/* $Id: time.c,v 1.20 2000/02/28 12:42:51 gniibe Exp $ * * linux/arch/sh/kernel/time.c * * Copyright (C) 1999 Tetsuya Okada & Niibe Yutaka * * Some code taken from i386 version. * Copyright (C) 1991, 1992, 1995 Linus Torvalds */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define TMU_TOCR_INIT 0x00 #define TMU0_TCR_INIT 0x0020 #define TMU_TSTR_INIT 1 /* RCR1 Bits */ #define RCR1_CF 0x80 /* Carry Flag */ #define RCR1_CIE 0x10 /* Carry Interrupt Enable */ #define RCR1_AIE 0x08 /* Alarm Interrupt Enable */ #define RCR1_AF 0x01 /* Alarm Flag */ /* RCR2 Bits */ #define RCR2_PEF 0x80 /* PEriodic interrupt Flag */ #define RCR2_PESMASK 0x70 /* Periodic interrupt Set */ #define RCR2_RTCEN 0x08 /* ENable RTC */ #define RCR2_ADJ 0x04 /* ADJustment (30-second) */ #define RCR2_RESET 0x02 /* Reset bit */ #define RCR2_START 0x01 /* Start bit */ #define RTC_IRQ 22 #define RTC_IPR_OFFSET 0 #if defined(__sh3__) #define TMU_TOCR 0xfffffe90 /* Byte access */ #define TMU_TSTR 0xfffffe92 /* Byte access */ #define TMU0_TCOR 0xfffffe94 /* Long access */ #define TMU0_TCNT 0xfffffe98 /* Long access */ #define TMU0_TCR 0xfffffe9c /* Word access */ #define FRQCR 0xffffff80 /* SH-3 RTC */ #define R64CNT 0xfffffec0 #define RSECCNT 0xfffffec2 #define RMINCNT 0xfffffec4 #define RHRCNT 0xfffffec6 #define RWKCNT 0xfffffec8 #define RDAYCNT 0xfffffeca #define RMONCNT 0xfffffecc #define RYRCNT 0xfffffece #define RSECAR 0xfffffed0 #define RMINAR 0xfffffed2 #define RHRAR 0xfffffed4 #define RWKAR 0xfffffed6 #define RDAYAR 0xfffffed8 #define RMONAR 0xfffffeda #define RCR1 0xfffffedc #define RCR2 0xfffffede #elif defined(__SH4__) #define TMU_TOCR 0xffd80000 /* Byte access */ #define TMU_TSTR 0xffd80004 /* Byte access */ #define TMU0_TCOR 0xffd80008 /* Long access */ #define TMU0_TCNT 0xffd8000c /* Long access */ #define TMU0_TCR 0xffd80010 /* Word access */ #define FRQCR 0xffc00000 /* SH-4 RTC */ #define R64CNT 0xffc80000 #define RSECCNT 0xffc80004 #define RMINCNT 0xffc80008 #define RHRCNT 0xffc8000c #define RWKCNT 0xffc80010 #define RDAYCNT 0xffc80014 #define RMONCNT 0xffc80018 #define RYRCNT 0xffc8001c /* 16bit */ #define RSECAR 0xffc80020 #define RMINAR 0xffc80024 #define RHRAR 0xffc80028 #define RWKAR 0xffc8002c #define RDAYAR 0xffc80030 #define RMONAR 0xffc80034 #define RCR1 0xffc80038 #define RCR2 0xffc8003c #endif #ifndef BCD_TO_BIN #define BCD_TO_BIN(val) ((val)=((val)&15) + ((val)>>4)*10) #endif #ifndef BIN_TO_BCD #define BIN_TO_BCD(val) ((val)=(((val)/10)<<4) + (val)%10) #endif extern rwlock_t xtime_lock; #define TICK_SIZE tick void do_gettimeofday(struct timeval *tv) { extern volatile unsigned long lost_ticks; unsigned long flags; unsigned long usec, sec; read_lock_irqsave(&xtime_lock, flags); usec = 0; { unsigned long lost = lost_ticks; if (lost) usec += lost * (1000000 / HZ); } sec = xtime.tv_sec; usec += xtime.tv_usec; read_unlock_irqrestore(&xtime_lock, flags); while (usec >= 1000000) { usec -= 1000000; sec++; } tv->tv_sec = sec; tv->tv_usec = usec; } void do_settimeofday(struct timeval *tv) { write_lock_irq(&xtime_lock); xtime = *tv; time_adjust = 0; /* stop active adjtime() */ time_status |= STA_UNSYNC; time_maxerror = NTP_PHASE_LIMIT; time_esterror = NTP_PHASE_LIMIT; write_unlock_irq(&xtime_lock); } static int set_rtc_time(unsigned long nowtime) { int retval = 0; int real_seconds, real_minutes, cmos_minutes; ctrl_outb(RCR2_RESET, RCR2); /* Reset pre-scaler & stop RTC */ cmos_minutes = ctrl_inb(RMINCNT); BCD_TO_BIN(cmos_minutes); /* * since