goto out_nofds; if ((unsigned long) sec < MAX_SELECT_SECONDS) { timeout = (usec + 1000000/HZ - 1) / (1000000/HZ); timeout += sec * (unsigned long) HZ; } } ret = -EINVAL; if (n < 0) goto out_nofds; if (n > current->files->max_fdset) n = current->files->max_fdset; /* * We need 6 bitmaps (in/out/ex for both incoming and outgoing), * since we used fdset we need to allocate memory in units of * long-words. */ ret = -ENOMEM; size = FDS_BYTES(n); bits = kmalloc(6 * size, GFP_KERNEL); if (!bits) goto out_nofds; fds.in = (unsigned long *) bits; fds.out = (unsigned long *) (bits + size); fds.ex = (unsigned long *) (bits + 2*size); fds.res_in = (unsigned long *) (bits + 3*size); fds.res_out = (unsigned long *) (bits + 4*size); fds.res_ex = (unsigned long *) (bits + 5*size); nn = (n + 8*sizeof(u32) - 1) / (8*sizeof(u32)); if ((ret = get_fd_set32(nn, fds.in, inp)) || (ret = get_fd_set32(nn, fds.out, outp)) || (ret = get_fd_set32(nn, fds.ex, exp))) goto out; zero_fd_set(n, fds.res_in); zero_fd_set(n, fds.res_out); zero_fd_set(n, fds.res_ex); ret = do_select(n, &fds, &timeout); if (tvp && !(current->personality & STICKY_TIMEOUTS)) { time_t sec = 0, usec = 0; if (timeout) { sec = timeout / HZ; usec = timeout % HZ; usec *= (1000000/HZ); } put_user(sec, &tvp->tv_sec); put_user(usec, &tvp->tv_usec); } if (ret < 0) goto out; if (!ret) { ret = -ERESTARTNOHAND; if (signal_pending(current)) goto out; ret = 0; } set_fd_set32(nn, inp, fds.res_in); set_fd_set32(nn, outp, fds.res_out); set_fd_set32(nn, exp, fds.res_ex); out: kfree(bits); out_nofds: return ret; } struct timespec32 { int tv_sec; int tv_nsec; }; extern asmlinkage int sys_sched_rr_get_interval(pid_t pid, struct timespec *interval); asmlinkage int sys32_sched_rr_get_interval(__kernel_pid_t32 pid, struct timespec32 *interval) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); set_fs (KERNEL_DS); ret = sys_sched_rr_get_interval(pid, &t); set_fs (old_fs); if (put_user (t.tv_sec, &interval->tv_sec) || __put_user (t.tv_nsec, &interval->tv_nsec)) return -EFAULT; return ret; } extern asmlinkage int sys_nanosleep(struct timespec *rqtp, struct timespec *rmtp); asmlinkage int sys32_nanosleep(struct timespec32 *rqtp, struct timespec32 *rmtp) { struct timespec t; int ret; mm_segment_t old_fs = get_fs (); if (get_user (t.tv_sec, &rqtp->tv_sec) || __get_user (t.tv_nsec, &rqtp->tv_nsec)) return -EFAULT; set_fs (KERNEL_DS); ret = sys_nanosleep(&t, rmtp ? &t : NULL); set_fs (old_fs); if (rmtp && ret == -EINTR) { if (__put_user (t.tv_sec, &rmtp->tv_sec) || __put_user (t.tv_nsec, &rmtp->tv_nsec)) return -EFAULT; } return ret; }