/* smp.c: Sparc SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __KERNEL_SYSCALLS__ #include #define IRQ_RESCHEDULE 13 #define IRQ_STOP_CPU 14 #define IRQ_CROSS_CALL 15 extern ctxd_t *srmmu_ctx_table_phys; extern int linux_num_cpus; extern void calibrate_delay(void); /* XXX Let's get rid of this thing if we can... */ extern struct task_struct *current_set[NR_CPUS]; volatile int smp_processors_ready = 0; unsigned long cpu_present_map = 0; int smp_num_cpus = 1; int smp_threads_ready=0; unsigned char mid_xlate[NR_CPUS] = { 0, 0, 0, 0, }; volatile unsigned long cpu_callin_map[NR_CPUS] = {0,}; volatile unsigned long smp_spinning[NR_CPUS] = { 0, }; unsigned long smp_proc_in_lock[NR_CPUS] = { 0, }; struct cpuinfo_sparc cpu_data[NR_CPUS]; static unsigned char boot_cpu_id = 0; static int smp_activated = 0; volatile int cpu_number_map[NR_CPUS]; volatile int cpu_logical_map[NR_CPUS]; /* The only guaranteed locking primitive available on all Sparc * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically * places the current byte at the effective address into dest_reg and * places 0xff there afterwards. Pretty lame locking primitive * compared to the Alpha and the intel no? Most Sparcs have 'swap' * instruction which is much better... */ struct klock_info klock_info = { KLOCK_CLEAR, 0 }; volatile unsigned long ipi_count; #ifdef __SMP_PROF__ volatile unsigned long smp_spins[NR_CPUS]={0}; volatile unsigned long smp_spins_syscall[NR_CPUS]={0}; volatile unsigned long smp_spins_syscall_cur[NR_CPUS]={0}; volatile unsigned long smp_spins_sys_idle[NR_CPUS]={0}; volatile unsigned long smp_idle_count[1+NR_CPUS]={0,}; #endif #if defined (__SMP_PROF__) volatile unsigned long smp_idle_map=0; #endif volatile int smp_process_available=0; /*#define SMP_DEBUG*/ #ifdef SMP_DEBUG #define SMP_PRINTK(x) printk x #else #define SMP_PRINTK(x) #endif volatile int smp_commenced = 0; static char smp_buf[512]; /* Not supported on Sparc yet. */ void smp_setup(char *str, int *ints) { } char *smp_info(void) { sprintf(smp_buf, " CPU0\t\tCPU1\t\tCPU2\t\tCPU3\n" "State: %s\t\t%s\t\t%s\t\t%s\n", (cpu_present_map & 1) ? ((klock_info.akp == 0) ? "akp" : "online") : "offline", (cpu_present_map & 2) ? ((klock_info.akp == 1) ? "akp" : "online") : "offline", (cpu_present_map & 4) ? ((klock_info.akp == 2) ? "akp" : "online") : "offline", (cpu_present_map & 8) ? ((klock_info.akp == 3) ? "akp" : "online") : "offline"); return smp_buf; } static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swap [%1], %0\n\t" : "=&r" (val), "=&r" (ptr) : "0" (val), "1" (ptr)); return val; } /* * The bootstrap kernel entry code has set these up. Save them for * a given CPU */ void smp_store_cpu_info(int id) { cpu_data[id].udelay_val = loops_per_sec; /* this is it on sparc. */ } void smp_commence(void) { /* * Lets the callin's below out of their loop. */ local_flush_cache_all(); local_flush_tlb_all(); smp_commenced = 1; local_flush_cache_all(); local_flush_tlb_all(); } static void smp_setup_percpu_timer(void); void smp_callin(void) { int cpuid = hard_smp_processor_id(); local_flush_cache_all(); local_flush_tlb_all(); set_irq_udt(mid_xlate[boot_cpu_id]); /* Get our local ticker going. */ smp_setup_percpu_timer(); calibrate_delay(); smp_store_cpu_info(cpuid); local_flush_cache_all(); local_flush_tlb_all(); /* Allow master to continue. */ swap((unsigned long *)&cpu_callin_map[cpuid], 1); local_flush_cache_all(); local_flush_tlb_all(); while(!task[cpuid] || current_set[cpuid] != task[cpuid]) barrier(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r" (¤t_set[cpuid]) : "memory" /* paranoid */); current->mm->mmap->vm_page_prot = PAGE_SHARED; current->mm->mmap->vm_start = PAGE_OFFSET; current->mm->mmap->vm_end = init_task.mm->mmap->vm_end; while(!smp_commenced) barrier(); local_flush_cache_all(); local_flush_tlb_all(); __sti(); } extern int cpu_idle(void *unused); extern void init_IRQ(void); /* Only broken Intel needs this, thus it should not even be referenced * globally... */ void initialize_secondary(void) { } /* Activate a secondary processor. */ int start_secondary(void *unused) { trap_init(); init_IRQ(); smp_callin(); return cpu_idle(NULL); } void cpu_panic(void) { printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); panic("SMP bolixed\n"); } /* * Cycle through the processors asking the PROM to start each one. */ extern struct prom_cpuinfo linux_cpus[NCPUS]; static struct linux_prom_registers penguin_ctable; void smp_boot_cpus(void) { int cpucount = 0; int i = 0; int first, prev; printk("Entering SMP Mode...