we're only adjusting minutes and seconds, * don't interfere with hour overflow. This avoids * messing with unknown time zones but requires your * RTC not to be off by more than 15 minutes */ real_seconds = nowtime % 60; real_minutes = nowtime / 60; if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) real_minutes += 30; /* correct for half hour time zone */ real_minutes %= 60; if (abs(real_minutes - cmos_minutes) < 30) { BIN_TO_BCD(real_seconds); BIN_TO_BCD(real_minutes); ctrl_outb(real_seconds, RSECCNT); ctrl_outb(real_minutes, RMINCNT); } else { printk(KERN_WARNING "set_rtc_time: can't update from %d to %d\n", cmos_minutes, real_minutes); retval = -1; } ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start RTC */ return retval; } /* last time the RTC clock got updated */ static long last_rtc_update = 0; /* * timer_interrupt() needs to keep up the real-time clock, * as well as call the "do_timer()" routine every clocktick */ static inline void do_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { do_timer(regs); #ifdef TAKESHI { unsigned long what_is_this=0xa4000124; ctrl_outb(ctrl_inb(what_is_this)+1,what_is_this); } #endif #if 0 if (!user_mode(regs)) sh_do_profile(regs->pc); #endif /* * If we have an externally synchronized Linux clock, then update * RTC clock accordingly every ~11 minutes. Set_rtc_mmss() has to be * called as close as possible to 500 ms before the new second starts. */ if ((time_status & STA_UNSYNC) == 0 && xtime.tv_sec > last_rtc_update + 660 && xtime.tv_usec >= 500000 - ((unsigned) tick) / 2 && xtime.tv_usec <= 500000 + ((unsigned) tick) / 2) { if (set_rtc_time(xtime.tv_sec) == 0) last_rtc_update = xtime.tv_sec; else last_rtc_update = xtime.tv_sec - 600; /* do it again in 60 s */ } } /* * This is the same as the above, except we _also_ save the current * Time Stamp Counter value at the time of the timer interrupt, so that * we later on can estimate the time of day more exactly. */ static void timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) { unsigned long timer_status; /* Clear UNF bit */ timer_status = ctrl_inw(TMU0_TCR); timer_status &= ~0x100; ctrl_outw(timer_status, TMU0_TCR); /* * Here we are in the timer irq handler. We just have irqs locally * disabled but we don't know if the timer_bh is running on the other * CPU. We need to avoid to SMP race with it. NOTE: we don' t need * the irq version of write_lock because as just said we have irq * locally disabled. -arca */ write_lock(&xtime_lock); do_timer_interrupt(irq, NULL, regs); write_unlock(&xtime_lock); } /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * WARNING: this function will overflow on 2106-02-07 06:28:16 on * machines were long is 32-bit! (However, as time_t is signed, we * will already get problems at other places on 2038-01-19 03:14:08) */ static inline unsigned long mktime(unsigned int year, unsigned int mon, unsigned int day, unsigned int hour, unsigned int min, unsigned int sec) { if (0 >= (int) (mon -= 2)) { /* 1..12 -> 11,12,1..10 */ mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((( (unsigned long)(year/4 - year/100 + year/400 + 367*mon/12 + day) + year*365 - 719499 )*24 + hour /* now have hours */ )*60 + min /* now have minutes */ )*60 + sec; /* finally seconds */ } static unsigned long get_rtc_time(void) { unsigned int sec, min, hr, wk, day, mon, yr, yr100; again: do { ctrl_outb(0, RCR1); /* Clear CF-bit */ sec = ctrl_inb(RSECCNT); min = ctrl_inb(RMINCNT); hr = ctrl_inb(RHRCNT); wk = ctrl_inb(RWKCNT); day = ctrl_inb(RDAYCNT); mon = ctrl_inb(RMONCNT); #if defined(__SH4__) yr = ctrl_inw(RYRCNT); yr100 = (yr >> 8); yr &= 0xff; #else yr = ctrl_inb(RYRCNT); yr100 = (yr == 0x99) ? 