/* ** ccio-dma.c: ** DMA management routines for first generation cache-coherent machines. ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU. ** ** (c) Copyright 2000 Grant Grundler ** (c) Copyright 2000 Ryan Bradetich ** (c) Copyright 2000 Hewlett-Packard Company ** ** This program is free software; you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation; either version 2 of the License, or ** (at your option) any later version. ** ** ** "Real Mode" operation refers to U2/Uturn chip operation. ** U2/Uturn were designed to perform coherency checks w/o using ** the I/O MMU - basically what x86 does. ** ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at: ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c ** ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c. ** ** Drawbacks of using Real Mode are: ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal). ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute. ** o Ability to do scatter/gather in HW is lost. ** o Doesn't work under PCX-U/U+ machines since they didn't follow ** the coherency design originally worked out. Only PCX-W does. */ #include #include #include #include #include #include #include #include #include #include /* for L1_CACHE_BYTES */ #include #include #include #include #include /* for gsc_writeN()... */ /* ** Choose "ccio" since that's what HP-UX calls it. ** Make it easier for folks to migrate from one to the other :^) */ #define MODULE_NAME "ccio" /* #define DEBUG_CCIO_RES #define DEBUG_CCIO_RUN #define DEBUG_CCIO_INIT #define DUMP_RESMAP */ #include #include /* for proc_runway_root */ #ifdef DEBUG_CCIO_INIT #define DBG_INIT(x...) printk(x) #else #define DBG_INIT(x...) #endif #ifdef DEBUG_CCIO_RUN #define DBG_RUN(x...) printk(x) #else #define DBG_RUN(x...) #endif #ifdef DEBUG_CCIO_RES #define DBG_RES(x...) printk(x) #else #define DBG_RES(x...) #endif #define CCIO_INLINE /* inline */ #define WRITE_U32(value, addr) gsc_writel(value, (u32 *) (addr)) #define U2_IOA_RUNWAY 0x580 #define U2_BC_GSC 0x501 #define UTURN_IOA_RUNWAY 0x581 #define UTURN_BC_GSC 0x502 /* We *can't* support JAVA (T600). Venture there at your own risk. */ static void dump_resmap(void); static int ccio_driver_callback(struct hp_device *, struct pa_iodc_driver *); static struct pa_iodc_driver ccio_drivers_for[] = { {HPHW_IOA, U2_IOA_RUNWAY, 0x0, 0xb, 0, 0x10, DRIVER_CHECK_HVERSION + DRIVER_CHECK_SVERSION + DRIVER_CHECK_HWTYPE, MODULE_NAME, "U2 I/O MMU", (void *) ccio_driver_callback}, {HPHW_IOA, UTURN_IOA_RUNWAY, 0x0, 0xb, 0, 0x10, DRIVER_CHECK_HVERSION + DRIVER_CHECK_SVERSION + DRIVER_CHECK_HWTYPE, MODULE_NAME, "Uturn I/O MMU", (void *) ccio_driver_callback}, /* ** FIXME: The following claims the GSC bus port, not the IOA. ** And there are two busses below a single I/O TLB. ** ** These should go away once we have a real PA bus walk. ** Firmware wants to tell the PA bus walk code about the GSC ports ** since they are not "architected" PA I/O devices. Ie a PA bus walk ** wouldn't discover them. But the PA bus walk code could check ** the "fixed module table" to add such devices to an I/O Tree ** and proceed with the recursive, depth first bus walk. */ {HPHW_BCPORT, U2_BC_GSC, 0x0, 0xc, 0, 0x10, DRIVER_CHECK_HVERSION + DRIVER_CHECK_SVERSION + DRIVER_CHECK_HWTYPE, MODULE_NAME, "U2 GSC+ BC", (void *) ccio_driver_callback}, {HPHW_BCPORT, UTURN_BC_GSC, 0x0, 0xc, 0, 0x10, DRIVER_CHECK_HVERSION + DRIVER_CHECK_SVERSION + DRIVER_CHECK_HWTYPE, MODULE_NAME, "Uturn GSC+ BC", (void *) ccio_driver_callback}, {0,0,0,0,0,0, 0, (char *) NULL, (char *) NULL, (void *) NULL } }; #define IS_U2(id) ( \ (((id)->hw_type == HPHW_IOA) && ((id)->hversion == U2_IOA_RUNWAY)) || \ (((id)->hw_type == HPHW_BCPORT) && ((id)->hversion == U2_BC_GSC)) \ ) #define IS_UTURN(id) ( \ (((id)->hw_type == HPHW_IOA) && ((id)->hversion == UTURN_IOA_RUNWAY)) || \ (((id)->hw_type == HPHW_BCPORT) && ((id)->hversion == UTURN_BC_GSC)) \ ) #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */ #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */ #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */ struct ioa_registers { /* Runway Supervisory Set */ volatile int32_t unused1[12]; volatile uint32_t io_command; /* Offset 