/* * linux/arch/ppc/kernel/process.c * * Derived from "arch/i386/kernel/process.c" * Copyright (C) 1995 Linus Torvalds * * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and * Paul Mackerras (paulus@cs.anu.edu.au) * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs); void switch_to(struct task_struct *, struct task_struct *); extern unsigned long _get_SP(void); extern spinlock_t scheduler_lock; #undef SHOW_TASK_SWITCHES 1 #undef CHECK_STACK 1 unsigned long kernel_stack_top(struct task_struct *tsk) { return ((unsigned long)tsk) + sizeof(union task_union); } unsigned long task_top(struct task_struct *tsk) { return ((unsigned long)tsk) + sizeof(struct task_struct); } static struct vm_area_struct init_mmap = INIT_MMAP; static struct fs_struct init_fs = INIT_FS; static struct file * init_fd_array[NR_OPEN] = { NULL, }; static struct files_struct init_files = INIT_FILES; static struct signal_struct init_signals = INIT_SIGNALS; struct mm_struct init_mm = INIT_MM; union task_union init_task_union = { INIT_TASK }; /* only used to get secondary processor up */ struct task_struct *current_set[NR_CPUS] = {&init_task, }; int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs) { if (last_task_used_math == current) giveup_fpu(); memcpy(fpregs, ¤t->tss.fpr[0], sizeof(*fpregs)); return 1; } /* check to make sure the kernel stack is healthy */ int check_stack(struct task_struct *tsk) { unsigned long stack_top = kernel_stack_top(tsk); unsigned long tsk_top = task_top(tsk); int ret = 0; #if 0 /* check tss magic */ if ( tsk->tss.magic != TSS_MAGIC ) { ret |= 1; printk("tss.magic bad: %08x\n", tsk->tss.magic); } #endif if ( !tsk ) printk("check_stack(): tsk bad tsk %p\n",tsk); /* check if stored ksp is bad */ if ( (tsk->tss.ksp > stack_top) || (tsk->tss.ksp < tsk_top) ) { printk("stack out of bounds: %s/%d\n" " tsk_top %08lx ksp %08lx stack_top %08lx\n", tsk->comm,tsk->pid, tsk_top, tsk->tss.ksp, stack_top); ret |= 2; } /* check if stack ptr RIGHT NOW is bad */ if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) ) { printk("current stack ptr out of bounds: %s/%d\n" " tsk_top %08lx sp %08lx stack_top %08lx\n", current->comm,current->pid, tsk_top, _get_SP(), stack_top); ret |= 4; } #if 0 /* check amount of free stack */ for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ ) { if ( !i ) printk("check_stack(): i = %p\n", i); if ( *i != 0 ) { /* only notify if it's less than 900 bytes */ if ( (i - (unsigned long *)task_top(tsk)) < 900 ) printk("%d bytes free on stack\n", i - task_top(tsk)); break; } } #endif if (ret) { panic("bad kernel stack"); } return(ret); } void switch_to(struct task_struct *prev, struct task_struct *new) { struct thread_struct *new_tss, *old_tss; int s = _disable_interrupts(); #if CHECK_STACK check_stack(prev); check_stack(new); #endif #ifdef SHOW_TASK_SWITCHES printk("%s/%d -> %s/%d cpu %d\n", prev->comm,prev->pid, new->comm,new->pid,new->processor); #endif #ifdef __SMP__ /* bad news if last_task_used_math changes processors right now -- Cort */ if ( (last_task_used_math == new) && (new->processor != new->last_processor) ) panic("last_task_used_math switched processors"); /* be noisy about processor changes for debugging -- Cort */ if ( new->last_processor != new->processor ) printk("switch_to(): changing cpu's %d -> %d %s/%d\n", new->last_processor,new->processor, new->comm,new->pid); prev->last_processor = prev->processor; current_set[smp_processor_id()] = new; #endif /* __SMP__ */ new_tss = &new->tss; old_tss = ¤t->tss; _switch(old_tss, new_tss, new->mm->context); _enable_interrupts(s); } asmlinkage int sys_debug(long a, long b, long c, long d, long e, long f,struct pt_regs *regs) { return 0; } void show_regs(struct pt_regs * regs) { int i; printk("NIP: %08lX XER: %08lX LR: %08lX REGS: %p TRAP: %04lx\n", regs->nip, regs->xer, regs->link, regs,regs->trap); printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n", regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0, regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0, regs->msr&MSR_IR ? 1 : 0, regs->msr&MSR_DR ? 