/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * r4xx0.c: R4000 processor variant specific MMU/Cache routines. * * Copyright (C) 1996 David S. Miller (dm@engr.sgi.com) * Copyright (C) 1997, 1998, 1999, 2000, 2001 Ralf Baechle (ralf@gnu.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. */ #include #include #include #include #include #include #include #include #include #include #include #include /* CP0 hazard avoidance. */ #define BARRIER __asm__ __volatile__(".set noreorder\n\t" \ "nop; nop; nop; nop; nop; nop;\n\t" \ ".set reorder\n\t") /* Primary cache parameters. */ static int icache_size, dcache_size; /* Size in bytes */ static int ic_lsize, dc_lsize; /* LineSize in bytes */ /* Secondary cache (if present) parameters. */ static unsigned int scache_size, sc_lsize; /* Again, in bytes */ #include #include #undef DEBUG_CACHE /* * Dummy cache handling routines for machines without boardcaches */ static void no_sc_noop(void) {} static struct bcache_ops no_sc_ops = { (void *)no_sc_noop, (void *)no_sc_noop, (void *)no_sc_noop, (void *)no_sc_noop }; struct bcache_ops *bcops = &no_sc_ops; /* * On processors with QED R4600 style two set assosicative cache * this is the bit which selects the way in the cache for the * indexed cachops. */ #define icache_waybit (icache_size >> 1) #define dcache_waybit (dcache_size >> 1) /* * Zero an entire page. Basically a simple unrolled loop should do the * job but we want more performance by saving memory bus bandwidth. We * have five flavours of the routine available for: * * - 16byte cachelines and no second level cache * - 32byte cachelines second level cache * - a version which handles the buggy R4600 v1.x * - a version which handles the buggy R4600 v2.0 * - Finally a last version without fancy cache games for the SC and MC * versions of R4000 and R4400. */ static void r4k_clear_page_d16(void * page) { __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tcache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "cache\t%3,16(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "daddiu\t%0,64\n\t" "cache\t%3,-32(%0)\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "cache\t%3,-16(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D) :"$1", "memory"); } static void r4k_clear_page_d32(void * page) { __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tcache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "daddiu\t%0,64\n\t" "cache\t%3,-32(%0)\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D) :"$1", "memory"); } /* * This flavour of r4k_clear_page is for the R4600 V1.x. Cite from the * IDT R4600 V1.7 errata: * * 18. The CACHE instructions Hit_Writeback_Invalidate_D, Hit_Writeback_D, * Hit_Invalidate_D and Create_Dirty_Excl_D should only be * executed if there is no other dcache activity. If the dcache is * accessed for another instruction immeidately preceding when these * cache instructions are executing, it is possible that the dcache * tag match outputs used by these cache instructions will be * incorrect. These cache instructions should be preceded by at least * four instructions that are not any kind of load or store * instruction. * * This is not allowed: lw * nop * nop * nop * cache Hit_Writeback_Invalidate_D * * This is allowed: lw * nop * nop * nop * nop * cache Hit_Writeback_Invalidate_D */ static void r4k_clear_page_r4600_v1(void * page) { __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tnop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "cache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "daddiu\t%0,64\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "cache\t%3,-32(%0)\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D) :"$1", "memory"); } /* * And this one is for the R4600 V2.0 */ static void r4k_clear_page_r4600_v2(void * page) { unsigned int flags; __save_and_cli(flags); *(volatile unsigned int *)KSEG1; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tcache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "daddiu\t%0,64\n\t" "cache\t%3,-32(%0)\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D) :"$1", "memory"); __restore_flags(flags); } /* * The next 4 versions are optimized for all possible scache configurations * of the SC / MC versions of R4000 and R4400 ... * * Todo: For even better performance we should have a routine optimized for * every legal combination of dcache / scache linesize. When I (Ralf) tried * this the kernel crashed shortly after mounting the root filesystem. CPU * bug? Weirdo cache instruction semantics? */ static void r4k_clear_page_s16(void * page) { __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tcache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "cache\t%3,16(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "daddiu\t%0,64\n\t" "cache\t%3,-32(%0)\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "cache\t%3,-16(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD) :"$1","memory"); } static void r4k_clear_page_s32(void * page) { __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tcache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "daddiu\t%0,64\n\t" "cache\t%3,-32(%0)\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD) :"$1","memory"); } static void r4k_clear_page_s64(void * page) { __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tcache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "daddiu\t%0,64\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD) :"$1","memory"); } static void r4k_clear_page_s128(void * page) { __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%2\n" "1:\tcache\t%3,(%0)\n\t" "sd\t$0,(%0)\n\t" "sd\t$0,8(%0)\n\t" "sd\t$0,16(%0)\n\t" "sd\t$0,24(%0)\n\t" "sd\t$0,32(%0)\n\t" "sd\t$0,40(%0)\n\t" "sd\t$0,48(%0)\n\t" "sd\t$0,56(%0)\n\t" "daddiu\t%0,128\n\t" "sd\t$0,-64(%0)\n\t" "sd\t$0,-56(%0)\n\t" "sd\t$0,-48(%0)\n\t" "sd\t$0,-40(%0)\n\t" "sd\t$0,-32(%0)\n\t" "sd\t$0,-24(%0)\n\t" "sd\t$0,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" "sd\t$0,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (page) :"0" (page), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD) :"$1", "memory"); } /* * This is still inefficient. We only can do better if we know the * virtual address where the copy will be accessed. */ static void r4k_copy_page_d16(void * to, void * from) { unsigned long dummy1, dummy2, reg1, reg2; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%6\n" "1:\tcache\t%7,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "cache\t%7,16(%0)\n\t" "ld\t%2,16(%1)\n\t" "ld\t%3,24(%1)\n\t" "sd\t%2,16(%0)\n\t" "sd\t%3,24(%0)\n\t" "cache\t%7,32(%0)\n\t" "daddiu\t%0,64\n\t" "daddiu\t%1,64\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "cache\t%7,-16(%0)\n\t" "ld\t%2,-16(%1)\n\t" "ld\t%3,-8(%1)\n\t" "sd\t%2,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%3,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D)); } static void r4k_copy_page_d32(void * to, void * from) { unsigned long dummy1, dummy2, reg1, reg2; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%6\n" "1:\tcache\t%7,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "ld\t%2,16(%1)\n\t" "ld\t%3,24(%1)\n\t" "sd\t%2,16(%0)\n\t" "sd\t%3,24(%0)\n\t" "cache\t%7,32(%0)\n\t" "daddiu\t%0,64\n\t" "daddiu\t%1,64\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "ld\t%2,-16(%1)\n\t" "ld\t%3,-8(%1)\n\t" "sd\t%2,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%3,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D)); } /* * Again a special version for the R4600 V1.x */ static void r4k_copy_page_r4600_v1(void * to, void * from) { unsigned long dummy1, dummy2, reg1, reg2; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%6\n" "1:\tnop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "\tcache\t%7,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "ld\t%2,16(%1)\n\t" "ld\t%3,24(%1)\n\t" "sd\t%2,16(%0)\n\t" "sd\t%3,24(%0)\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "cache\t%7,32(%0)\n\t" "daddiu\t%0,64\n\t" "daddiu\t%1,64\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "ld\t%2,-16(%1)\n\t" "ld\t%3,-8(%1)\n\t" "sd\t%2,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%3,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D)); } static void r4k_copy_page_r4600_v2(void * to, void * from) { unsigned long dummy1, dummy2, reg1, reg2; unsigned int flags; __save_and_cli(flags); __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%6\n" "1:\tnop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "\tcache\t%7,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "ld\t%2,16(%1)\n\t" "ld\t%3,24(%1)\n\t" "sd\t%2,16(%0)\n\t" "sd\t%3,24(%0)\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "nop\n\t" "cache\t%7,32(%0)\n\t" "daddiu\t%0,64\n\t" "daddiu\t%1,64\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "ld\t%2,-16(%1)\n\t" "ld\t%3,-8(%1)\n\t" "sd\t%2,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%3,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_D)); __restore_flags(flags); } /* * These are for R4000SC / R4400MC */ static void r4k_copy_page_s16(void * to, void * from) { unsigned long dummy1, dummy2, reg1, reg2; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%6\n" "1:\tcache\t%7,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "cache\t%7,16(%0)\n\t" "ld\t%2,16(%1)\n\t" "ld\t%3,24(%1)\n\t" "sd\t%2,16(%0)\n\t" "sd\t%3,24(%0)\n\t" "cache\t%7,32(%0)\n\t" "daddiu\t%0,64\n\t" "daddiu\t%1,64\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "cache\t%7,-16(%0)\n\t" "ld\t%2,-16(%1)\n\t" "ld\t%3,-8(%1)\n\t" "sd\t%2,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%3,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD)); } static void r4k_copy_page_s32(void * to, void * from) { unsigned long dummy1, dummy2, reg1, reg2; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%6\n" "1:\tcache\t%7,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "ld\t%2,16(%1)\n\t" "ld\t%3,24(%1)\n\t" "sd\t%2,16(%0)\n\t" "sd\t%3,24(%0)\n\t" "cache\t%7,32(%0)\n\t" "daddiu\t%0,64\n\t" "daddiu\t%1,64\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "ld\t%2,-16(%1)\n\t" "ld\t%3,-8(%1)\n\t" "sd\t%2,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%3,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD)); } static