12 */ volatile uint32_t io_status; /* Offset 13 */ volatile uint32_t io_control; /* Offset 14 */ volatile int32_t unused2[1]; /* Runway Auxiliary Register Set */ volatile uint32_t io_err_resp; /* Offset 0 */ volatile uint32_t io_err_info; /* Offset 1 */ volatile uint32_t io_err_req; /* Offset 2 */ volatile uint32_t io_err_resp_hi; /* Offset 3 */ volatile uint32_t io_tlb_entry_m; /* Offset 4 */ volatile uint32_t io_tlb_entry_l; /* Offset 5 */ volatile uint32_t unused3[1]; volatile uint32_t io_pdir_base; /* Offset 7 */ volatile uint32_t io_io_low_hv; /* Offset 8 */ volatile uint32_t io_io_high_hv; /* Offset 9 */ volatile uint32_t unused4[1]; volatile uint32_t io_chain_id_mask; /* Offset 11 */ volatile uint32_t unused5[2]; volatile uint32_t io_io_low; /* Offset 14 */ volatile uint32_t io_io_high; /* Offset 15 */ }; struct ccio_device { struct ccio_device *next; /* list of LBA's in system */ struct hp_device *iodc; /* data about dev from firmware */ spinlock_t ccio_lock; struct ioa_registers *ccio_hpa; /* base address */ u64 *pdir_base; /* physical base address */ char *res_map; /* resource map, bit == pdir entry */ int res_hint; /* next available IOVP - circular search */ int res_size; /* size of resource map in bytes */ int chainid_shift; /* specify bit location of chain_id */ int flags; /* state/functionality enabled */ #ifdef DELAYED_RESOURCE_CNT dma_addr_t res_delay[DELAYED_RESOURCE_CNT]; #endif /* STUFF We don't need in performance path */ int pdir_size; /* in bytes, determined by IOV Space size */ int hw_rev; /* HW revision of chip */ }; /* Ratio of Host MEM to IOV Space size */ static unsigned long ccio_mem_ratio = 4; static struct ccio_device *ccio_list = NULL; static int ccio_proc_info(char *buffer, char **start, off_t offset, int length); static unsigned long ccio_used_bytes = 0; static unsigned long ccio_used_pages = 0; static int ccio_cujo_bug = 0; static unsigned long ccio_alloc_size = 0; static unsigned long ccio_free_size = 0; /************************************************************** * * I/O Pdir Resource Management * * Bits set in the resource map are in use. * Each bit can represent a number of pages. * LSbs represent lower addresses (IOVA's). * * This was was copied from sba_iommu.c. Don't try to unify * the two resource managers unless a way to have different * allocation policies is also adjusted. We'd like to avoid * I/O TLB thrashing by having resource allocation policy * match the I/O TLB replacement policy. * ***************************************************************/ #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */ #define IOVP_SIZE PAGE_SIZE #define IOVP_SHIFT PAGE_SHIFT #define IOVP_MASK PAGE_MASK /* Convert from IOVP to IOVA and vice versa. */ #define CCIO_IOVA(iovp,offset) ((iovp) | (offset)) #define CCIO_IOVP(iova) ((iova) & ~(IOVP_SIZE-1) ) #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT) #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset) /* CUJO20 KLUDGE start */ #define CUJO_20_BITMASK 0x0ffff000 /* upper nibble is a don't care */ #define CUJO_20_STEP 0x10000000 /* inc upper nibble */ #define CUJO_20_BADPAGE1 0x01003000 /* pages that hpmc on raven U+ */ #define CUJO_20_BADPAGE2 0x01607000 /* pages that hpmc on firehawk U+ */ #define CUJO_20_BADHVERS 0x6821 /* low nibble 1 is cujo rev 2.0 */ #define CUJO_RAVEN_LOC 0xf1000000UL /* cujo location on raven U+ */ #define CUJO_FIREHAWK_LOC 0xf1604000UL /* cujo location on firehawk U+ */ /* CUJO20 KLUDGE end */ /* ** Don't worry about the 150% average search length on a miss. ** If the search wraps around, and passes the res_hint, it will ** cause the kernel to panic anyhow. */ /* ioa->res_hint = idx + (size >> 3); \ */ #define CCIO_SEARCH_LOOP(ioa, idx, mask, size) \ for(; res_ptr < res_end; ++res_ptr) \ { \ if(0 == ((*res_ptr) & mask)) { \ *res_ptr |= mask; \ idx = (int)((unsigned long)res_ptr - (unsigned long)ioa->res_map); \ ioa->res_hint = 0;\ goto resource_found; \ } \ } #define CCIO_FIND_FREE_MAPPING(ioa, idx, mask, size) { \ u##size *res_ptr = (u##size *)&((ioa)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \ u##size *res_end = (u##size *)&(ioa)->res_map[ioa->res_size]; \ CCIO_SEARCH_LOOP(ioa, idx, mask, size); \ res_ptr = (u##size *)&(ioa)->res_map[0]; \ CCIO_SEARCH_LOOP(ioa, idx, mask, size); \ } /* ** Find available bit in this ioa's resource map. ** Use a "circular" search: ** o Most IOVA's are "temporary" - avg search time should be small. ** o keep a history of what happened for debugging ** o KISS. ** ** Perf optimizations: ** o search for log2(size) bits at a time. ** o search for available resource bits using byte/word/whatever. ** o use different search for "large" (eg > 4 pages) or "very large" ** (eg > 16 pages) mappings. */ static int ccio_alloc_range(struct ccio_device *ioa, size_t size) { int res_idx; unsigned long mask, flags; unsigned int pages_needed = size >> PAGE_SHIFT; ASSERT(pages_needed); ASSERT((pages_needed * IOVP_SIZE) < DMA_CHUNK_SIZE); ASSERT(pages_needed < (BITS_PER_LONG - IOVP_SHIFT)); mask = (unsigned long) -1L; mask >>= BITS_PER_LONG - pages_needed; DBG_RES(__FUNCTION__ " size: %d pages_needed %d pages_mask 0x%08lx\n", size, pages_needed, mask); spin_lock_irqsave(&ioa->ccio_lock, flags); /* ** "seek and ye shall find"...praying never hurts either... ** ggg sacrafices another 710 to the computer gods. */ if(pages_needed <= 8) { CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, 8); } else if(pages_needed <= 16) { CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, 16); } else if(pages_needed <= 32) { CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, 32); #ifdef __LP64__ } else if(pages_needed <= 64) { CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, 64) #endif } else { panic(__FILE__ ":" __FUNCTION__ "() Too many pages to map.\n"); } #ifdef DUMP_RESMAP dump_resmap(); #endif panic(__FILE__ ":" __FUNCTION__ "() I/O MMU is out of mapping resources\n"); resource_found: DBG_RES(__FUNCTION__ " res_idx %d mask 0x%08lx res_hint: %d\n", res_idx, mask, ioa->res_hint); ccio_used_pages += pages_needed; ccio_used_bytes += ((pages_needed >> 3) ? (pages_needed >> 3) : 1); spin_unlock_irqrestore(&ioa->ccio_lock, flags); #ifdef DUMP_RESMAP dump_resmap(); #endif /* ** return the bit address (convert from byte to bit). */ return (res_idx << 3); } #define CCIO_FREE_MAPPINGS(ioa, idx, mask, size) \ u##size *res_ptr = (u##size *)&((ioa)->res_map[idx + (((size >> 3) - 1) & ~((size >> 3) - 1))]); \ ASSERT((*res_ptr & mask) == mask); \ *res_ptr &= ~mask; /* ** clear bits in the ioa's resource map */ static void ccio_free_range(struct ccio_device *ioa, dma_addr_t iova, size_t size) { unsigned long mask, flags; unsigned long iovp = CCIO_IOVP(iova); unsigned int res_idx = PDIR_INDEX(iovp)>>3; unsigned int pages_mapped = (size >> IOVP_SHIFT) + !!(size & ~IOVP_MASK); ASSERT(pages_needed); ASSERT((pages_needed * IOVP_SIZE) < DMA_CHUNK_SIZE); ASSERT(pages_needed < (BITS_PER_LONG - IOVP_SHIFT)); mask = (unsigned long) -1L; mask >>= BITS_PER_LONG - pages_mapped; DBG_RES(__FUNCTION__ " res_idx: %d size: %d pages_mapped %d mask 0x%08lx\n", res_idx, size, pages_mapped, mask); spin_lock_irqsave(&ioa->ccio_lock, flags); if(pages_mapped <= 8) { CCIO_FREE_MAPPINGS(ioa, res_idx, mask, 8); } else if(pages_mapped <= 16) { CCIO_FREE_MAPPINGS(ioa, res_idx, mask, 16); } else if(pages_mapped <= 32) { CCIO_FREE_MAPPINGS(ioa, res_idx, mask, 32); #ifdef __LP64__ } else if(pages_mapped <= 64) { CCIO_FREE_MAPPINGS(ioa, res_idx, mask, 64); #endif } else { panic(__FILE__ ":" __FUNCTION__ "() Too many pages to unmap.\n"); } ccio_used_pages -= (pages_mapped ? pages_mapped : 1); ccio_used_bytes -= ((pages_mapped >> 3) ? (pages_mapped >> 3) : 1); spin_unlock_irqrestore(&ioa->ccio_lock, flags); #ifdef DUMP_RESMAP dump_resmap(); #endif } /**************************************************************** ** ** CCIO dma_ops support routines ** *****************************************************************/ typedef unsigned long space_t; #define KERNEL_SPACE 0 /* ** DMA "Page Type" and Hints ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be ** set for subcacheline DMA transfers since we don't want to damage the ** other part of a cacheline. ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent(). ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming" ** data can avoid this if the mapping covers full cache lines. ** o STOP_MOST is needed for atomicity across cachelines. ** Apperently only "some EISA devices" need this. ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs ** to use this hint iff the EISA devices needs this feature. ** According to the U2 ERS, STOP_MOST enabled pages hurt performance. ** o PREFETCH should *not* be set for cases like Multiple PCI devices ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC ** device can be fetched and multiply DMA streams will thrash the ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules ** and Invalidation of Prefetch Entries". ** ** FIXME: the default hints need to be per GSC device - not global. ** ** HP-UX dorks: linux device driver programming model is totally different ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers ** do special things to work on non-coherent platforms...linux has to ** be much more careful with this. */ #define IOPDIR_VALID 0x01UL #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */ #ifdef CONFIG_ISA /* EISA support really */ #define HINT_STOP_MOST 0x04UL /* LSL support */ #else #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */ #endif #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */ #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */ /* ** Use direction (ie PCI_DMA_TODEVICE) to pick hint. ** ccio_alloc_consistent() depends on this to get SAFE_DMA ** when it passes in BIDIRECTIONAL flag. */ static u32 hint_lookup[] = { [PCI_DMA_BIDIRECTIONAL] HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID, [PCI_DMA_TODEVICE] HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID, [PCI_DMA_FROMDEVICE] HINT_STOP_MOST | IOPDIR_VALID, [PCI_DMA_NONE] 0, /* not valid */ }; /* ** Initialize an I/O Pdir entry ** ** Given a virtual address (vba, arg2) and space id, (sid, arg1), ** load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir ** entry consists of 8 bytes as shown below (MSB == bit 0): ** ** ** WORD 0: ** +------+----------------+-----------------------------------------------+ ** | Phys | Virtual Index | Phys | ** | 0:3 | 0:11 | 4:19 | ** |4 bits| 12 bits | 16 bits | ** +------+----------------+-----------------------------------------------+ ** WORD 1: ** +-----------------------+-----------------------------------------------+ ** | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid | ** | 20:39 | | Enable |Enable | |Enable|DMA | | ** | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit | ** +-----------------------+-----------------------------------------------+ ** ** The virtual index field is filled with the results of the LCI ** (Load Coherence Index) instruction. The 8 bits used for the virtual ** index are bits 12:19 of the value returned by LCI. */ void CCIO_INLINE ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, void * vba, unsigned long hints) { register unsigned long pa = (volatile unsigned long) vba; register unsigned long ci; /* coherent index */ /* We currently only support kernel addresses */ ASSERT(sid == 0); ASSERT(((unsigned long) vba & 0xf0000000UL) == 0xc0000000UL); mtsp(sid,1); /* ** WORD 1 - low order word ** "hints" parm includes the VALID bit! ** "dep" clobbers the physical address offset bits as well. */ pa = virt_to_phys(vba); asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints)); ((u32 *)pdir_ptr)[1] = (u32) pa; /* ** WORD 0 - high order word */ #ifdef __LP64__ /* ** get bits 12:15 of physical address ** shift bits 16:31 of physical address ** and deposit them */ asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa)); asm volatile ("extrd,u %1,31,16,%0" : "+r" (ci) : "r" (ci)); asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci)); #else pa = 0; #endif /* ** get CPU coherency index bits ** Grab virtual index [0:11] ** Deposit virt_idx bits into I/O PDIR word */ asm volatile ("lci 0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci)); asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci)); ((u32 *)pdir_ptr)[0] = (u32) pa; /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) ** PCX-U/U+ do. (eg C200/C240) ** PCX-T'? Don't know. (eg C110 or similar K-class) ** ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit". ** Hopefully we can patch (NOP) these out at boot