/* * Ethernet driver for Motorola MPC8xx. * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) * * I copied the basic skeleton from the lance driver, because I did not * know how to write the Linux driver, but I did know how the LANCE worked. * * This version of the driver is somewhat selectable for the different * processor/board combinations. It works for the boards I know about * now, and should be easily modified to include others. Some of the * configuration information is contained in "commproc.h" and the * remainder is here. * * Buffer descriptors are kept in the CPM dual port RAM, and the frame * buffers are in the host memory. * * Right now, I am very watseful with the buffers. I allocate memory * pages and then divide them into 2K frame buffers. This way I know I * have buffers large enough to hold one frame within one buffer descriptor. * Once I get this working, I will use 64 or 128 byte CPM buffers, which * will be much more memory efficient and will easily handle lots of * small packets. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "commproc.h" /* * Theory of Operation * * The MPC8xx CPM performs the Ethernet processing on SCC1. It can use * an aribtrary number of buffers on byte boundaries, but must have at * least two receive buffers to prevent constant overrun conditions. * * The buffer descriptors are allocated from the CPM dual port memory * with the data buffers allocated from host memory, just like all other * serial communication protocols. The host memory buffers are allocated * from the free page pool, and then divided into smaller receive and * transmit buffers. The size of the buffers should be a power of two, * since that nicely divides the page. This creates a ring buffer * structure similar to the LANCE and other controllers. * * Like the LANCE driver: * The driver runs as two independent, single-threaded flows of control. One * is the send-packet routine, which enforces single-threaded use by the * cep->tx_busy flag. The other thread is the interrupt handler, which is * single threaded by the hardware and other software. * * The send packet thread has partial control over the Tx ring and the * 'cep->tx_busy' flag. It sets the tx_busy flag whenever it's queuing a Tx * packet. If the next queue slot is empty, it clears the tx_busy flag when * finished otherwise it sets the 'lp->tx_full' flag. * * The MBX has a control register external to the MPC8xx that has some * control of the Ethernet interface. Control Register 1 has the * following format: * bit 0 - Set to enable Ethernet transceiver * bit 1 - Set to enable Ethernet internal loopback * bit 2 - Set to auto select AUI or TP port * bit 3 - if bit 2 is 0, set to select TP port * bit 4 - Set to disable full duplex (loopback) * bit 5 - Set to disable XCVR collision test * bit 6, 7 - Used for RS-232 control. * * EPPC-Bug sets this register to 0x98 for normal Ethernet operation, * so we should not have to touch it. * * The following I/O is used by the MBX implementation of the MPC8xx to * the MC68160 transceiver. It DOES NOT exactly follow the cookbook * example from the MPC860 manual. * Port A, 15 - SCC1 Ethernet Rx * Port A, 14 - SCC1 Ethernet Tx * Port A, 6 (CLK2) - SCC1 Ethernet Tx Clk * Port A, 4 (CLK4) - SCC1 Ethernet Rx Clk * Port C, 15 - SCC1 Ethernet Tx Enable * Port C, 11 - SCC1 Ethernet Collision * Port C, 10 - SCC1 Ethernet Rx Enable * * The RPX-Lite (that I had :-), was the MPC850SAR. It has a control * register to enable Ethernet functions in the 68160, and the Ethernet * was controlled by SCC2. So, the pin I/O was like this: * Port A, 13 - SCC2 Ethernet Rx * Port A, 12 - SCC2 Ethernet Tx * Port A, 6 (CLK2) - Ethernet Tx Clk * Port A, 4 (CLK4) - Ethernet Rx Clk * Port B, 18 (RTS2) - Ethernet Tx Enable * Port C, 8 (CD2) - Ethernet Rx Enable * Port C, 9 (CTS2) - SCC Ethernet Collision */ /* The number of Tx and Rx buffers. These are allocated from the page * pool. The code may assume these are power of two, so it is best * to keep them that size. * We don't need to allocate pages for the transmitter. We just use * the skbuffer directly. */ #define CPM_ENET_RX_PAGES 4 #define CPM_ENET_RX_FRSIZE 2048 #define CPM_ENET_RX_FRPPG (PAGE_SIZE / CPM_ENET_RX_FRSIZE) #define RX_RING_SIZE (CPM_ENET_RX_FRPPG * CPM_ENET_RX_PAGES) #define TX_RING_SIZE 8 /* Must be power of two */ #define TX_RING_MOD_MASK 7 /* for this to work */ /* The CPM stores dest/src/type, data, and checksum for receive packets. */ #define PKT_MAXBUF_SIZE 1518 #define PKT_MINBUF_SIZE 64 #define PKT_MAXBLR_SIZE 1520 /* The CPM buffer descriptors track the ring buffers. The rx_bd_base and * tx_bd_base always point to the base of the buffer descriptors. The * cur_rx and cur_tx point to the currently available buffer. * The dirty_tx tracks the current buffer that is being sent by the * controller. The cur_tx and dirty_tx are equal under both completely * empty and completely full conditions. The empty/ready indicator in * the buffer descriptor determines the actual condition. */ struct cpm_enet_private { /* The saved address of a sent-in-place packet/buffer, for skfree(). */ struct sk_buff* tx_skbuff[TX_RING_SIZE]; ushort skb_cur; ushort skb_dirty; /* CPM dual port RAM relative addresses. */ cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ cbd_t *tx_bd_base; cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ cbd_t *dirty_tx; /* The ring entries to be free()ed. */ scc_t *sccp; struct net_device_stats stats; uint tx_full; uint tx_busy; unsigned long lock; int interrupt; }; static int cpm_enet_open(struct net_device *dev); static int cpm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); static int cpm_enet_rx(struct net_device *dev); static void cpm_enet_interrupt(void *dev_id); static int cpm_enet_close(struct net_device *dev); static struct net_device_stats *cpm_enet_get_stats(struct net_device *dev); static void set_multicast_list(struct net_device *dev); /* Get this from various configuration locations (depends on board). */ /*static ushort my_enet_addr[] = { 0x0800, 0x3e26, 0x1559 };*/ /* Typically, 860(T) boards use SCC1 for Ethernet, and other 8xx boards * use SCC2. This is easily extended if necessary. */ #ifdef CONFIG_SCC2_ENET #define CPM_CR_ENET CPM_CR_CH_SCC2 #define PROFF_ENET PROFF_SCC2 #define SCC_ENET 1 /* Index, not number! */ #define CPMVEC_ENET CPMVEC_SCC2 #endif #ifdef CONFIG_SCC1_ENET #define CPM_CR_ENET CPM_CR_CH_SCC1 #define PROFF_ENET PROFF_SCC1 #define SCC_ENET 0 #define CPMVEC_ENET CPMVEC_SCC1 #endif static int cpm_enet_open(struct net_device *dev) { /* I should reset the ring buffers here, but I don't yet know * a simple way to do that. */ netif_start_queue(dev); return 0; /* Always succeed */ } static int cpm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct cpm_enet_private *cep = (struct cpm_enet_private *)dev->priv; volatile cbd_t *bdp; unsigned long flags; /* Transmitter timeout, serious problems. */ if (cep->tx_busy) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < 200) return 1; printk("%s: transmit timed out.\n", dev->name); cep->stats.tx_errors++; #ifndef final_version { int i; cbd_t *bdp; printk(" Ring data dump: cur_tx %p%s cur_rx %p.\n", cep->cur_tx, cep->tx_full ? " (full)" : "", cep->cur_rx); bdp = cep->tx_bd_base; for (i = 0 ; i < TX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); bdp = cep->rx_bd_base; for (i = 0 ; i < RX_RING_SIZE; i++, bdp++) printk("%04x %04x %08x\n", bdp->cbd_sc, bdp->cbd_datlen, bdp->cbd_bufaddr); } #endif cep->tx_busy=0; dev->trans_start = jiffies; return 0; } /* Block a timer-based transmit from overlapping. This could better be * done with atomic_swap(1, cep->tx_busy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&cep->tx_busy) != 0) { printk("%s: Transmitter access conflict.