void r4k_copy_page_s64(void * to, void * from) { unsigned long dummy1, dummy2, reg1, reg2; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%6\n" "1:\tcache\t%7,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "ld\t%2,16(%1)\n\t" "ld\t%3,24(%1)\n\t" "sd\t%2,16(%0)\n\t" "sd\t%3,24(%0)\n\t" "daddiu\t%0,64\n\t" "daddiu\t%1,64\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "ld\t%2,-16(%1)\n\t" "ld\t%3,-8(%1)\n\t" "sd\t%2,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%3,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD)); } static void r4k_copy_page_s128(void * to, void * from) { unsigned long dummy1, dummy2; unsigned long reg1, reg2, reg3, reg4; __asm__ __volatile__( ".set\tnoreorder\n\t" ".set\tnoat\n\t" "daddiu\t$1,%0,%8\n" "1:\tcache\t%9,(%0)\n\t" "ld\t%2,(%1)\n\t" "ld\t%3,8(%1)\n\t" "ld\t%4,16(%1)\n\t" "ld\t%5,24(%1)\n\t" "sd\t%2,(%0)\n\t" "sd\t%3,8(%0)\n\t" "sd\t%4,16(%0)\n\t" "sd\t%5,24(%0)\n\t" "ld\t%2,32(%1)\n\t" "ld\t%3,40(%1)\n\t" "ld\t%4,48(%1)\n\t" "ld\t%5,56(%1)\n\t" "sd\t%2,32(%0)\n\t" "sd\t%3,40(%0)\n\t" "sd\t%4,48(%0)\n\t" "sd\t%5,56(%0)\n\t" "daddiu\t%0,128\n\t" "daddiu\t%1,128\n\t" "ld\t%2,-64(%1)\n\t" "ld\t%3,-56(%1)\n\t" "ld\t%4,-48(%1)\n\t" "ld\t%5,-40(%1)\n\t" "sd\t%2,-64(%0)\n\t" "sd\t%3,-56(%0)\n\t" "sd\t%4,-48(%0)\n\t" "sd\t%5,-40(%0)\n\t" "ld\t%2,-32(%1)\n\t" "ld\t%3,-24(%1)\n\t" "ld\t%4,-16(%1)\n\t" "ld\t%5,-8(%1)\n\t" "sd\t%2,-32(%0)\n\t" "sd\t%3,-24(%0)\n\t" "sd\t%4,-16(%0)\n\t" "bne\t$1,%0,1b\n\t" " sd\t%5,-8(%0)\n\t" ".set\tat\n\t" ".set\treorder" :"=r" (dummy1), "=r" (dummy2), "=&r" (reg1), "=&r" (reg2), "=&r" (reg3), "=&r" (reg4) :"0" (to), "1" (from), "I" (PAGE_SIZE), "i" (Create_Dirty_Excl_SD)); } /* * If you think for one second that this stuff coming up is a lot * of bulky code eating too many kernel cache lines. Think _again_. * * Consider: * 1) Taken branches have a 3 cycle penalty on R4k * 2) The branch itself is a real dead cycle on even R4600/R5000. * 3) Only one of the following variants of each type is even used by * the kernel based upon the cache parameters we detect at boot time. * * QED. */ static inline void r4k_flush_cache_all_s16d16i16(void) { unsigned long flags; __save_and_cli(flags); blast_dcache16(); blast_icache16(); blast_scache16(); __restore_flags(flags); } static inline void r4k_flush_cache_all_s32d16i16(void) { unsigned long flags; __save_and_cli(flags); blast_dcache16(); blast_icache16(); blast_scache32(); __restore_flags(flags); } static inline void r4k_flush_cache_all_s64d16i16(void) { unsigned long flags; __save_and_cli(flags); blast_dcache16(); blast_icache16(); blast_scache64(); __restore_flags(flags); } static inline void r4k_flush_cache_all_s128d16i16(void) { unsigned long flags; __save_and_cli(flags); blast_dcache16(); blast_icache16(); blast_scache128(); __restore_flags(flags); } static inline void r4k_flush_cache_all_s32d32i32(void) { unsigned long flags; __save_and_cli(flags); blast_dcache32(); blast_icache32(); blast_scache32(); __restore_flags(flags); } static inline void r4k_flush_cache_all_s64d32i32(void) { unsigned long flags; __save_and_cli(flags); blast_dcache32(); blast_icache32(); blast_scache64(); __restore_flags(flags); } static inline void r4k_flush_cache_all_s128d32i32(void) { unsigned long flags; __save_and_cli(flags); blast_dcache32(); blast_icache32(); blast_scache128(); __restore_flags(flags); } static inline void r4k_flush_cache_all_d16i16(void) { unsigned long flags; __save_and_cli(flags); blast_dcache16(); blast_icache16(); __restore_flags(flags); } static inline void r4k_flush_cache_all_d32i32(void) { unsigned long flags; __save_and_cli(flags); blast_dcache32(); blast_icache32(); __restore_flags(flags); } static void r4k_flush_cache_range_s16d16i16(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { r4k_flush_cache_all_s16d16i16(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache16_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void r4k_flush_cache_range_s32d16i16(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { r4k_flush_cache_all_s32d16i16(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache32_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void r4k_flush_cache_range_s64d16i16(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { r4k_flush_cache_all_s64d16i16(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache64_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void r4k_flush_cache_range_s128d16i16(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { r4k_flush_cache_all_s128d16i16(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache128_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void r4k_flush_cache_range_s32d32i32(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { r4k_flush_cache_all_s32d32i32(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache32_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void r4k_flush_cache_range_s64d32i32(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { r4k_flush_cache_all_s64d32i32(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache64_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void r4k_flush_cache_range_s128d32i32(struct mm_struct *mm, unsigned long start, unsigned long end) { struct vm_area_struct *vma; unsigned long flags; if (CPU_CONTEXT(smp_processor_id(), mm) != 0) return; start &= PAGE_MASK; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif vma = find_vma(mm, start); if(vma) { if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { r4k_flush_cache_all_s128d32i32(); } else { pgd_t *pgd; pmd_t *pmd; pte_t *pte; __save_and_cli(flags); while(start < end) { pgd = pgd_offset(mm, start); pmd = pmd_offset(pgd, start); pte = pte_offset(pmd, start); if(pte_val(*pte) & _PAGE_VALID) blast_scache128_page(start); start += PAGE_SIZE; } __restore_flags(flags); } } } static void r4k_flush_cache_range_d16i16(struct mm_struct *mm, unsigned long start, unsigned long end) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { unsigned long flags; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif __save_and_cli(flags); blast_dcache16(); blast_icache16(); __restore_flags(flags); } } static void r4k_flush_cache_range_d32i32(struct mm_struct *mm, unsigned long start, unsigned long end) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { unsigned long flags; #ifdef DEBUG_CACHE printk("crange[%d,%08lx,%08lx]", (int)mm->context, start, end); #endif __save_and_cli(flags); blast_dcache32(); blast_icache32(); __restore_flags(flags); } } /* * On architectures like the Sparc, we could get rid of lines in * the cache created only by a certain context, but on the MIPS * (and actually certain Sparc's) we cannot. */ static void r4k_flush_cache_mm_s16d16i16(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_s16d16i16(); } } static void r4k_flush_cache_mm_s32d16i16(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_s32d16i16(); } } static void r4k_flush_cache_mm_s64d16i16(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_s64d16i16(); } } static void r4k_flush_cache_mm_s128d16i16(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_s128d16i16(); } } static void r4k_flush_cache_mm_s32d32i32(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_s32d32i32(); } } static void r4k_flush_cache_mm_s64d32i32(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_s64d32i32(); } } static void r4k_flush_cache_mm_s128d32i32(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_s128d32i32(); } } static void r4k_flush_cache_mm_d16i16(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_d16i16(); } } static void r4k_flush_cache_mm_d32i32(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { #ifdef DEBUG_CACHE printk("cmm[%d]", (int)mm->context); #endif r4k_flush_cache_all_d32i32(); } } static void r4k_flush_cache_page_s16d16i16(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache16_page_indexed(page); blast_scache16_page_indexed(page); } else blast_scache16_page(page); out: __restore_flags(flags); } static void r4k_flush_cache_page_s32d16i16(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache16_page_indexed(page); blast_scache32_page_indexed(page); } else blast_scache32_page(page); out: __restore_flags(flags); } static void r4k_flush_cache_page_s64d16i16(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache16_page_indexed(page); blast_scache64_page_indexed(page); } else blast_scache64_page(page); out: __restore_flags(flags); } static void r4k_flush_cache_page_s128d16i16(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { /* * Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache16_page_indexed(page); blast_scache128_page_indexed(page); } else blast_scache128_page(page); out: __restore_flags(flags); } static void r4k_flush_cache_page_s32d32i32(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { /* * Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache32_page_indexed(page); blast_scache32_page_indexed(page); } else blast_scache32_page(page); out: __restore_flags(flags); } static void r4k_flush_cache_page_s64d32i32(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { /* * Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache32_page_indexed(page); blast_scache64_page_indexed(page); } else blast_scache64_page(page); out: __restore_flags(flags); } static void r4k_flush_cache_page_s128d32i32(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if (CPU_CONTEXT(smp_processor_id(), mm) != CPU_CONTEXT(smp_processor_id(), current->mm)) { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (scache_size - 1))); blast_dcache32_page_indexed(page); blast_scache128_page_indexed(page); } else blast_scache128_page(page); out: __restore_flags(flags); } static void