time somehow. ** ** "Since PCX-U employs an offset hash that is incompatible with ** the real mode coherence index generation of U2, the PDIR entry ** must be flushed to memory to retain coherence." */ asm volatile("fdc 0(%0)" : : "r" (pdir_ptr)); asm volatile("sync"); } /* ** Remove stale entries from the I/O TLB. ** Need to do this whenever an entry in the PDIR is marked invalid. */ static CCIO_INLINE void ccio_clear_io_tlb( struct ccio_device *d, dma_addr_t iovp, size_t byte_cnt) { u32 chain_size = 1 << d->chainid_shift; iovp &= ~(IOVP_SIZE-1); /* clear offset bits, just want pagenum */ byte_cnt += chain_size; while (byte_cnt > chain_size) { WRITE_U32(CMD_TLB_PURGE | iovp, &d->ccio_hpa->io_command); iovp += chain_size; byte_cnt -= chain_size; } } /*********************************************************** * * Mark the I/O Pdir entries invalid and blow away the * corresponding I/O TLB entries. * * FIXME: at some threshhold it might be "cheaper" to just blow * away the entire I/O TLB instead of individual entries. * * FIXME: Uturn has 256 TLB entries. We don't need to purge every * PDIR entry - just once for each possible TLB entry. * (We do need to maker I/O PDIR entries invalid regardless). ***********************************************************/ static CCIO_INLINE void ccio_mark_invalid(struct ccio_device *d, dma_addr_t iova, size_t byte_cnt) { u32 iovp = (u32) CCIO_IOVP(iova); size_t saved_byte_cnt; /* round up to nearest page size */ saved_byte_cnt = byte_cnt = (byte_cnt + IOVP_SIZE - 1) & IOVP_MASK; while (byte_cnt > 0) { /* invalidate one page at a time */ unsigned int idx = PDIR_INDEX(iovp); char *pdir_ptr = (char *) &(d->pdir_base[idx]); ASSERT( idx < (d->pdir_size/sizeof(u64))); pdir_ptr[7] = 0; /* clear only VALID bit */ /* ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) ** PCX-U/U+ do. (eg C200/C240) ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit". ** ** Hopefully someone figures out how to patch (NOP) the ** FDC/SYNC out at boot time. */ asm volatile("fdc 0(%0)" : : "r" (pdir_ptr[7])); iovp += IOVP_SIZE; byte_cnt -= IOVP_SIZE; } asm volatile("sync"); ccio_clear_io_tlb(d, CCIO_IOVP(iova), saved_byte_cnt); } /**************************************************************** ** ** CCIO dma_ops ** *****************************************************************/ void __init ccio_init(void) { register_driver(ccio_drivers_for); } static int ccio_dma_supported( struct pci_dev *dev, dma_addr_t mask) { if (dev == NULL) { printk(MODULE_NAME ": EISA/ISA/et al not supported\n"); BUG(); return(0); } dev->dma_mask = mask; /* save it */ /* only support 32-bit devices (ie PCI/GSC) */ return((int) (mask >= 0xffffffffUL)); } /* ** Dump a hex representation of the resource map. */ #ifdef DUMP_RESMAP static void dump_resmap() { struct ccio_device *ioa = ccio_list; unsigned long *res_ptr = (unsigned long *)ioa->res_map; unsigned long i = 0; printk("res_map: "); for(; i < (ioa->res_size / sizeof(unsigned long)); ++i, ++res_ptr) printk("%08lx ", *res_ptr); printk("\n"); } #endif /* ** map_single returns a fully formed IOVA */ static dma_addr_t ccio_map_single(struct pci_dev *dev, void *addr, size_t size, int direction) { struct ccio_device *ioa = ccio_list; /* FIXME : see Multi-IOC below */ dma_addr_t iovp; dma_addr_t offset; u64 *pdir_start; unsigned long hint = hint_lookup[direction]; int idx; ASSERT(size > 0); /* save offset bits */ offset = ((dma_addr_t) addr) & ~IOVP_MASK; /* round up to nearest IOVP_SIZE */ size = (size + offset + IOVP_SIZE - 1) & IOVP_MASK; idx = ccio_alloc_range(ioa, size); iovp = (dma_addr_t) MKIOVP(idx); DBG_RUN(__FUNCTION__ " 0x%p -> 0x%lx", addr, (long) iovp | offset); pdir_start = &(ioa->pdir_base[idx]); /* If not cacheline aligned, force SAFE_DMA on the whole mess */ if ((size % L1_CACHE_BYTES) || ((unsigned long) addr % L1_CACHE_BYTES)) hint |= HINT_SAFE_DMA; /* round up to nearest IOVP_SIZE */ size = (size + IOVP_SIZE - 1) & IOVP_MASK; while (size > 0) { ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, addr, hint); DBG_RUN(" pdir %p %08x%08x\n", pdir_start, (u32) (((u32 *) pdir_start)[0]), (u32) (((u32 *) pdir_start)[1]) ); addr += IOVP_SIZE; size -= IOVP_SIZE; pdir_start++; } /* form