0x19 : 0x20; #endif } while ((ctrl_inb(RCR1) & RCR1_CF) != 0); BCD_TO_BIN(yr100); BCD_TO_BIN(yr); BCD_TO_BIN(mon); BCD_TO_BIN(day); BCD_TO_BIN(hr); BCD_TO_BIN(min); BCD_TO_BIN(sec); if (yr > 99 || mon < 1 || mon > 12 || day > 31 || day < 1 || hr > 23 || min > 59 || sec > 59) { printk(KERN_ERR "SH RTC: invalid value, resetting to 1 Jan 2000\n"); ctrl_outb(RCR2_RESET, RCR2); /* Reset & Stop */ ctrl_outb(0, RSECCNT); ctrl_outb(0, RMINCNT); ctrl_outb(0, RHRCNT); ctrl_outb(6, RWKCNT); ctrl_outb(1, RDAYCNT); ctrl_outb(1, RMONCNT); #if defined(__SH4__) ctrl_outw(0x2000, RYRCNT); #else ctrl_outb(0, RYRCNT); #endif ctrl_outb(RCR2_RTCEN|RCR2_START, RCR2); /* Start */ goto again; } return mktime(yr100 * 100 + yr, mon, day, hr, min, sec); } static __init unsigned int get_cpu_mhz(void) { unsigned int count; unsigned long __dummy; sti(); do {} while (ctrl_inb(R64CNT) != 0); ctrl_outb(RCR1_CIE, RCR1); /* Enable carry interrupt */ asm volatile( "1:\t" "tst %1,%1\n\t" "bt/s 1b\n\t" " add #1,%0" : "=r"(count), "=z" (__dummy) : "0" (0), "1" (0)); cli(); /* * SH-3: * CPU clock = 4 stages * loop * tst rm,rm if id ex * bt/s 1b if id ex * add #1,rd if id ex * (if) pipe line stole * tst rm,rm if id ex * .... * * * SH-4: * CPU clock = 6 stages * loop * I don't know why. * .... */ #if defined(__SH4__) return count*6; #else return count*4; #endif } static void rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) { ctrl_outb(0, RCR1); /* Disable Carry Interrupts */ regs->regs[0] = 1; } static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL}; static struct irqaction irq1 = { rtc_interrupt, SA_INTERRUPT, 0, "rtc", NULL, NULL}; void __init time_init(void) { unsigned int cpu_clock, master_clock, module_clock; unsigned short ifc, pfc; unsigned long interval; #if defined(__sh3__) static int ifc_table[] = { 1, 2, 4, 1, 3, 1, 1, 1 }; static int pfc_table[] = { 1, 2, 4, 1, 3, 6, 1, 1 }; #elif defined(__SH4__) static int ifc_table[] = { 1, 2, 3, 4, 6, 8, 1, 1 }; static int pfc_table[] = { 2, 3, 4, 6, 8, 2, 2, 2 }; #endif xtime.tv_sec = get_rtc_time(); xtime.tv_usec = 0; set_ipr_data(TIMER_IRQ, TIMER_IPR_OFFSET, TIMER_PRIORITY); setup_irq(TIMER_IRQ, &irq0); set_ipr_data(RTC_IRQ, RTC_IPR_OFFSET, TIMER_PRIORITY); setup_irq(RTC_IRQ, &irq1); /* Check how fast it is.. */ cpu_clock = get_cpu_mhz(); disable_irq(RTC_IRQ); printk("CPU clock: %d.%02dMHz\n", (cpu_clock / 1000000), (cpu_clock % 1000000)/10000); #if defined(__sh3__) { unsigned short tmp; tmp = (ctrl_inw(FRQCR) & 0x000c) >> 2; tmp |= (ctrl_inw(FRQCR) & 0x4000) >> 12; ifc = ifc_table[tmp & 0x0007]; tmp = ctrl_inw(FRQCR) & 0x0003; tmp |= (ctrl_inw(FRQCR) & 0x2000) >> 11; pfc = pfc_table[ctrl_inw(FRQCR) & 0x0007]; } #elif defined(__SH4__) ifc = ifc_table[(ctrl_inw(FRQCR)>> 6) & 0x0007]; pfc = pfc_table[ctrl_inw(FRQCR) & 0x0007]; #endif master_clock = cpu_clock * ifc; module_clock = master_clock/pfc; printk("Module clock: %d.%02dMHz\n", (module_clock/1000000), (module_clock % 1000000)/10000); interval = (module_clock/400); printk("Interval = %ld\n", interval); /* Start TMU0 */ ctrl_outb(TMU_TOCR_INIT, TMU_TOCR); ctrl_outw(TMU0_TCR_INIT, TMU0_TCR); ctrl_outl(interval, TMU0_TCOR); ctrl_outl(interval, TMU0_TCNT); ctrl_outb(TMU_TSTR_INIT, TMU_TSTR); }