/* * $Id: process.c,v 1.97 1999/09/14 19:07:42 cort Exp $ * * linux/arch/ppc/kernel/process.c * * Derived from "arch/i386/kernel/process.c" * Copyright (C) 1995 Linus Torvalds * * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and * Paul Mackerras (paulus@cs.anu.edu.au) * * PowerPC version * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs); extern unsigned long _get_SP(void); struct task_struct *last_task_used_math = NULL; struct task_struct *last_task_used_altivec = NULL; static struct vm_area_struct init_mmap = INIT_MMAP; static struct fs_struct init_fs = INIT_FS; static struct files_struct init_files = INIT_FILES; static struct signal_struct init_signals = INIT_SIGNALS; struct mm_struct init_mm = INIT_MM(init_mm); /* this is 16-byte aligned because it has a stack in it */ union task_union __attribute((aligned(16))) init_task_union = { INIT_TASK(init_task_union.task) }; /* only used to get secondary processor up */ struct task_struct *current_set[NR_CPUS] = {&init_task, }; char *sysmap = NULL; unsigned long sysmap_size = 0; #undef SHOW_TASK_SWITCHES 1 #undef CHECK_STACK 1 #if defined(CHECK_STACK) unsigned long kernel_stack_top(struct task_struct *tsk) { return ((unsigned long)tsk) + sizeof(union task_union); } unsigned long task_top(struct task_struct *tsk) { return ((unsigned long)tsk) + sizeof(struct task_struct); } /* check to make sure the kernel stack is healthy */ int check_stack(struct task_struct *tsk) { unsigned long stack_top = kernel_stack_top(tsk); unsigned long tsk_top = task_top(tsk); int ret = 0; #if 0 /* check thread magic */ if ( tsk->thread.magic != THREAD_MAGIC ) { ret |= 1; printk("thread.magic bad: %08x\n", tsk->thread.magic); } #endif if ( !tsk ) printk("check_stack(): tsk bad tsk %p\n",tsk); /* check if stored ksp is bad */ if ( (tsk->thread.ksp > stack_top) || (tsk->thread.ksp < tsk_top) ) { printk("stack out of bounds: %s/%d\n" " tsk_top %08lx ksp %08lx stack_top %08lx\n", tsk->comm,tsk->pid, tsk_top, tsk->thread.ksp, stack_top); ret |= 2; } /* check if stack ptr RIGHT NOW is bad */ if ( (tsk == current) && ((_get_SP() > stack_top ) || (_get_SP() < tsk_top)) ) { printk("current stack ptr out of bounds: %s/%d\n" " tsk_top %08lx sp %08lx stack_top %08lx\n", current->comm,current->pid, tsk_top, _get_SP(), stack_top); ret |= 4; } #if 0 /* check amount of free stack */ for ( i = (unsigned long *)task_top(tsk) ; i < kernel_stack_top(tsk) ; i++ ) { if ( !i ) printk("check_stack(): i = %p\n", i); if ( *i != 0 ) { /* only notify if it's less than 900 bytes */ if ( (i - (unsigned long *)task_top(tsk)) < 900 ) printk("%d bytes free on stack\n", i - task_top(tsk)); break; } } #endif if (ret) { panic("bad kernel stack"); } return(ret); } #endif /* defined(CHECK_STACK) */ #ifdef CONFIG_ALTIVEC int dump_altivec(struct pt_regs *regs, elf_vrregset_t *vrregs) { if (regs->msr & MSR_VEC) giveup_altivec(current); memcpy(vrregs, ¤t->thread.vr[0], sizeof(*vrregs)); return 1; } void enable_kernel_altivec(void) { #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) giveup_altivec(current); else giveup_altivec(NULL); /* just enable AltiVec for kernel - force */ #else giveup_altivec(last_task_used_altivec); #endif /* __SMP __ */ printk("MSR_VEC in enable_altivec_kernel\n"); } #endif /* CONFIG_ALTIVEC */ void enable_kernel_fp(void) { #ifdef CONFIG_SMP if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) giveup_fpu(current); else