r4k_flush_cache_page_d16i16(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_VALID)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if(mm == current->mm) { blast_dcache16_page(page); } else { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (dcache_size - 1))); blast_dcache16_page_indexed(page); } out: __restore_flags(flags); } static void r4k_flush_cache_page_d32i32(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_PRESENT)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if((mm == current->mm) && (pte_val(*ptep) & _PAGE_VALID)) { blast_dcache32_page(page); } else { /* * Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (dcache_size - 1))); blast_dcache32_page_indexed(page); } out: __restore_flags(flags); } static void r4k_flush_cache_page_d32i32_r4600(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; /* * If ownes no valid ASID yet, cannot possibly have gotten * this page into the cache. */ if (CPU_CONTEXT(smp_processor_id(), mm) == 0) return; #ifdef DEBUG_CACHE printk("cpage[%d,%08lx]", (int)mm->context, page); #endif __save_and_cli(flags); page &= PAGE_MASK; pgdp = pgd_offset(mm, page); pmdp = pmd_offset(pgdp, page); ptep = pte_offset(pmdp, page); /* * If the page isn't marked valid, the page cannot possibly be * in the cache. */ if(!(pte_val(*ptep) & _PAGE_PRESENT)) goto out; /* * Doing flushes for another ASID than the current one is * too difficult since stupid R4k caches do a TLB translation * for every cache flush operation. So we do indexed flushes * in that case, which doesn't overly flush the cache too much. */ if((mm == current->mm) && (pte_val(*ptep) & _PAGE_VALID)) { blast_dcache32_page(page); } else { /* Do indexed flush, too much work to get the (possible) * tlb refills to work correctly. */ page = (KSEG0 + (page & (dcache_size - 1))); blast_dcache32_page_indexed(page); blast_dcache32_page_indexed(page ^ dcache_waybit); } out: __restore_flags(flags); } static void r4k_flush_page_to_ram_s16(struct page *page) { blast_scache16_page((unsigned long)page_address(page)); } static void r4k_flush_page_to_ram_s32(struct page *page) { blast_scache32_page((unsigned long)page_address(page)); } static void r4k_flush_page_to_ram_s64(struct page *page) { blast_scache64_page((unsigned long)page_address(page)); } static void r4k_flush_page_to_ram_s128(struct page *page) { blast_scache128_page((unsigned long)page_address(page)); } static void r4k_flush_page_to_ram_d16(struct page *page) { unsigned long flags; __save_and_cli(flags); blast_dcache16_page((unsigned long)page_address(page)); __restore_flags(flags); } static void r4k_flush_page_to_ram_d32(struct page *page) { unsigned long flags; __save_and_cli(flags); blast_dcache32_page((unsigned long)page_address(page)); __restore_flags(flags); } /* * Writeback and invalidate the primary cache dcache before DMA. * * R4600 v2.0 bug: "The CACHE instructions Hit_Writeback_Inv_D, * Hit_Writeback_D, Hit_Invalidate_D and Create_Dirty_Exclusive_D will only * operate correctly if the internal data cache refill buffer is empty. These * CACHE instructions should be separated from any potential data cache miss * by a load instruction to an uncached address to empty the response buffer." * (Revision 2.0 device errata from IDT available on http://www.idt.com/ * in .pdf format.) */ static void r4k_dma_cache_wback_inv_pc(unsigned long addr, unsigned long size) { unsigned long end, a; unsigned int flags; if (size >= (unsigned long)dcache_size) { flush_cache_l1(); } else { /* Workaround for R4600 bug. See comment above. */ __save_and_cli(flags); *(volatile unsigned long *)KSEG1; a = addr & ~((unsigned long)dc_lsize - 1); end = (addr + size) & ~((unsigned long)dc_lsize - 1); while (1) { flush_dcache_line(a); /* Hit_Writeback_Inv_D */ if (a == end) break; a += dc_lsize; } __restore_flags(flags); } bc_wback_inv(addr, size); } static void r4k_dma_cache_wback_inv_sc(unsigned long addr, unsigned long size) { unsigned long end, a; if (size >= (unsigned long)scache_size) { flush_cache_l1(); return; } a = addr & ~((unsigned long)sc_lsize - 1); end = (addr + size) & ~((unsigned long)sc_lsize - 1); while (1) { flush_scache_line(a); /* Hit_Writeback_Inv_SD */ if (a == end) break; a += sc_lsize; } } static void r4k_dma_cache_inv_pc(unsigned long addr, unsigned long size) { unsigned long end, a; unsigned int flags; if (size >= (unsigned long)dcache_size) { flush_cache_l1(); } else { /* Workaround for R4600 bug. See comment above. */ __save_and_cli(flags); *(volatile unsigned long *)KSEG1; a = addr & ~((unsigned long)dc_lsize - 1); end = (addr + size) & ~((unsigned long)dc_lsize - 1); while (1) { flush_dcache_line(a); /* Hit_Writeback_Inv_D */ if (a == end) break; a += dc_lsize; } __restore_flags(flags); } bc_inv(addr, size); } static void r4k_dma_cache_inv_sc(unsigned long addr, unsigned long size) { unsigned long end, a; if (size >= (unsigned long)scache_size) { flush_cache_l1(); return; } a = addr & ~((unsigned long)sc_lsize - 1); end = (addr + size) & ~((unsigned long)sc_lsize - 1); while (1) { flush_scache_line(a); /* Hit_Writeback_Inv_SD */ if (a == end) break; a += sc_lsize; } } static void r4k_dma_cache_wback(unsigned long addr, unsigned long size) { panic("r4k_dma_cache called - should not happen.