\n", dev->name); return 1; } if (test_and_set_bit(0, (void*)&cep->lock) != 0) { printk("%s: tx queue lock!.\n", dev->name); /* don't clear cep->tx_busy flag. */ return 1; } /* Fill in a Tx ring entry */ bdp = cep->cur_tx; #ifndef final_version if (bdp->cbd_sc & BD_ENET_TX_READY) { /* Ooops. All transmit buffers are full. Bail out. * This should not happen, since cep->tx_busy should be set. */ printk("%s: tx queue full!.\n", dev->name); cep->lock = 0; return 1; } #endif /* Clear all of the status flags. */ bdp->cbd_sc &= ~BD_ENET_TX_STATS; /* If the frame is short, tell CPM to pad it. */ if (skb->len <= ETH_ZLEN) bdp->cbd_sc |= BD_ENET_TX_PAD; else bdp->cbd_sc &= ~BD_ENET_TX_PAD; /* Set buffer length and buffer pointer. */ bdp->cbd_datlen = skb->len; bdp->cbd_bufaddr = __pa(skb->data); /* Save skb pointer. */ cep->tx_skbuff[cep->skb_cur] = skb; cep->stats.tx_bytes += skb->len; cep->skb_cur = (cep->skb_cur+1) & TX_RING_MOD_MASK; /* Push the data cache so the CPM does not get stale memory * data. */ flush_dcache_range(skb->data, skb->data + skb->len); /* Send it on its way. Tell CPM its ready, interrupt when done, * its the last BD of the frame, and to put the CRC on the end. */ bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | BD_ENET_TX_LAST | BD_ENET_TX_TC); dev->trans_start = jiffies; /* If this was the last BD in the ring, start at the beginning again. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; save_flags(flags); cli(); cep->lock = 0; if (bdp->cbd_sc & BD_ENET_TX_READY) cep->tx_full = 1; else cep->tx_busy=0; restore_flags(flags); cep->cur_tx = (cbd_t *)bdp; return 0; } /* The interrupt handler. * This is called from the CPM handler, not the MPC core interrupt. */ static void cpm_enet_interrupt(void *dev_id) { struct net_device *dev = dev_id; volatile struct cpm_enet_private *cep; volatile cbd_t *bdp; ushort int_events; int must_restart; cep = (struct cpm_enet_private *)dev->priv; if (cep->interrupt) printk("%s: Re-entering the interrupt handler.\n", dev->name); cep->interrupt = 1; /* Get the interrupt events that caused us to be here. */ int_events = cep->sccp->scc_scce; cep->sccp->scc_scce = int_events; must_restart = 0; /* Handle receive event in its own function. */ if (int_events & SCCE_ENET_RXF) cpm_enet_rx(dev_id); /* Check for a transmit error. The manual is a little unclear * about this, so the debug code until I get it figured out. It * appears that if TXE is set, then TXB is not set. However, * if carrier sense is lost during frame transmission, the TXE * bit is set, "and continues the buffer transmission normally." * I don't know if "normally" implies TXB is set when the buffer * descriptor is closed.....trial and error :-). */ /* Transmit OK, or non-fatal error. Update the buffer descriptors. */ if (int_events & (SCCE_ENET_TXE | SCCE_ENET_TXB)) { bdp = cep->dirty_tx; while ((bdp->cbd_sc&BD_ENET_TX_READY)==0) { if ((bdp==cep->cur_tx) && (cep->tx_full == 0)) break; if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ cep->stats.tx_heartbeat_errors++; if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ cep->stats.tx_window_errors++; if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ cep->stats.tx_aborted_errors++; if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ cep->stats.tx_fifo_errors++; if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ cep->stats.tx_carrier_errors++; /* No heartbeat or Lost carrier are not really bad errors. * The others