complete address */ return CCIO_IOVA(iovp, offset); } static void ccio_unmap_single(struct pci_dev *dev, dma_addr_t iova, size_t size, int direction) { #ifdef FIXME /* Multi-IOC (ie N-class) : need to lookup IOC from dev ** o If we can't know about lba PCI data structs, that eliminates ->sysdata. ** o walking up pcidev->parent dead ends at elroy too ** o leaves hashing dev->bus->number into some lookup. ** (may only work for N-class) */ struct ccio_device *ioa = dev->sysdata #else struct ccio_device *ioa = ccio_list; #endif dma_addr_t offset; offset = iova & ~IOVP_MASK; /* round up to nearest IOVP_SIZE */ size = (size + offset + IOVP_SIZE - 1) & IOVP_MASK; /* Mask off offset */ iova &= IOVP_MASK; DBG_RUN(__FUNCTION__ " iovp 0x%lx\n", (long) iova); #ifdef DELAYED_RESOURCE_CNT if (ioa->saved_cnt < DELAYED_RESOURCE_CNT) { ioa->saved_iova[ioa->saved_cnt] = iova; ioa->saved_size[ioa->saved_cnt] = size; ccio_saved_cnt++; } else { do { #endif ccio_mark_invalid(ioa, iova, size); ccio_free_range(ioa, iova, size); #ifdef DELAYED_RESOURCE_CNT d->saved_cnt--; iova = ioa->saved_iova[ioa->saved_cnt]; size = ioa->saved_size[ioa->saved_cnt]; } while (ioa->saved_cnt) } #endif } static void * ccio_alloc_consistent (struct pci_dev *hwdev, size_t size, dma_addr_t *dma_handle) { void *ret; unsigned long flags; struct ccio_device *ioa = ccio_list; DBG_RUN(__FUNCTION__ " size 0x%x\n", size); #if 0 /* GRANT Need to establish hierarchy for non-PCI devs as well ** and then provide matching gsc_map_xxx() functions for them as well. */ if (!hwdev) { /* only support PCI */ *dma_handle = 0; return 0; } #endif spin_lock_irqsave(&ioa->ccio_lock, flags); ccio_alloc_size += get_order(size); spin_unlock_irqrestore(&ioa->ccio_lock, flags); ret = (void *) __get_free_pages(GFP_ATOMIC, get_order(size)); if (ret) { memset(ret, 0, size); *dma_handle = ccio_map_single(hwdev, ret, size, PCI_DMA_BIDIRECTIONAL); } DBG_RUN(__FUNCTION__ " ret %p\n", ret); return ret; } static void ccio_free_consistent (struct pci_dev *hwdev, size_t size, void *vaddr, dma_addr_t dma_handle) { unsigned long flags; struct ccio_device *ioa = ccio_list; spin_lock_irqsave(&ioa->ccio_lock, flags); ccio_free_size += get_order(size); spin_unlock_irqrestore(&ioa->ccio_lock, flags); ccio_unmap_single(hwdev, dma_handle, size, 0); free_pages((unsigned long) vaddr, get_order(size)); } static int ccio_map_sg(struct pci_dev *dev, struct scatterlist *sglist, int nents, int direction) { int tmp = nents; DBG_RUN(KERN_WARNING __FUNCTION__ " START\n"); /* KISS: map each buffer seperately. */ while (nents) { sg_dma_address(sglist) = ccio_map_single(dev, sglist->address, sglist->length, direction); sg_dma_len(sglist) = sglist->length; nents--; sglist++; } DBG_RUN(KERN_WARNING __FUNCTION__ " DONE\n"); return tmp; } static void ccio_unmap_sg(struct pci_dev *dev, struct scatterlist *sglist, int nents, int direction) { DBG_RUN(KERN_WARNING __FUNCTION__ " : unmapping %d entries\n", nents); while (nents) { ccio_unmap_single(dev, sg_dma_address(sglist), sg_dma_len(sglist), direction); nents--; sglist++; } return; } static struct pci_dma_ops ccio_ops = { ccio_dma_supported, ccio_alloc_consistent, ccio_free_consistent, ccio_map_single, ccio_unmap_single, ccio_map_sg, ccio_unmap_sg, NULL, /* dma_sync_single : NOP for U2/Uturn */ NULL, /* dma_sync_sg : ditto */ }; #if 0 /* GRANT - is this needed for U2 or not? */ /* ** Get the size of the I/O TLB for this I/O MMU. ** ** If spa_shift is non-zero (ie probably U2), ** then calculate the I/O TLB size using spa_shift. ** ** Otherwise we are supposed to get the IODC entry point ENTRY TLB ** and execute it. However, both U2 and Uturn firmware supplies spa_shift. ** I think only Java (K/D/R-class too?) systems don't do this. */ static int ccio_get_iotlb_size(struct hp_device *d) { if(d->spa_shift == 0) { panic(__FUNCTION__ ": Can't determine I/O TLB size.