/* sun4m_smp.c: Sparc SUN4M SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include /* for CONFIG_PROFILE */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __KERNEL_SYSCALLS__ #include #define IRQ_RESCHEDULE 13 #define IRQ_STOP_CPU 14 #define IRQ_CROSS_CALL 15 extern ctxd_t *srmmu_ctx_table_phys; extern int linux_num_cpus; extern void calibrate_delay(void); extern struct task_struct *current_set[NR_CPUS]; extern volatile int smp_processors_ready; extern unsigned long cpu_present_map; extern int smp_num_cpus; extern int smp_threads_ready; extern unsigned char mid_xlate[NR_CPUS]; extern volatile unsigned long cpu_callin_map[NR_CPUS]; extern unsigned long smp_proc_in_lock[NR_CPUS]; extern struct cpuinfo_sparc cpu_data[NR_CPUS]; extern unsigned long cpu_offset[NR_CPUS]; extern unsigned char boot_cpu_id; extern int smp_activated; extern volatile int cpu_number_map[NR_CPUS]; extern volatile int __cpu_logical_map[NR_CPUS]; extern struct klock_info klock_info; extern volatile unsigned long ipi_count; extern volatile int smp_process_available; extern volatile int smp_commenced; extern int __smp4m_processor_id(void); /*#define SMP_DEBUG*/ #ifdef SMP_DEBUG #define SMP_PRINTK(x) printk x #else #define SMP_PRINTK(x) #endif int smp4m_bogo_info(char *buf) { return sprintf(buf, "Cpu0Bogo\t: %lu.%02lu\n" "Cpu1Bogo\t: %lu.%02lu\n" "Cpu2Bogo\t: %lu.%02lu\n" "Cpu3Bogo\t: %lu.%02lu\n", cpu_data[0].udelay_val/500000, (cpu_data[0].udelay_val/5000)%100, cpu_data[1].udelay_val/500000, (cpu_data[1].udelay_val/5000)%100, cpu_data[2].udelay_val/500000, (cpu_data[2].udelay_val/5000)%100, cpu_data[3].udelay_val/500000, (cpu_data[3].udelay_val/5000)%100); } int smp4m_info(char *buf) { return sprintf(buf, " CPU0\t\tCPU1\t\tCPU2\t\tCPU3\n" "State: %s\t\t%s\t\t%s\t\t%s\n", (cpu_present_map & 1) ? ((klock_info.akp == 0) ? "akp" : "online") : "offline", (cpu_present_map & 2) ? ((klock_info.akp == 1) ? "akp" : "online") : "offline", (cpu_present_map & 4) ? ((klock_info.akp == 2) ? "akp" : "online") : "offline", (cpu_present_map & 8) ? ((klock_info.akp == 3) ? "akp" : "online") : "offline"); } static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swap [%1], %0\n\t" : "=&r" (val), "=&r" (ptr) : "0" (val), "1" (ptr)); return val; } static void smp_setup_percpu_timer(void); extern void cpu_probe(void); __initfunc(void smp4m_callin(void)) { int cpuid = hard_smp_processor_id(); local_flush_cache_all(); local_flush_tlb_all(); set_irq_udt(mid_xlate[boot_cpu_id]); /* Get our local ticker going. */ smp_setup_percpu_timer(); calibrate_delay(); smp_store_cpu_info(cpuid); local_flush_cache_all(); local_flush_tlb_all(); /* Allow master to continue. */ swap((unsigned long *)&cpu_callin_map[cpuid], 1); local_flush_cache_all(); local_flush_tlb_all(); cpu_probe(); while(!task[cpuid] || current_set[cpuid] != task[cpuid]) barrier(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r" (¤t_set[cpuid]) : "memory" /* paranoid */); current->mm->mmap->vm_page_prot = PAGE_SHARED; current->mm->mmap->vm_start = PAGE_OFFSET; current->mm->mmap->vm_end = init_task.mm->mmap->vm_end; while(!smp_commenced) barrier(); local_flush_cache_all(); local_flush_tlb_all(); __sti(); } extern int cpu_idle(void *unused); extern void init_IRQ(void); extern void cpu_panic(void); extern int start_secondary(void *unused); /* * Cycle through the processors asking the PROM to start each one. */ extern struct prom_cpuinfo linux_cpus[NR_CPUS]; extern struct linux_prom_registers smp_penguin_ctable; extern unsigned long trapbase_cpu1[]; extern unsigned long trapbase_cpu2[]; extern unsigned long trapbase_cpu3[]; __initfunc(void smp4m_boot_cpus(void)) { int cpucount = 0; int i = 0; int first, prev; printk("Entering SMP Mode...