giveup_fpu(NULL); /* just enables FP for kernel */ #else giveup_fpu(last_task_used_math); #endif /* CONFIG_SMP */ } int dump_fpu(struct pt_regs *regs, elf_fpregset_t *fpregs) { if (regs->msr & MSR_FP) giveup_fpu(current); memcpy(fpregs, ¤t->thread.fpr[0], sizeof(*fpregs)); return 1; } void _switch_to(struct task_struct *prev, struct task_struct *new, struct task_struct **last) { struct thread_struct *new_thread, *old_thread; unsigned long s; __save_flags(s); __cli(); #if CHECK_STACK check_stack(prev); check_stack(new); #endif #ifdef SHOW_TASK_SWITCHES printk("%s/%d -> %s/%d NIP %08lx cpu %d root %x/%x\n", prev->comm,prev->pid, new->comm,new->pid,new->thread.regs->nip,new->processor, new->fs->root,prev->fs->root); #endif #ifdef CONFIG_SMP /* avoid complexity of lazy save/restore of fpu * by just saving it every time we switch out if * this task used the fpu during the last quantum. * * If it tries to use the fpu again, it'll trap and * reload its fp regs. So we don't have to do a restore * every switch, just a save. * -- Cort */ if ( prev->thread.regs && (prev->thread.regs->msr & MSR_FP) ) giveup_fpu(prev); #ifdef CONFIG_ALTIVEC /* * If the previous thread 1) has some altivec regs it wants saved * (has bits in vrsave set) and 2) used altivec in the last quantum * (thus changing altivec regs) then save them. * * On SMP we always save/restore altivec regs just to avoid the * complexity of changing processors. * -- Cort */ if ( (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC)) && prev->thread.vrsave ) giveup_altivec(prev); #endif /* CONFIG_ALTIVEC */ prev->last_processor = prev->processor; current_set[smp_processor_id()] = new; #endif /* CONFIG_SMP */ /* Avoid the trap. On smp this this never happens since * we don't set last_task_used_altivec -- Cort */ if ( last_task_used_altivec == new ) new->thread.regs->msr |= MSR_VEC; new_thread = &new->thread; old_thread = ¤t->thread; *last = _switch(old_thread, new_thread); __restore_flags(s); } void show_regs(struct pt_regs * regs) { int i; printk("NIP: %08lX XER: %08lX LR: %08lX REGS: %p TRAP: %04lx\n", regs->nip, regs->xer, regs->link, regs,regs->trap); printk("MSR: %08lx EE: %01x PR: %01x FP: %01x ME: %01x IR/DR: %01x%01x\n", regs->msr, regs->msr&MSR_EE ? 1 : 0, regs->msr&MSR_PR ? 1 : 0, regs->msr & MSR_FP ? 1 : 0,regs->msr&MSR_ME ? 1 : 0, regs->msr&MSR_IR ? 1 : 0, regs->msr&MSR_DR ? 1 : 0); printk("TASK = %p[%d] '%s' ", current, current->pid, current->comm); printk("Last syscall: %ld ", current->thread.last_syscall); printk("\nlast math %p last altivec %p", last_task_used_math, last_task_used_altivec); #ifdef CONFIG_SMP printk(" CPU: %d last CPU: %d", current->processor,current->last_processor); #endif /* CONFIG_SMP */ printk("\n"); for (i = 0; i < 32; i++) { long r; if ((i % 8) == 0) { printk("GPR%02d: ", i); } if ( __get_user(r, &(regs->gpr[i])) ) goto out; printk("%08lX ", r); if ((i % 8) == 7) { printk("\n"); } } out: } void exit_thread(void) { if (last_task_used_math == current) last_task_used_math = NULL; if (last_task_used_altivec == current) last_task_used_altivec = NULL; } void flush_thread(void) { if (last_task_used_math == current) last_task_used_math = NULL; if (last_task_used_altivec == current) last_task_used_altivec = NULL; } void release_thread(struct task_struct *t) { } /* * Copy a thread.. */ int copy_thread(int nr, unsigned long clone_flags, unsigned long usp, struct task_struct * p, struct pt_regs * regs) { unsigned long msr; struct pt_regs * childregs, *kregs; #ifdef CONFIG_SMP extern void ret_from_smpfork(void); #else extern void ret_from_except(void); #endif /* Copy registers */ childregs = ((struct pt_regs *) ((unsigned long)p + sizeof(union task_union) - STACK_FRAME_OVERHEAD)) - 2; *childregs = *regs; if ((childregs->msr & MSR_PR) == 0) childregs->gpr[2] = (unsigned long) p; /* `current' in new task */ childregs->gpr[3] = 0; /* Result from fork() */ p->thread.regs = childregs; p->thread.ksp = (unsigned long) childregs - STACK_FRAME_OVERHEAD; p->thread.ksp -= sizeof(struct pt_regs ) + STACK_FRAME_OVERHEAD; kregs = (struct pt_regs *)(p->thread.ksp + STACK_FRAME_OVERHEAD); #ifdef CONFIG_SMP kregs->nip = (unsigned long)ret_from_smpfork; #else kregs->nip = (unsigned long)ret_from_except; #endif asm volatile("mfmsr %0" : "=r" (msr):); kregs->msr = msr; kregs->gpr[1] = (unsigned long)childregs - STACK_FRAME_OVERHEAD; kregs->gpr[2] = (unsigned long)p; if (usp >= (unsigned long) regs) { /* Stack is in kernel space - must adjust */ childregs->gpr[1] = (unsigned long)(childregs + 1); } else { /* Provided stack is in user space */ childregs->gpr[1] = usp; } p->thread.last_syscall = -1; /* * copy fpu info - assume lazy fpu switch now always * -- Cort */ if (regs->msr & MSR_FP) giveup_fpu(current); memcpy(&p->thread.fpr, ¤t->thread.fpr, sizeof(p->thread.fpr)); p->thread.fpscr = current->thread.fpscr; childregs->msr &= ~MSR_FP; #ifdef CONFIG_ALTIVEC /* * copy altiVec info - assume lazy altiVec switch * - kumar */ if (regs->msr & MSR_VEC) giveup_altivec(current); memcpy(&p->thread.vr, ¤t->thread.vr, sizeof(p->thread.vr)); p->thread.vscr = current->thread.vscr; childregs->msr &= ~MSR_VEC; #endif /* CONFIG_ALTIVEC */ #ifdef CONFIG_SMP p->last_processor = NO_PROC_ID; #endif /* CONFIG_SMP */ return 0; } /* * XXX ld.so expects the auxiliary table to start on * a 16-byte boundary, so we have to find it and * move it up. :-( */ static inline void shove_aux_table(unsigned long sp) { int argc; char *p; unsigned long e; unsigned long aux_start, offset; if (__get_user(argc, (int *)sp)) return; sp += sizeof(int) + (argc + 1) * sizeof(char *); /* skip over the environment pointers */ do { if (__get_user(p, (char **)sp)) return; sp += sizeof(char *); } while (p != NULL); aux_start = sp; /* skip to the end of the auxiliary table */ do { if (__get_user(e, (unsigned long *)sp)) return; sp += 2 * sizeof(unsigned long); } while (e != AT_NULL); offset = ((aux_start + 15) & ~15) - aux_start; if (offset != 0) { do { sp -= sizeof(unsigned long); if (__get_user(e, (unsigned long *)sp) || __put_user(e, (unsigned long *)(sp + offset))) return; } while (sp > aux_start); } } /* * Set up a thread for executing a new program */ void start_thread(struct pt_regs *regs, unsigned long nip, unsigned long sp) { set_fs(USER_DS); regs->nip = nip; regs->gpr[1] = sp; regs->msr = MSR_USER; shove_aux_table(sp); if (last_task_used_math == current) last_task_used_math = 0; if (last_task_used_altivec == current) last_task_used_altivec = 0; current->thread.fpscr = 0; } asmlinkage int sys_clone(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { unsigned long clone_flags = p1; int res; lock_kernel(); res = do_fork(clone_flags, regs->gpr[1], regs); #ifdef CONFIG_SMP /* When we clone the idle task we keep the same pid but * the return value of 0 for both causes