\n"); } return(1 << d->spa_shift); } #else /* Uturn supports 256 TLB entries */ #define CCIO_CHAINID_SHIFT 8 #define CCIO_CHAINID_MASK 0xff #endif /* 0 */ /* ** Figure out how big the I/O PDIR should be and alloc it. ** Also sets variables which depend on pdir size. */ static void ccio_alloc_pdir(struct ccio_device *ioa) { extern unsigned long mem_max; /* arch.../setup.c */ u32 iova_space_size = 0; void * pdir_base; int pdir_size, iov_order; /* ** Determine IOVA Space size from memory size. ** Using "mem_max" is a kluge. ** ** Ideally, PCI drivers would register the maximum number ** of DMA they can have outstanding for each device they ** own. Next best thing would be to guess how much DMA ** can be outstanding based on PCI Class/sub-class. Both ** methods still require some "extra" to support PCI ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). */ /* limit IOVA space size to 1MB-1GB */ if (mem_max < (ccio_mem_ratio*1024*1024)) { iova_space_size = 1024*1024; #ifdef __LP64__ } else if (mem_max > (ccio_mem_ratio*512*1024*1024)) { iova_space_size = 512*1024*1024; #endif } else { iova_space_size = (u32) (mem_max/ccio_mem_ratio); } /* ** iova space must be log2() in size. ** thus, pdir/res_map will also be log2(). */ /* We could use larger page sizes in order to *decrease* the number ** of mappings needed. (ie 8k pages means 1/2 the mappings). ** ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either ** since the pages must also be physically contiguous - typically ** this is the case under linux." */ iov_order = get_order(iova_space_size); ASSERT(iov_order <= (30 - IOVP_SHIFT)); /* iova_space_size <= 1GB */ ASSERT(iov_order >= (20 - IOVP_SHIFT)); /* iova_space_size >= 1MB */ iova_space_size = 1 << (iov_order + IOVP_SHIFT); ioa->pdir_size = pdir_size = (iova_space_size/IOVP_SIZE) * sizeof(u64); ASSERT(pdir_size < 4*1024*1024); /* max pdir size < 4MB */ /* Verify it's a power of two */ ASSERT((1 << get_order(pdir_size)) == (pdir_size >> PAGE_SHIFT)); DBG_INIT(__FUNCTION__ " hpa 0x%p mem %dMB IOV %dMB (%d bits)\n PDIR size 0x%0x", ioa->ccio_hpa, (int) (mem_max>>20), iova_space_size>>20, iov_order + PAGE_SHIFT, pdir_size); ioa->pdir_base = pdir_base = (void *) __get_free_pages(GFP_KERNEL, get_order(pdir_size)); if (NULL == pdir_base) { panic(__FILE__ ":" __FUNCTION__ "() could not allocate I/O Page Table\n"); } memset(pdir_base, 0, pdir_size); ASSERT((((unsigned long) pdir_base) & PAGE_MASK) == (unsigned long) pdir_base); DBG_INIT(" base %p", pdir_base); /* ** Chainid is the upper most bits of an IOVP used to determine ** which TLB entry an IOVP will use. */ ioa->chainid_shift = get_order(iova_space_size)+PAGE_SHIFT-CCIO_CHAINID_SHIFT; DBG_INIT(" chainid_shift 0x%x\n", ioa->chainid_shift); } static void ccio_hw_init(struct ccio_device *ioa) { int i; /* ** Initialize IOA hardware */ WRITE_U32(CCIO_CHAINID_MASK << ioa->chainid_shift, &ioa->ccio_hpa->io_chain_id_mask); WRITE_U32(virt_to_phys(ioa->pdir_base), &ioa->ccio_hpa->io_pdir_base); /* ** Go to "Virtual Mode" */ WRITE_U32(IOA_NORMAL_MODE, &ioa->ccio_hpa->io_control); /* ** Initialize all I/O TLB entries to 0 (Valid bit off). */ WRITE_U32(0, &ioa->ccio_hpa->io_tlb_entry_m); WRITE_U32(0, &ioa->ccio_hpa->io_tlb_entry_l); for (i = 1 << CCIO_CHAINID_SHIFT; i ; i--) { WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioa->chainid_shift)), &ioa->ccio_hpa->io_command); } } static void ccio_resmap_init(struct ccio_device *ioa) { u32 res_size; /* ** Ok...we do more than just init resource map */ ioa->ccio_lock = SPIN_LOCK_UNLOCKED; ioa->res_hint = 16; /* next available IOVP - circular search */ /* resource map size dictated by pdir_size */ res_size = ioa->pdir_size/sizeof(u64); /* entries */ res_size >>= 3; /* convert bit count to byte count */ DBG_INIT(__FUNCTION__ "() res_size 0x%x\n", res_size); ioa->res_size = res_size; ioa->res_map = (char *) __get_free_pages(GFP_KERNEL, get_order(res_size)); if (NULL == ioa->res_map) { panic(__FILE__ ":" __FUNCTION__ "() could not allocate resource map\n"); } memset(ioa->res_map, 0, res_size); } /* CUJO20 KLUDGE start */ static struct { u16 hversion; u8 spa; u8 type; u32 foo[3]; /* 16 bytes total */ } cujo_iodc __attribute__ ((aligned (64))); static unsigned long cujo_result[32] __attribute__ ((aligned (16))) = {0,0,0,0}; /* ** CUJO 2.0 incorrectly decodes a memory access for specific ** pages (every page at specific iotlb locations dependent ** upon where the cujo is flexed - diff on raven/firehawk. ** resulting in an hpmc and/or silent data corruption. ** Workaround