\n"); } /* * While we're protected against bad userland addresses we don't care * very much about what happens in that case. Usually a segmentation * fault will dump the process later on anyway ... */ static void r4k_flush_cache_sigtramp(unsigned long addr) { unsigned long daddr, iaddr; daddr = addr & ~((unsigned long)dc_lsize - 1); __asm__ __volatile__("nop;nop;nop;nop"); /* R4600 V1.7 */ protected_writeback_dcache_line(daddr); protected_writeback_dcache_line(daddr + dc_lsize); iaddr = addr & ~((unsigned long)ic_lsize - 1); protected_flush_icache_line(iaddr); protected_flush_icache_line(iaddr + ic_lsize); } static void r4600v20k_flush_cache_sigtramp(unsigned long addr) { unsigned long daddr, iaddr; unsigned int flags; daddr = addr & ~((unsigned long)dc_lsize - 1); __save_and_cli(flags); /* Clear internal cache refill buffer */ *(volatile unsigned int *)KSEG1; protected_writeback_dcache_line(daddr); protected_writeback_dcache_line(daddr + dc_lsize); iaddr = addr & ~((unsigned long)ic_lsize - 1); protected_flush_icache_line(iaddr); protected_flush_icache_line(iaddr + ic_lsize); __restore_flags(flags); } #undef DEBUG_TLB #define NTLB_ENTRIES 48 /* Fixed on all R4XX0 variants... */ #define NTLB_ENTRIES_HALF 24 /* Fixed on all R4XX0 variants... */ static inline void r4k_flush_tlb_all(void) { unsigned long flags; unsigned long old_ctx; int entry; #ifdef DEBUG_TLB printk("[tlball]"); #endif __save_and_cli(flags); /* Save old context and create impossible VPN2 value */ old_ctx = (get_entryhi() & 0xff); set_entryhi(KSEG0); set_entrylo0(0); set_entrylo1(0); BARRIER; entry = get_wired(); /* Blast 'em all away. */ while(entry < NTLB_ENTRIES) { set_index(entry); BARRIER; tlb_write_indexed(); BARRIER; entry++; } BARRIER; set_entryhi(old_ctx); __restore_flags(flags); } static void r4k_flush_tlb_mm(struct mm_struct *mm) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { unsigned long flags; #ifdef DEBUG_TLB printk("[tlbmm<%d>]", mm->context); #endif __save_and_cli(flags); get_new_cpu_mmu_context(mm, smp_processor_id()); if(mm == current->mm) set_entryhi(CPU_CONTEXT(smp_processor_id(), mm) & 0xff); __restore_flags(flags); } } static void r4k_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if (CPU_CONTEXT(smp_processor_id(), mm) != 0) { unsigned long flags; int size; #ifdef DEBUG_TLB printk("[tlbrange<%02x,%08lx,%08lx>]", (mm->context & 0xff), start, end); #endif __save_and_cli(flags); size = (end - start + (PAGE_SIZE - 1)) >> PAGE_SHIFT; size = (size + 1) >> 1; if(size <= NTLB_ENTRIES_HALF) { int oldpid = (get_entryhi() & 0xff); int newpid = (CPU_CONTEXT(smp_processor_id(), mm) & 0xff); start &= (PAGE_MASK << 1); end += ((PAGE_SIZE << 1) - 1); end &= (PAGE_MASK << 1); while(start < end) { int idx; set_entryhi(start | newpid); start += (PAGE_SIZE << 1); BARRIER; tlb_probe(); BARRIER; idx = get_index(); set_entrylo0(0); set_entrylo1(0); set_entryhi(KSEG0); BARRIER; if(idx < 0) continue; tlb_write_indexed(); BARRIER; } set_entryhi(oldpid); } else { get_new_cpu_mmu_context(mm, smp_processor_id()); if(mm == current->mm) set_entryhi(CPU_CONTEXT(smp_processor_id(), mm) & 0xff); } __restore_flags(flags); } } static void r4k_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { if (CPU_CONTEXT(smp_processor_id(), vma->vm_mm) != 0) { unsigned long flags; int oldpid, newpid, idx; #ifdef DEBUG_TLB printk("[tlbpage<%d,%08lx>]", vma->vm_mm->context, page); #endif newpid = (CPU_CONTEXT(smp_processor_id(), vma->vm_mm) & 0xff); page &= (PAGE_MASK << 1); __save_and_cli(flags); oldpid = (get_entryhi() & 0xff); set_entryhi(page | newpid); BARRIER; tlb_probe(); BARRIER; idx = get_index(); set_entrylo0(0); set_entrylo1(0); set_entryhi(KSEG0); if(idx < 0) goto finish; BARRIER; tlb_write_indexed(); finish: BARRIER; set_entryhi(oldpid); __restore_flags(flags); } } static void r4k_flush_cache_l2(void) { } /* We will need multiple versions of update_mmu_cache(), one that just * updates the TLB with the new pte(s), and another which also checks * for the R4k "end of page" hardware bug and does the needy. */ static void r4k_update_mmu_cache(struct vm_area_struct * vma, unsigned long address, pte_t pte) { unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; int idx, pid; /* * Handle debugger faulting in for debugee. */ if (current->active_mm != vma->vm_mm) return; __save_and_cli(flags); pid = (get_entryhi() & 0xff); #ifdef DEBUG_TLB if((pid != (CPU_CONTEXT(smp_processor_id(), vma->vm_mm) & 0xff)) || (CPU_CONTEXT(smp_processor_id(), vma->vm_mm) == 0)) { printk("update_mmu_cache: Wheee, bogus tlbpid mmpid=%d tlbpid=%d\n", (int) (CPU_CONTEXT(smp_processor_id(), vma->vm_mm) & 0xff), pid); } #endif address &= (PAGE_MASK << 1); set_entryhi(address | (pid)); pgdp = pgd_offset(vma->vm_mm, address); BARRIER; tlb_probe(); BARRIER; pmdp = pmd_offset(pgdp, address); idx = get_index(); ptep = pte_offset(pmdp, address); BARRIER; set_entrylo0(pte_val(*ptep++) >> 6); set_entrylo1(pte_val(*ptep) >> 6); set_entryhi(address | (pid)); BARRIER; if(idx < 0) { tlb_write_random(); } else { tlb_write_indexed(); } BARRIER; set_entryhi(pid); BARRIER; __restore_flags(flags); } #if 0 static void r4k_update_mmu_cache_hwbug(struct vm_area_struct * vma, unsigned long address, pte_t pte) { unsigned long flags; pgd_t *pgdp; pmd_t *pmdp; pte_t *ptep; int idx; __save_and_cli(flags); address &= (PAGE_MASK << 1); set_entryhi(address | (get_entryhi() & 0xff)); pgdp = pgd_offset(vma->vm_mm, address); tlb_probe(); pmdp = pmd_offset(pgdp, address); idx = get_index(); ptep = pte_offset(pmdp, address); set_entrylo0(pte_val(*ptep++) >> 6); set_entrylo1(pte_val(*ptep) >> 6); BARRIER; if(idx < 0) tlb_write_random(); else tlb_write_indexed(); BARRIER; __restore_flags(flags); } #endif static void r4k_show_regs(struct pt_regs *regs) { /* Saved main processor registers. */ printk("$0 : %016lx %016lx %016lx %016lx\n", 0UL, regs->regs[1], regs->regs[2], regs->regs[3]); printk("$4 : %016lx %016lx %016lx %016lx\n", regs->regs[4], regs->regs[5], regs->regs[6], regs->regs[7]); printk("$8 : %016lx %016lx %016lx %016lx\n", regs->regs[8], regs->regs[9], regs->regs[10], regs->regs[11]); printk("$12 : %016lx %016lx %016lx %016lx\n", regs->regs[12], regs->regs[13], regs->regs[14], regs->regs[15]); printk("$16 : %016lx %016lx %016lx %016lx\n", regs->regs[16], regs->regs[17], regs->regs[18], regs->regs[19]); printk("$20 : %016lx %016lx %016lx %016lx\n", regs->regs[20], regs->regs[21], regs->regs[22], regs->regs[23]); printk("$24 : %016lx %016lx\n", regs->regs[24], regs->regs[25]); printk("$28 : %016lx %016lx %016lx %016lx\n", regs->regs[28], regs->regs[29], regs->regs[30], regs->regs[31]); printk("Hi : %016lx\n", regs->hi); printk("Lo : %016lx\n", regs->lo); /* Saved cp0 registers. */ printk("epc : %016lx\nbadvaddr: %016lx\n", regs->cp0_epc, regs->cp0_badvaddr); printk("Status : %08x\nCause : %08x\n", (unsigned int) regs->cp0_status, (unsigned int) regs->cp0_cause); } /* Detect and size the various r4k caches. */ static void __init probe_icache(unsigned long config) { icache_size = 1 << (12 + ((config >> 9) & 7)); ic_lsize = 16 << ((config >> 5) & 1); printk("Primary instruction cache %dkb, linesize %d bytes)\n", icache_size >> 10, ic_lsize); } static void __init probe_dcache(unsigned long config) { dcache_size = 1 << (12 + ((config >> 6) & 7)); dc_lsize = 16 << ((config >> 4) & 1); printk("Primary data cache %dkb, linesize %d bytes)\n", dcache_size >> 10, dc_lsize); } /* If you even _breathe_ on this function, look at the gcc output * and make sure it does not pop things on and off the stack for * the cache sizing loop that executes in KSEG1 space or else * you will crash and burn badly. You have been warned. */ static int __init probe_scache(unsigned long config) { extern unsigned long stext; unsigned long flags, addr, begin, end, pow2; int tmp; tmp = ((config >> 17) & 1); if(tmp) return 0; tmp = ((config >> 22) & 3); switch(tmp) { case 0: sc_lsize = 16; break; case 1: sc_lsize = 32; break; case 2: sc_lsize = 64; break; case 3: sc_lsize = 128; break; } begin = (unsigned long) &stext; begin &= ~((4 * 1024 * 1024) - 1); end = begin + (4 * 1024 * 1024); /* This is such a bitch, you'd think they would make it * easy to do this. Away you daemons of stupidity! */ __save_and_cli(flags); /* Fill each size-multiple cache line with a valid tag. */ pow2 = (64 * 1024); for(addr = begin; addr < end; addr = (begin + pow2)) { unsigned long *p = (unsigned long *) addr; __asm__ __volatile__("nop" : : "r" (*p)); /* whee... */ pow2 <<= 1; } /* Load first line with zero (therefore invalid) tag. */ set_taglo(0); set_taghi(0); __asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */ __asm__ __volatile__("\n\t.set noreorder\n\t" "cache 8, (%0)\n\t" ".set reorder\n\t" : : "r" (begin)); __asm__ __volatile__("\n\t.set noreorder\n\t" "cache 9, (%0)\n\t" ".set reorder\n\t" : : "r" (begin)); __asm__ __volatile__("\n\t.set noreorder\n\t" "cache 11, (%0)\n\t" ".set reorder\n\t" : : "r" (begin)); /* Now search for the wrap around point. */ pow2 = (128 * 1024); tmp = 0; for(addr = (begin + (128 * 1024)); addr < (end); addr = (begin + pow2)) { __asm__ __volatile__("\n\t.set noreorder\n\t" "cache 7, (%0)\n\t" ".set reorder\n\t" : : "r" (addr)); __asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */ if(!get_taglo()) break; pow2 <<= 1; } __restore_flags(flags); addr -= begin; printk("Secondary cache sized at %dK linesize %d\n", (int) (addr >> 10), sc_lsize); scache_size = addr; return 1; } static void __init setup_noscache_funcs(void) { unsigned int prid; switch(dc_lsize) { case 16: _clear_page = r4k_clear_page_d16; _copy_page = r4k_copy_page_d16; _flush_cache_l1 = r4k_flush_cache_all_d16i16; _flush_cache_mm = r4k_flush_cache_mm_d16i16; _flush_cache_range = r4k_flush_cache_range_d16i16; _flush_cache_page = r4k_flush_cache_page_d16i16; break; case 32: prid = read_32bit_cp0_register(CP0_PRID) & 0xfff0; if (prid == 0x2010) { /* R4600 V1.7 */ _clear_page = r4k_clear_page_r4600_v1; _copy_page = r4k_copy_page_r4600_v1; } else if (prid == 0x2020) { /* R4600 V2.0 */ _clear_page = r4k_clear_page_r4600_v2; _copy_page = r4k_copy_page_r4600_v2; } else { _clear_page = r4k_clear_page_d32; _copy_page = r4k_copy_page_d32; } _flush_cache_l1 = r4k_flush_cache_all_d32i32; _flush_cache_mm = r4k_flush_cache_mm_d32i32; _flush_cache_range = r4k_flush_cache_range_d32i32; _flush_cache_page = r4k_flush_cache_page_d32i32; break; } switch(ic_lsize) { case 16: _flush_page_to_ram = r4k_flush_page_to_ram_d16; break; case 32: _flush_page_to_ram = r4k_flush_page_to_ram_d32; break; } _dma_cache_wback_inv = r4k_dma_cache_wback_inv_pc; _dma_cache_wback = r4k_dma_cache_wback; _dma_cache_inv = r4k_dma_cache_inv_pc; } static void __init setup_scache_funcs(void) { switch(sc_lsize) { case 16: switch(dc_lsize) { case 16: _flush_cache_l1 = r4k_flush_cache_all_s16d16i16; _flush_cache_mm = r4k_flush_cache_mm_s16d16i16; _flush_cache_range = r4k_flush_cache_range_s16d16i16; _flush_cache_page = r4k_flush_cache_page_s16d16i16; break; case 32: panic("Invalid cache configuration detected"); }; _flush_page_to_ram = r4k_flush_page_to_ram_s16; _clear_page = r4k_clear_page_s16; _copy_page = r4k_copy_page_s16; break; case 32: switch(dc_lsize) { case 16: _flush_cache_l1 = r4k_flush_cache_all_s32d16i16; _flush_cache_mm = r4k_flush_cache_mm_s32d16i16; _flush_cache_range = r4k_flush_cache_range_s32d16i16; _flush_cache_page = r4k_flush_cache_page_s32d16i16; break; case 32: _flush_cache_l1 = r4k_flush_cache_all_s32d32i32; _flush_cache_mm = r4k_flush_cache_mm_s32d32i32; _flush_cache_range = r4k_flush_cache_range_s32d32i32; _flush_cache_page = r4k_flush_cache_page_s32d32i32; break; }; _flush_page_to_ram = r4k_flush_page_to_ram_s32; _clear_page = r4k_clear_page_s32; _copy_page = r4k_copy_page_s32; break; case 64: switch(dc_lsize) { case 16: _flush_cache_l1 = r4k_flush_cache_all_s64d16i16; _flush_cache_mm = r4k_flush_cache_mm_s64d16i16; _flush_cache_range = r4k_flush_cache_range_s64d16i16; _flush_cache_page = r4k_flush_cache_page_s64d16i16; break; case 32: _flush_cache_l1 = r4k_flush_cache_all_s64d32i32; _flush_cache_mm = r4k_flush_cache_mm_s64d32i32; _flush_cache_range = r4k_flush_cache_range_s64d32i32; _flush_cache_page = r4k_flush_cache_page_s64d32i32; break; }; _flush_page_to_ram = r4k_flush_page_to_ram_s64; _clear_page = r4k_clear_page_s64; _copy_page = r4k_copy_page_s64; break; case 128: switch(dc_lsize) { case 16: _flush_cache_l1 = r4k_flush_cache_all_s128d16i16; _flush_cache_mm = r4k_flush_cache_mm_s128d16i16; _flush_cache_range = r4k_flush_cache_range_s128d16i16; _flush_cache_page = r4k_flush_cache_page_s128d16i16; break; case 32: _flush_cache_l1 = r4k_flush_cache_all_s128d32i32; _flush_cache_mm = r4k_flush_cache_mm_s128d32i32; _flush_cache_range = r4k_flush_cache_range_s128d32i32; _flush_cache_page = r4k_flush_cache_page_s128d32i32; break; }; _flush_page_to_ram = r4k_flush_page_to_ram_s128; _clear_page = r4k_clear_page_s128; _copy_page = r4k_copy_page_s128; break; } _dma_cache_wback_inv = r4k_dma_cache_wback_inv_sc; _dma_cache_wback = r4k_dma_cache_wback; _dma_cache_inv = r4k_dma_cache_inv_sc; } typedef int (*probe_func_t)(unsigned long); static inline void __init setup_scache(unsigned int config) { probe_func_t probe_scache_kseg1; int sc_present = 0; /* Maybe the cpu knows about a l2 cache? */ probe_scache_kseg1 = (probe_func_t) (KSEG1ADDR(&probe_scache)); sc_present = probe_scache_kseg1(config); if (sc_present) { setup_scache_funcs(); return; } setup_noscache_funcs(); } void __init ld_mmu_r4xx0(void) { unsigned long config = read_32bit_cp0_register(CP0_CONFIG); printk("CPU revision is: %08x\n", read_32bit_cp0_register(CP0_PRID)); #ifdef CONFIG_MIPS_UNCACHED set_cp0_config(CONF_CM_CMASK, CONF_CM_UNCACHED); #else set_cp0_config(CONF_CM_CMASK, CONF_CM_CACHABLE_NONCOHERENT); #endif /* UNCACHED */ probe_icache(config); probe_dcache(config); setup_scache(config); switch(mips_cputype) { case CPU_R4600: /* QED style two way caches? */ case CPU_R4700: case CPU_R5000: case CPU_NEVADA: _flush_cache_page = r4k_flush_cache_page_d32i32_r4600; } _flush_cache_sigtramp = r4k_flush_cache_sigtramp; if ((read_32bit_cp0_register(CP0_PRID) & 0xfff0) == 0x2020) { _flush_cache_sigtramp = r4600v20k_flush_cache_sigtramp; } _flush_tlb_all = r4k_flush_tlb_all; _flush_tlb_mm = r4k_flush_tlb_mm; _flush_tlb_range = r4k_flush_tlb_range; _flush_tlb_page = r4k_flush_tlb_page; _flush_cache_l2 = r4k_flush_cache_l2; update_mmu_cache = r4k_update_mmu_cache; _show_regs = r4k_show_regs; flush_cache_l1(); /* * You should never change this register: * - On R4600 1.7 the tlbp never hits for pages smaller than * the value in the c0_pagemask register. * - The entire mm handling assumes the c0_pagemask register to * be set for 4kb pages. */ write_32bit_cp0_register(CP0_PAGEMASK, PM_4K); _flush_tlb_all(); }