\n"); penguin_ctable.which_io = 0; penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; penguin_ctable.reg_size = 0; __sti(); cpu_present_map = 0; for(i=0; i < linux_num_cpus; i++) cpu_present_map |= (1<processor = boot_cpu_id; smp_store_cpu_info(boot_cpu_id); set_irq_udt(mid_xlate[boot_cpu_id]); smp_setup_percpu_timer(); local_flush_cache_all(); if(linux_num_cpus == 1) return; /* Not an MP box. */ for(i = 0; i < NR_CPUS; i++) { if(i == boot_cpu_id) continue; if(cpu_present_map & (1 << i)) { extern unsigned long sparc_cpu_startup; unsigned long *entry = &sparc_cpu_startup; struct task_struct *p; int timeout; /* Cook up an idler for this guy. */ kernel_thread(start_secondary, NULL, CLONE_PID); p = task[++cpucount]; p->processor = i; current_set[i] = p; /* See trampoline.S for details... */ entry += ((i-1) * 3); /* whirrr, whirrr, whirrrrrrrrr... */ printk("Starting CPU %d at %p\n", i, entry); mid_xlate[i] = (linux_cpus[i].mid & ~8); local_flush_cache_all(); prom_startcpu(linux_cpus[i].prom_node, &penguin_ctable, 0, (char *)entry); /* wheee... it's going... */ for(timeout = 0; timeout < 5000000; timeout++) { if(cpu_callin_map[i]) break; udelay(100); } if(cpu_callin_map[i]) { /* Another "Red Snapper". */ cpu_number_map[i] = i; cpu_logical_map[i] = i; } else { cpucount--; printk("Processor %d is stuck.\n", i); } } if(!(cpu_callin_map[i])) { cpu_present_map &= ~(1 << i); cpu_number_map[i] = -1; } } local_flush_cache_all(); if(cpucount == 0) { printk("Error: only one Processor found.\n"); cpu_present_map = (1 << smp_processor_id()); } else { unsigned long bogosum = 0; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) bogosum += cpu_data[i].udelay_val; } printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n", cpucount + 1, (bogosum + 2500)/500000, ((bogosum + 2500)/5000)%100); smp_activated = 1; smp_num_cpus = cpucount + 1; } /* Setup CPU list for IRQ distribution scheme. */ first = prev = -1; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) { if(first == -1) first = i; if(prev != -1) cpu_data[i].next = i; cpu_data[i].mid = mid_xlate[i]; prev = i; } } cpu_data[prev].next = first; /* Ok, they are spinning and ready to go. */ smp_processors_ready = 1; } /* At each hardware IRQ, we get this called to forward IRQ reception * to the next processor. The caller must disable the IRQ level being * serviced globally so that there are no double interrupts received. */ void smp_irq_rotate(int cpu) { if(smp_processors_ready) set_irq_udt(cpu_data[cpu_data[cpu].next].mid); } /* Cross calls, in order to work efficiently and atomically do all * the message passing work themselves, only stopcpu and reschedule * messages come through here. */ void smp_message_pass(int target, int msg, unsigned long data, int wait) { static unsigned long smp_cpu_in_msg[NR_CPUS]; unsigned long mask; int me = smp_processor_id(); int irq, i; if(msg == MSG_RESCHEDULE) { irq = IRQ_RESCHEDULE; if(smp_cpu_in_msg[me]) return; } else if(msg == MSG_STOP_CPU) { irq = IRQ_STOP_CPU; } else { goto barf; } smp_cpu_in_msg[me]++; if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) { mask = cpu_present_map; if(target == MSG_ALL_BUT_SELF) mask &= ~(1 << me); for(i = 0; i < 4; i++) { if(mask & (1 << i)) set_cpu_int(mid_xlate[i], irq); } } else { set_cpu_int(mid_xlate[target], irq); } smp_cpu_in_msg[me]--; return; barf: printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me); panic("Bogon SMP message pass."); } struct smp_funcall { smpfunc_t func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */ unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */ } ccall_info; static spinlock_t cross_call_lock = SPIN_LOCK_UNLOCKED; /* Cross calls must be serialized, at least currently. */ void smp_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { if(smp_processors_ready) { register int ncpus = smp_num_cpus; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); /* Init function glue. */ ccall_info.func = func; ccall_info.arg1 = arg1; ccall_info.arg2 = arg2; ccall_info.arg3 = arg3; ccall_info.arg4 = arg4; ccall_info.arg5 = arg5; /* Init receive/complete mapping, plus fire the IPI's off. */ { register void (*send_ipi)(int,int) = set_cpu_int; register unsigned long mask; register int i; mask = (cpu_present_map & ~(1 << smp_processor_id())); for(i = 0; i < ncpus; i++) { if(mask & (1 << i)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; send_ipi(mid_xlate[i], IRQ_CROSS_CALL); } else { ccall_info.processors_in[i] = 1; ccall_info.processors_out[i] = 1; } } } /* First, run local copy. */ func(arg1, arg2, arg3, arg4, arg5); { register int i; i = 0; do { while(!ccall_info.processors_in[i]) barrier(); } while(++i < ncpus); i = 0; do { while(!ccall_info.processors_out[i]) barrier(); } while(++i < ncpus); } spin_unlock_irqrestore(&cross_call_lock, flags); } else func(arg1, arg2, arg3, arg4, arg5); /* Just need to run local copy. */ } void smp_flush_cache_all(void) { xc0((smpfunc_t) local_flush_cache_all); } void smp_flush_tlb_all(void) { xc0((smpfunc_t) local_flush_tlb_all); } void smp_flush_cache_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_cache_mm(mm); else xc1((smpfunc_t) local_flush_cache_mm, (unsigned long) mm); } } void smp_flush_tlb_mm(struct mm_struct *mm) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) { local_flush_tlb_mm(mm); } else { xc1((smpfunc_t) local_flush_tlb_mm, (unsigned long) mm); if(mm->count == 1 && current->mm == mm) mm->cpu_vm_mask = (1 << smp_processor_id()); } } } void smp_flush_cache_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_cache_range(mm, start, end); else xc3((smpfunc_t) local_flush_cache_range, (unsigned long) mm, start, end); } } void smp_flush_tlb_range(struct mm_struct *mm, unsigned long start, unsigned long end) { if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_tlb_range(mm, start, end); else xc3((smpfunc_t) local_flush_tlb_range, (unsigned long) mm, start, end); } } void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_cache_page(vma, page); else xc2((smpfunc_t) local_flush_cache_page, (unsigned long) vma, page); } } void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; if(mm->context != NO_CONTEXT) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_tlb_page(vma, page); else xc2((smpfunc_t) local_flush_tlb_page, (unsigned long) vma, page); } } void smp_flush_page_to_ram(unsigned long page) { /* Current theory is that those who call this are the one's * who have just dirtied their cache with the pages contents * in kernel space, therefore we only run this on local cpu. * * XXX This experiment failed, research further... -DaveM */ #if 1 xc1((smpfunc_t) local_flush_page_to_ram, page); #else local_flush_page_to_ram(page); #endif } void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { if(mm->cpu_vm_mask == (1 << smp_processor_id())) local_flush_sig_insns(mm, insn_addr); else xc2((smpfunc_t) local_flush_sig_insns, (unsigned long) mm, insn_addr); } /* Reschedule call back. */ void smp_reschedule_irq(void) { resched_force(); } /* Running cross calls. */ void smp_cross_call_irq(void) { int i = smp_processor_id(); ccall_info.processors_in[i] = 1; ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } /* Stopping processors. */ void smp_stop_cpu_irq(void) { __sti(); while(1) barrier(); } /* Protects counters touched during level14 ticker */ spinlock_t ticker_lock = SPIN_LOCK_UNLOCKED; /* 32-bit Sparc specific profiling function. */ static inline void sparc_do_profile(unsigned long pc) { if(prof_buffer && current->pid) { extern int _stext; pc -= (unsigned long) &_stext; pc >>= prof_shift; spin_lock(&ticker_lock); if(pc < prof_len) prof_buffer[pc]++; else prof_buffer[prof_len - 1]++; spin_unlock(&ticker_lock); } } volatile unsigned long smp_local_timer_ticks[1+NR_CPUS]={0,}; unsigned int prof_multiplier[NR_CPUS]; unsigned int prof_counter[NR_CPUS]; extern void update_one_process(struct task_struct *p, unsigned long ticks, unsigned long user, unsigned long system); void smp_percpu_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); clear_profile_irq(mid_xlate[cpu]); if(!user_mode(regs)) sparc_do_profile(regs->pc); if(!--prof_counter[cpu]) { int user = user_mode(regs); if(current->pid) { update_one_process(current, 1, user, !user); if(--current->counter < 0) { current->counter = 0; resched_force(); } spin_lock(&ticker_lock); if(user) { if(current->priority < DEF_PRIORITY) kstat.cpu_nice++; else kstat.cpu_user++; } else { kstat.cpu_system++; } spin_unlock(&ticker_lock); } prof_counter[cpu] = prof_multiplier[cpu]; } #ifdef __SMP_PROF__ smp_local_timer_ticks[cpu]++; #endif } extern unsigned int lvl14_resolution; static void smp_setup_percpu_timer(void) { int cpu = smp_processor_id(); prof_counter[cpu] = prof_multiplier[cpu] = 1; load_profile_irq(mid_xlate[cpu], lvl14_resolution); if(cpu == boot_cpu_id) enable_pil_irq(14); } int setup_profiling_timer(unsigned int multiplier) { int i; unsigned long flags; /* Prevent level14 ticker IRQ flooding. */ if((!multiplier) || (lvl14_resolution / multiplier) < 500) return -EINVAL; save_and_cli(flags); for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) { load_profile_irq(mid_xlate[i], lvl14_resolution / multiplier); prof_multiplier[i] = multiplier; } } restore_flags(flags); return 0; }