require a restart transmit command. */ if (bdp->cbd_sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) { must_restart = 1; cep->stats.tx_errors++; } cep->stats.tx_packets++; /* Deferred means some collisions occurred during transmit, * but we eventually sent the packet OK. */ if (bdp->cbd_sc & BD_ENET_TX_DEF) cep->stats.collisions++; /* Free the sk buffer associated with this last transmit. */ dev_kfree_skb_irq(cep->tx_skbuff[cep->skb_dirty]); cep->skb_dirty = (cep->skb_dirty + 1) & TX_RING_MOD_MASK; /* Update pointer to next buffer descriptor to be transmitted. */ if (bdp->cbd_sc & BD_ENET_TX_WRAP) bdp = cep->tx_bd_base; else bdp++; /* I don't know if we can be held off from processing these * interrupts for more than one frame time. I really hope * not. In such a case, we would now want to check the * currently available BD (cur_tx) and determine if any * buffers between the dirty_tx and cur_tx have also been * sent. We would want to process anything in between that * does not have BD_ENET_TX_READY set. */ /* Since we have freed up a buffer, the ring is no longer * full. */ if (cep->tx_full && cep->tx_busy) { cep->tx_full = 0; cep->tx_busy = 0; netif_wake_queue(dev); } cep->dirty_tx = (cbd_t *)bdp; } if (must_restart) { volatile cpm8xx_t *cp; /* Some transmit errors cause the transmitter to shut * down. We now issue a restart transmit. Since the * errors close the BD and update the pointers, the restart * _should_ pick up without having to reset any of our * pointers either. */ cp = cpmp; cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_RESTART_TX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); } } /* Check for receive busy, i.e. packets coming but no place to * put them. This "can't happen" because the receive interrupt * is tossing previous frames. */ if (int_events & SCCE_ENET_BSY) { cep->stats.rx_dropped++; printk("CPM ENET: BSY can't happen.\n"); } cep->interrupt = 0; return; } /* During a receive, the cur_rx points to the current incoming buffer. * When we update through the ring, if the next incoming buffer has * not been given to the system, we just set the empty indicator, * effectively tossing the packet. */ static int cpm_enet_rx(struct net_device *dev) { struct cpm_enet_private *cep; volatile cbd_t *bdp; struct sk_buff *skb; ushort pkt_len; cep = (struct cpm_enet_private *)dev->priv; /* First, grab all of the stats for the incoming packet. * These get messed up if we get called due to a busy condition. */ bdp = cep->cur_rx; for (;;) { if (bdp->cbd_sc & BD_ENET_RX_EMPTY) break; #ifndef final_version /* Since we have allocated space to hold a complete frame, both * the first and last indicators should be set. */ if ((bdp->cbd_sc & (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) != (BD_ENET_RX_FIRST | BD_ENET_RX_LAST)) printk("CPM ENET: rcv is not first+last\n"); #endif /* Frame too long or too short. */ if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) cep->stats.rx_length_errors++; if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ cep->stats.rx_frame_errors++; if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ cep->stats.rx_crc_errors++; if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ cep->stats.rx_crc_errors++; /* Report late collisions as a frame error. * On this error, the BD is closed, but we don't know what we * have in the buffer. So, just drop this frame on the floor. */ if (bdp->cbd_sc & BD_ENET_RX_CL) { cep->stats.rx_frame_errors++; } else { /* Process the incoming frame. */ cep->stats.rx_packets++; pkt_len = bdp->cbd_datlen; cep->stats.rx_bytes += pkt_len; /* This does 16 byte alignment, much more than we need. */ skb = dev_alloc_skb(pkt_len); if (skb == NULL) { printk("%s: Memory squeeze, dropping packet.