problems. * -- Cort */ if ((current->pid == 0) && (current == &init_task)) res = 1; #endif /* CONFIG_SMP */ unlock_kernel(); return res; } asmlinkage int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { int res; res = do_fork(SIGCHLD, regs->gpr[1], regs); #ifdef CONFIG_SMP /* When we clone the idle task we keep the same pid but * the return value of 0 for both causes problems. * -- Cort */ if ((current->pid == 0) && (current == &init_task)) res = 1; #endif /* CONFIG_SMP */ return res; } asmlinkage int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6, struct pt_regs *regs) { return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1], regs); } asmlinkage int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2, unsigned long a3, unsigned long a4, unsigned long a5, struct pt_regs *regs) { int error; char * filename; lock_kernel(); filename = getname((char *) a0); error = PTR_ERR(filename); if (IS_ERR(filename)) goto out; if (regs->msr & MSR_FP) giveup_fpu(current); #ifdef CONFIG_ALTIVEC if (regs->msr & MSR_VEC) giveup_altivec(current); #endif /* CONFIG_ALTIVEC */ error = do_execve(filename, (char **) a1, (char **) a2, regs); putname(filename); out: unlock_kernel(); return error; } void print_backtrace(unsigned long *sp) { int cnt = 0; unsigned long i; printk("Call backtrace: "); while (sp) { if (__get_user( i, &sp[1] )) break; if (cnt++ % 7 == 0) printk("\n"); printk("%08lX ", i); if (cnt > 32) break; if (__get_user(sp, (unsigned long **)sp)) break; } printk("\n"); } #if 0 /* * Low level print for debugging - Cort */ int __init ll_printk(const char *fmt, ...) { va_list args; char buf[256]; int i; va_start(args, fmt); i=vsprintf(buf,fmt,args); ll_puts(buf); va_end(args); return i; } int lines = 24, cols = 80; int orig_x = 0, orig_y = 0; void puthex(unsigned long val) { unsigned char buf[10]; int i; for (i = 7; i >= 0; i--) { buf[i] = "0123456789ABCDEF"[val & 0x0F]; val >>= 4; } buf[8] = '\0'; prom_print(buf); } void __init ll_puts(const char *s) { int x,y; char *vidmem = (char *)/*(_ISA_MEM_BASE + 0xB8000) */0xD00B8000; char c; extern int mem_init_done; if ( mem_init_done ) /* assume this means we can printk */ { printk(s); return; } #if 0 if ( have_of ) { prom_print(s); return; } #endif /* * can't ll_puts on chrp without openfirmware yet. * vidmem just needs to be setup for it. * -- Cort */ if ( _machine != _MACH_prep ) return; x = orig_x; y = orig_y; while ( ( c = *s++ ) != '\0' ) { if ( c == '\n' ) { x = 0; if ( ++y >= lines ) { /*scroll();*/ /*y--;*/ y = 0; } } else { vidmem [ ( x + cols * y ) * 2 ] = c; if ( ++x >= cols ) { x = 0; if ( ++y >= lines ) { /*scroll();*/ /*y--;*/ y = 0; } } } } orig_x = x; orig_y = y; } #endif /* * These bracket the sleeping functions.. */ extern void scheduling_functions_start_here(void); extern void scheduling_functions_end_here(void); #define first_sched ((unsigned long) scheduling_functions_start_here) #define last_sched ((unsigned long) scheduling_functions_end_here) unsigned long get_wchan(struct task_struct *p) { unsigned long ip, sp; unsigned long stack_page = (unsigned long) p; int count = 0; if (!p || p == current || p->state == TASK_RUNNING) return 0; sp = p->thread.ksp; do { sp = *(unsigned long *)sp; if (sp < stack_page || sp >= stack_page + 8188) return 0; if (count > 0) { ip = *(unsigned long *)(sp + 4); if (ip < first_sched || ip >= last_sched) return ip; } } while (count++ < 16); return 0; }