1 : 0); printk("TASK = %p[%d] '%s' mm->pgd %p ", current, current->pid, current->comm, current->mm->pgd); printk("Last syscall: %ld ", current->tss.last_syscall); printk("\nlast math %p", last_task_used_math); #ifdef __SMP__ printk(" CPU: %d last CPU: %d", current->processor,current->last_processor); #endif /* __SMP__ */ printk("\n"); for (i = 0; i < 32; i++) { long r; if ((i % 8) == 0) { printk("GPR%02d: ", i); } if ( __get_user(r, &(regs->gpr[i])) ) goto out; printk("%08lX ", r); if ((i % 8) == 7) { printk("\n"); } } out: } void exit_thread(void) { if (last_task_used_math == current) last_task_used_math = NULL; } void flush_thread(void) { if (last_task_used_math == current) last_task_used_math = NULL; } void release_thread(struct task_struct *t) { } /* * Copy a thread.. */ int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, struct task_struct * p, struct pt_regs * regs) { struct pt_regs * childregs; /* Copy registers */ childregs = ((struct pt_regs *) ((unsigned long)p + sizeof(union task_union) - STACK_FRAME_OVERHEAD)) - 2; *childregs = *regs; if ((childregs->msr & MSR_PR) == 0) childregs->gpr[2] = (unsigned long) p; /* `current' in new task */ childregs->gpr[3] = 0; /* Result from fork() */ p->tss.ksp = (unsigned long) childregs - STACK_FRAME_OVERHEAD; p->tss.regs = childregs; if (usp >= (unsigned long) regs) { /* Stack is in kernel space - must adjust */ childregs->gpr[1] = (unsigned long)(childregs + 1); } else { /* Provided stack is in user space */ childregs->gpr[1] = usp; } p->tss.last_syscall = -1; /* * copy fpu info - assume lazy fpu switch now always * -- Cort */ if ( last_task_used_math == current ) giveup_fpu(); memcpy(&p->tss.fpr, ¤t->tss.fpr, sizeof(p->tss.fpr)); p->tss.fpscr = current->tss.fpscr; childregs->msr &= ~MSR_FP; return 0; } /* * XXX ld.so expects the auxiliary table to start on * a 16-byte boundary, so we have to find it and * move it up. :-( */ static inline void shove_aux_table(unsigned long sp) { int argc; char *p; unsigned long e; unsigned long aux_start, offset; if (__get_user(argc, (int *)sp)) return; sp += sizeof(int) + (argc + 1) * sizeof(char *); /* skip over the environment pointers */ do { if (__get_user(p, (char **)sp)) return; sp += sizeof(char *); } while (p != NULL); aux_start = sp; /* skip to the end of the auxiliary table */ do { if (__get_user(e, (unsigned long *)sp)) return; sp += 2 * sizeof(unsigned long); } while (e != AT_NULL); offset = ((aux_start + 15) & ~15) - aux_start; if (offset != 0) { do { sp -= sizeof(unsigned long); if (__get_user(e, (unsigned long *)sp) || __put_user(e, (unsigned long *)(sp + offset))) return; } while (sp > aux_start); } } /* * Set up a thread for executing a new program */ void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp) { set_fs(USER_DS); regs->nip = nip; regs->gpr[1] = sp; regs->msr = MSR_USER; shove_aux_table(sp); } asmlinkage int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { int ret; lock_kernel(); ret = do_fork(SIGCHLD, regs->gpr[1], regs); #if 0/*def __SMP__*/ if ( ret ) /* drop scheduler lock in child */ scheduler_lock.lock = 0L; #endif /* __SMP__ */ unlock_kernel(); return ret; } asmlinkage int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs *regs) { int error; char * filename; lock_kernel(); filename = getname((char *) a0); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; if ( last_task_used_math == current ) last_task_used_math = NULL; error = do_execve(filename, (char **) a1, (char **) a2, regs); putname(filename); out: unlock_kernel(); return error; } asmlinkage int sys_clone(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { unsigned long clone_flags = p1; int res; lock_kernel(); res = do_fork(clone_flags, regs->gpr[1], regs); #ifdef __SMP__ /* When we clone the idle task we keep the same pid but * the return value of 0 for both causes problems. * -- Cort */ if ((current->pid == 0) && (current == &init_task)) res = 1; if ( 0 /*res*/ ) /* drop scheduler lock in child */ scheduler_lock.lock = 0L; #endif /* __SMP__ */ unlock_kernel(); return res; } void print_backtrace(unsigned long *sp) { int cnt = 0; unsigned long i; printk("Call backtrace: "); while (sp) { if (__get_user( i, &sp[1] )) break; if (cnt++ % 7 == 0) printk("\n"); printk("%08lX ", i); if (cnt > 32) break; if (__get_user(sp, (unsigned long **)sp)) break; } printk("\n"); } /* * Low level print for debugging - Cort */ int ll_printk(const char *fmt, ...) { va_list args; char buf[256]; int i; va_start(args, fmt); i=sprintf(buf,fmt,args); ll_puts(buf); va_end(args); return i; } int lines = 24, cols = 80; int orig_x = 0, orig_y = 0; void ll_puts(const char *s) { int x,y; char *vidmem = (char *)(_ISA_MEM_BASE + 0xB8000) /*0xC00B8000*/; char c; extern int mem_init_done; if ( mem_init_done ) /* assume this means we can printk */ { printk(s); return; } #if 0 if ( have_of ) { prom_print(s); return; } #endif /* * can't ll_puts on chrp without openfirmware yet. * vidmem just needs to be setup for it. * -- Cort */ if ( ! is_prep ) return; x = orig_x; y = orig_y; while ( ( c = *s++ ) != '\0' ) { if ( c == '\n' ) { x = 0; if ( ++y >= lines ) { /*scroll();*/ /*y--;*/ y = 0; } } else { vidmem [ ( x + cols * y ) * 2 ] = c; if ( ++x >= cols ) { x = 0; if ( ++y >= lines ) { /*scroll();*/ /*y--;*/ y = 0; } } } } orig_x = x; orig_y = y; }