\n", dev->name); cep->stats.rx_dropped++; } else { skb->dev = dev; skb_put(skb,pkt_len); /* Make room */ eth_copy_and_sum(skb, (unsigned char *)__va(bdp->cbd_bufaddr), pkt_len, 0); skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); } } /* Clear the status flags for this buffer. */ bdp->cbd_sc &= ~BD_ENET_RX_STATS; /* Mark the buffer empty. */ bdp->cbd_sc |= BD_ENET_RX_EMPTY; /* Update BD pointer to next entry. */ if (bdp->cbd_sc & BD_ENET_RX_WRAP) bdp = cep->rx_bd_base; else bdp++; } cep->cur_rx = (cbd_t *)bdp; return 0; } static int cpm_enet_close(struct net_device *dev) { /* Don't know what to do yet. */ netif_stop_queue(dev); return 0; } static struct net_device_stats *cpm_enet_get_stats(struct net_device *dev) { struct cpm_enet_private *cep = (struct cpm_enet_private *)dev->priv; return &cep->stats; } /* Set or clear the multicast filter for this adaptor. * Skeleton taken from sunlance driver. * The CPM Ethernet implementation allows Multicast as well as individual * MAC address filtering. Some of the drivers check to make sure it is * a group multicast address, and discard those that are not. I guess I * will do the same for now, but just remove the test if you want * individual filtering as well (do the upper net layers want or support * this kind of feature?). */ static void set_multicast_list(struct net_device *dev) { struct cpm_enet_private *cep; struct dev_mc_list *dmi; u_char *mcptr, *tdptr; volatile scc_enet_t *ep; int i, j; cep = (struct cpm_enet_private *)dev->priv; /* Get pointer to SCC area in parameter RAM. */ ep = (scc_enet_t *)dev->base_addr; if (dev->flags&IFF_PROMISC) { /* Log any net taps. */ printk("%s: Promiscuous mode enabled.\n", dev->name); cep->sccp->scc_pmsr |= SCC_PMSR_PRO; } else { cep->sccp->scc_pmsr &= ~SCC_PMSR_PRO; if (dev->flags & IFF_ALLMULTI) { /* Catch all multicast addresses, so set the * filter to all 1's. */ ep->sen_gaddr1 = 0xffff; ep->sen_gaddr2 = 0xffff; ep->sen_gaddr3 = 0xffff; ep->sen_gaddr4 = 0xffff; } else { /* Clear filter and add the addresses in the list. */ ep->sen_gaddr1 = 0; ep->sen_gaddr2 = 0; ep->sen_gaddr3 = 0; ep->sen_gaddr4 = 0; dmi = dev->mc_list; for (i=0; imc_count; i++) { /* Only support group multicast for now. */ if (!(dmi->dmi_addr[0] & 1)) continue; /* The address in dmi_addr is LSB first, * and taddr is MSB first. We have to * copy bytes MSB first from dmi_addr. */ mcptr = (u_char *)dmi->dmi_addr + 5; tdptr = (u_char *)&ep->sen_taddrh; for (j=0; j<6; j++) *tdptr++ = *mcptr--; /* Ask CPM to run CRC and set bit in * filter mask. */ cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_SET_GADDR) | CPM_CR_FLG; /* this delay is necessary here -- Cort */ udelay(10); while (cpmp->cp_cpcr & CPM_CR_FLG); } } } } /* Initialize the CPM Ethernet on SCC. If EPPC-Bug loaded us, or performed * some other network I/O, a whole bunch of this has already been set up. * It is no big deal if we do it again, we just have to disable the * transmit and receive to make sure we don't catch the CPM with some * inconsistent control information. */ int __init cpm_enet_init(void) { struct net_device *dev; struct cpm_enet_private *cep; int i, j; unsigned char *eap; unsigned long mem_addr; pte_t *pte; bd_t *bd; volatile cbd_t *bdp; volatile cpm8xx_t *cp; volatile scc_t *sccp; volatile scc_enet_t *ep; volatile immap_t *immap; cp = cpmp; /* Get pointer to Communication Processor */ immap = (immap_t *)IMAP_ADDR; /* and to internal registers */ bd = (bd_t *)__res; /* Allocate some private information. */ cep = (struct cpm_enet_private *)kmalloc(sizeof(*cep), GFP_KERNEL); /*memset(cep, 0, sizeof(*cep));*/ __clear_user(cep,sizeof(*cep)); /* Create an Ethernet device instance. */ dev = init_etherdev(0, 0); /* Get pointer to SCC area in