is to prevent use of those I/O TLB entries ** by marking the suspect bitmap range entries as busy. */ static void ccio_cujo20_hack(struct ccio_device *ioa) { unsigned long status; unsigned int idx; u8 *res_ptr = ioa->res_map; u32 iovp=0x0; unsigned long mask; status = pdc_iodc_read( &cujo_result, (void *) CUJO_RAVEN_LOC, 0, &cujo_iodc, 16); if (status == 0) { if (cujo_iodc.hversion==CUJO_20_BADHVERS) iovp = CUJO_20_BADPAGE1; } else { status = pdc_iodc_read( &cujo_result, (void *) CUJO_FIREHAWK_LOC, 0, &cujo_iodc, 16); if (status == 0) { if (cujo_iodc.hversion==CUJO_20_BADHVERS) iovp = CUJO_20_BADPAGE2; } else { /* not a defective system */ return; } } printk(MODULE_NAME ": Cujo 2.0 bug needs a work around\n"); ccio_cujo_bug = 1; /* ** mark bit entries that match "bad page" */ idx = PDIR_INDEX(iovp)>>3; mask = 0xff; while(idx * sizeof(u8) < ioa->res_size) { res_ptr[idx] |= mask; idx += (PDIR_INDEX(CUJO_20_STEP)>>3); ccio_used_pages += 8; ccio_used_bytes += 1; } } /* CUJO20 KLUDGE end */ #ifdef CONFIG_PROC_FS static int ccio_proc_info(char *buf, char **start, off_t offset, int len) { unsigned long i = 0; struct ccio_device *ioa = ccio_list; unsigned long *res_ptr = (unsigned long *)ioa->res_map; unsigned long total_pages = ioa->res_size << 3; /* 8 bits per byte */ sprintf(buf, "%s\nCujo 2.0 bug : %s\n", parisc_getHWdescription(ioa->iodc->hw_type, ioa->iodc->hversion, ioa->iodc->sversion), (ccio_cujo_bug ? "yes" : "no")); sprintf(buf, "%sIO pdir size : %d bytes (%d entries)\n", buf, ((ioa->res_size << 3) * sizeof(u64)), /* 8 bits per byte */ ioa->res_size << 3); /* 8 bits per byte */ sprintf(buf, "%sResource bitmap : %d bytes (%d pages)\n", buf, ioa->res_size, ioa->res_size << 3); /* 8 bits per byte */ strcat(buf, " total: free: used: % used:\n"); sprintf(buf, "%sblocks %8d %8ld %8ld %8ld%%\n", buf, ioa->res_size, ioa->res_size - ccio_used_bytes, ccio_used_bytes, (ccio_used_bytes * 100) / ioa->res_size); sprintf(buf, "%spages %8ld %8ld %8ld %8ld%%\n", buf, total_pages, total_pages - ccio_used_pages, ccio_used_pages, (ccio_used_pages * 100 / total_pages)); sprintf(buf, "%sconsistent %8ld %8ld\n", buf, ccio_alloc_size, ccio_free_size); strcat(buf, "\nResource bitmap:\n"); for(; i < (ioa->res_size / sizeof(unsigned long)); ++i, ++res_ptr) len += sprintf(buf, "%s%08lx ", buf, *res_ptr); strcat(buf, "\n"); return strlen(buf); } #endif /* ** Determine if ccio should claim this chip (return 0) or not (return 1). ** If so, initialize the chip and tell other partners in crime they ** have work to do. */ static int ccio_driver_callback(struct hp_device *d, struct pa_iodc_driver *dri) { struct ccio_device *ioa; printk("%s found %s at 0x%p\n", dri->name, dri->version, d->hpa); if (ccio_list) { printk(MODULE_NAME ": already initialized one device\n"); return(0); } ioa = kmalloc(sizeof(struct ccio_device), GFP_KERNEL); if (NULL == ioa) { printk(MODULE_NAME " - couldn't alloc ccio_device\n"); return(1); } memset(ioa, 0, sizeof(struct ccio_device)); /* ** ccio list is used mainly as a kluge to support a single instance. ** Eventually, with core dumps, it'll be useful for debugging. */ ccio_list = ioa; ioa->iodc = d; #if 1 /* KLUGE: determine IOA hpa based on GSC port value. ** Needed until we have a PA bus walk. Can only discover IOA via ** walking the architected PA MMIO space as described by the I/O ACD. ** "Legacy" PA Firmware only tells us about unarchitected devices ** that can't be detected by PA/EISA/PCI bus walks. */ switch((long) d->hpa) { case 0xf3fbf000L: /* C110 IOA0 LBC (aka GSC port) */ /* ccio_hpa same as C200 IOA0 */ case 0xf203f000L: /* C180/C200/240/C360 IOA0 LBC (aka GSC port) */ ioa->ccio_hpa = (struct ioa_registers *) 0xfff88000L; break; case 0xf103f000L: /* C180/C200/240/C360 IOA1 LBC (aka GSC port) */ ioa->ccio_hpa = (struct ioa_registers *) 0xfff8A000L; break; default: panic("ccio-dma.c doesn't know this GSC port Address!\n"); break; }; #else ioa->ccio_hpa = d->hpa; #endif ccio_alloc_pdir(ioa); ccio_hw_init(ioa); ccio_resmap_init(ioa); /* CUJO20 KLUDGE start */ ccio_cujo20_hack(ioa); /* CUJO20 KLUDGE end */ hppa_dma_ops = &ccio_ops; create_proc_info_entry(MODULE_NAME, 0, proc_runway_root, ccio_proc_info); return(0); }