parameter RAM. */ ep = (scc_enet_t *)(&cp->cp_dparam[PROFF_ENET]); /* And another to the SCC register area. */ sccp = (volatile scc_t *)(&cp->cp_scc[SCC_ENET]); cep->sccp = (scc_t *)sccp; /* Keep the pointer handy */ /* Disable receive and transmit in case EPPC-Bug started it. */ sccp->scc_gsmrl &= ~(SCC_GSMRL_ENR | SCC_GSMRL_ENT); /* Cookbook style from the MPC860 manual..... * Not all of this is necessary if EPPC-Bug has initialized * the network. * So far we are lucky, all board configurations use the same * pins, or at least the same I/O Port for these functions..... * It can't last though...... */ /* Configure port A pins for Txd and Rxd. */ immap->im_ioport.iop_papar |= (PA_ENET_RXD | PA_ENET_TXD); immap->im_ioport.iop_padir &= ~(PA_ENET_RXD | PA_ENET_TXD); immap->im_ioport.iop_paodr &= ~PA_ENET_TXD; /* Configure port C pins to enable CLSN and RENA. */ immap->im_ioport.iop_pcpar &= ~(PC_ENET_CLSN | PC_ENET_RENA); immap->im_ioport.iop_pcdir &= ~(PC_ENET_CLSN | PC_ENET_RENA); immap->im_ioport.iop_pcso |= (PC_ENET_CLSN | PC_ENET_RENA); /* Configure port A for TCLK and RCLK. */ immap->im_ioport.iop_papar |= (PA_ENET_TCLK | PA_ENET_RCLK); immap->im_ioport.iop_padir &= ~(PA_ENET_TCLK | PA_ENET_RCLK); /* Configure Serial Interface clock routing. * First, clear all SCC bits to zero, then set the ones we want. */ cp->cp_sicr &= ~SICR_ENET_MASK; cp->cp_sicr |= SICR_ENET_CLKRT; /* Manual says set SDDR, but I can't find anything with that * name. I think it is a misprint, and should be SDCR. This * has already been set by the communication processor initialization. */ /* Allocate space for the buffer descriptors in the DP ram. * These are relative offsets in the DP ram address space. * Initialize base addresses for the buffer descriptors. */ i = m8xx_cpm_dpalloc(sizeof(cbd_t) * RX_RING_SIZE); ep->sen_genscc.scc_rbase = i; cep->rx_bd_base = (cbd_t *)&cp->cp_dpmem[i]; i = m8xx_cpm_dpalloc(sizeof(cbd_t) * TX_RING_SIZE); ep->sen_genscc.scc_tbase = i; cep->tx_bd_base = (cbd_t *)&cp->cp_dpmem[i]; cep->dirty_tx = cep->cur_tx = cep->tx_bd_base; cep->cur_rx = cep->rx_bd_base; /* Issue init Rx BD command for SCC. * Manual says to perform an Init Rx parameters here. We have * to perform both Rx and Tx because the SCC may have been * already running. * In addition, we have to do it later because we don't yet have * all of the BD control/status set properly. cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_RX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); */ /* Initialize function code registers for big-endian. */ ep->sen_genscc.scc_rfcr = SCC_EB; ep->sen_genscc.scc_tfcr = SCC_EB; /* Set maximum bytes per receive buffer. * This appears to be an Ethernet frame size, not the buffer * fragment size. It must be a multiple of four. */ ep->sen_genscc.scc_mrblr = PKT_MAXBLR_SIZE; /* Set CRC preset and mask. */ ep->sen_cpres = 0xffffffff; ep->sen_cmask = 0xdebb20e3; ep->sen_crcec = 0; /* CRC Error counter */ ep->sen_alec = 0; /* alignment error counter */ ep->sen_disfc = 0; /* discard frame counter */ ep->sen_pads = 0x8888; /* Tx short frame pad character */ ep->sen_retlim = 15; /* Retry limit threshold */ ep->sen_maxflr = PKT_MAXBUF_SIZE; /* maximum frame length register */ ep->sen_minflr = PKT_MINBUF_SIZE; /* minimum frame length register */ ep->sen_maxd1 = PKT_MAXBLR_SIZE; /* maximum DMA1 length */ ep->sen_maxd2 = PKT_MAXBLR_SIZE; /* maximum DMA2 length */ /* Clear hash tables. */ ep->sen_gaddr1 = 0; ep->sen_gaddr2 = 0; ep->sen_gaddr3 = 0; ep->sen_gaddr4 = 0; ep->sen_iaddr1 = 0; ep->sen_iaddr2 = 0; ep->sen_iaddr3 = 0; ep->sen_iaddr4 = 0; /* Set Ethernet station address. * * If we performed a MBX diskless boot, the Ethernet controller * has been initialized and we copy the address out into our * own structure. * * All other types of boards supply the address in the board * information structure, so we copy that into the controller. */ eap = (unsigned char *)&(ep->sen_paddrh); #ifndef CONFIG_MBX for (i=5; i>=0; i--) *eap++ = dev->dev_addr[i] = bd->bi_enetaddr[i]; #else for (i=5; i>=0; i--) dev->dev_addr[i] = *eap++; #endif ep->sen_pper = 0; /* 'cause the book says so */ ep->sen_taddrl = 0; /* temp address (LSB) */ ep->sen_taddrm = 0; ep->sen_taddrh = 0; /* temp address (MSB) */ /* Now allocate the host memory pages and initialize the * buffer descriptors. */ bdp = cep->tx_bd_base; for (i=0; icbd_sc = 0; bdp->cbd_bufaddr = 0; bdp++; } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; bdp = cep->rx_bd_base; for (i=0; imm->mmap, mem_addr); /* Initialize the BD for every fragment in the page. */ for (j=0; jcbd_sc = BD_ENET_RX_EMPTY | BD_ENET_RX_INTR; bdp->cbd_bufaddr = __pa(mem_addr); mem_addr += CPM_ENET_RX_FRSIZE; bdp++; } } /* Set the last buffer to wrap. */ bdp--; bdp->cbd_sc |= BD_SC_WRAP; /* Let's re-initialize the channel now. We have to do it later * than the manual describes because we have just now finished * the BD initialization. */ cp->cp_cpcr = mk_cr_cmd(CPM_CR_ENET, CPM_CR_INIT_TRX) | CPM_CR_FLG; while (cp->cp_cpcr & CPM_CR_FLG); cep->skb_cur = cep->skb_dirty = 0; sccp->scc_scce = 0xffff; /* Clear any pending events */ /* Enable interrupts for transmit error, complete frame * received, and any transmit buffer we have also set the * interrupt flag. */ sccp->scc_sccm = (SCCE_ENET_TXE | SCCE_ENET_RXF | SCCE_ENET_TXB); /* Install our interrupt handler. */ cpm_install_handler(CPMVEC_ENET, cpm_enet_interrupt, dev); /* Set GSMR_H to enable all normal operating modes. * Set GSMR_L to enable Ethernet to MC68160. */ sccp->scc_gsmrh = 0; sccp->scc_gsmrl = (SCC_GSMRL_TCI | SCC_GSMRL_TPL_48 | SCC_GSMRL_TPP_10 | SCC_GSMRL_MODE_ENET); /* Set sync/delimiters. */ sccp->scc_dsr = 0xd555; /* Set processing mode. Use Ethernet CRC, catch broadcast, and * start frame search 22 bit times after RENA. */ sccp->scc_pmsr = (SCC_PMSR_ENCRC | SCC_PMSR_NIB22); /* It is now OK to enable the Ethernet transmitter. * Unfortunately, there are board implementation differences here. */ #ifdef CONFIG_MBX immap->im_ioport.iop_pcpar |= PC_ENET_TENA; immap->im_ioport.iop_pcdir &= ~PC_ENET_TENA; #endif #if defined(CONFIG_RPXLITE) || defined(CONFIG_RPXCLASSIC) cp->cp_pbpar |= PB_ENET_TENA; cp->cp_pbdir |= PB_ENET_TENA; /* And while we are here, set the configuration to enable ethernet. */ *((volatile uint *)RPX_CSR_ADDR) &= ~BCSR0_ETHLPBK; *((volatile uint *)RPX_CSR_ADDR) |= (BCSR0_ETHEN | BCSR0_COLTESTDIS | BCSR0_FULLDPLXDIS); #endif #ifdef CONFIG_BSEIP cp->cp_pbpar |= PB_ENET_TENA; cp->cp_pbdir |= PB_ENET_TENA; /* BSE uses port B and C for PHY control. */ cp->cp_pbpar &= ~(PB_BSE_POWERUP | PB_BSE_FDXDIS); cp->cp_pbdir |= (PB_BSE_POWERUP | PB_BSE_FDXDIS); cp->cp_pbdat |= (PB_BSE_POWERUP | PB_BSE_FDXDIS); immap->im_ioport.iop_pcpar &= ~PC_BSE_LOOPBACK; immap->im_ioport.iop_pcdir |= PC_BSE_LOOPBACK; immap->im_ioport.iop_pcso &= ~PC_BSE_LOOPBACK; immap->im_ioport.iop_pcdat &= ~PC_BSE_LOOPBACK; #endif dev->base_addr = (unsigned long)ep; dev->priv = cep; #if 0 dev->name = "CPM_ENET"; #endif /* The CPM Ethernet specific entries in the device structure. */ dev->open = cpm_enet_open; dev->hard_start_xmit = cpm_enet_start_xmit; dev->stop = cpm_enet_close; dev->get_stats = cpm_enet_get_stats; dev->set_multicast_list = set_multicast_list; /* And last, enable the transmit and receive processing. */ sccp->scc_gsmrl |= (SCC_GSMRL_ENR | SCC_GSMRL_ENT); printk("%s: CPM ENET Version 0.2, ", dev->name); for (i=0; i<5; i++) printk("%02x:", dev->dev_addr[i]); printk("%02x\n", dev->dev_addr[5]); return 0; }