\n"); smp_penguin_ctable.which_io = 0; smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; smp_penguin_ctable.reg_size = 0; for (i = 0; i < NR_CPUS; i++) cpu_offset[i] = (char *)&cpu_data[i] - (char *)&cpu_data; __sti(); cpu_present_map = 0; for(i=0; i < linux_num_cpus; i++) cpu_present_map |= (1<processor = boot_cpu_id; smp_store_cpu_info(boot_cpu_id); set_irq_udt(mid_xlate[boot_cpu_id]); smp_setup_percpu_timer(); local_flush_cache_all(); if(linux_num_cpus == 1) return; /* Not an MP box. */ for(i = 0; i < NR_CPUS; i++) { if(i == boot_cpu_id) continue; if(cpu_present_map & (1 << i)) { extern unsigned long sun4m_cpu_startup; unsigned long *entry = &sun4m_cpu_startup; struct task_struct *p; int timeout; /* Cook up an idler for this guy. */ kernel_thread(start_secondary, NULL, CLONE_PID); p = task[++cpucount]; p->processor = i; current_set[i] = p; /* See trampoline.S for details... */ entry += ((i-1) * 3); /* whirrr, whirrr, whirrrrrrrrr... */ printk("Starting CPU %d at %p\n", i, entry); mid_xlate[i] = (linux_cpus[i].mid & ~8); local_flush_cache_all(); prom_startcpu(linux_cpus[i].prom_node, &smp_penguin_ctable, 0, (char *)entry); /* wheee... it's going... */ for(timeout = 0; timeout < 5000000; timeout++) { if(cpu_callin_map[i]) break; udelay(100); } if(cpu_callin_map[i]) { /* Another "Red Snapper". */ cpu_number_map[i] = i; __cpu_logical_map[i] = i; } else { cpucount--; printk("Processor %d is stuck.\n", i); } } if(!(cpu_callin_map[i])) { cpu_present_map &= ~(1 << i); cpu_number_map[i] = -1; } } local_flush_cache_all(); if(cpucount == 0) { printk("Error: only one Processor found.\n"); cpu_present_map = (1 << smp_processor_id()); } else { unsigned long bogosum = 0; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) bogosum += cpu_data[i].udelay_val; } printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n", cpucount + 1, (bogosum + 2500)/500000, ((bogosum + 2500)/5000)%100); smp_activated = 1; smp_num_cpus = cpucount + 1; } /* Setup CPU list for IRQ distribution scheme. */ first = prev = -1; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) { if(first == -1) first = i; if(prev != -1) cpu_data[prev].next = i; cpu_data[i].mid = mid_xlate[i]; prev = i; } } cpu_data[prev].next = first; /* Free unneeded trap tables */ if (!(cpu_present_map & (1 << 1))) { mem_map[MAP_NR((unsigned long)trapbase_cpu1)].flags &= ~(1 << PG_reserved); free_page((unsigned long)trapbase_cpu1); } if (!(cpu_present_map & (1 << 2))) { mem_map[MAP_NR((unsigned long)trapbase_cpu2)].flags &= ~(1 << PG_reserved); free_page((unsigned long)trapbase_cpu2); } if (!(cpu_present_map & (1 << 3))) { mem_map[MAP_NR((unsigned long)trapbase_cpu3)].flags &= ~(1 << PG_reserved); free_page((unsigned long)trapbase_cpu3); } /* Ok, they are spinning and ready to go. */ smp_processors_ready = 1; } /* At each hardware IRQ, we get this called to forward IRQ reception * to the next processor. The caller must disable the IRQ level being * serviced globally so that there are no double interrupts received. */ void smp4m_irq_rotate(int cpu) { if(smp_processors_ready) set_irq_udt(cpu_data[cpu_data[cpu].next].mid); } /* Cross calls, in order to work efficiently and atomically do all * the message passing work themselves, only stopcpu and reschedule * messages come through here. */ void smp4m_message_pass(int target, int msg, unsigned long data, int wait) { static unsigned long smp_cpu_in_msg[NR_CPUS]; unsigned long mask; int me = smp_processor_id(); int irq, i; if(msg == MSG_RESCHEDULE) { irq = IRQ_RESCHEDULE; if(smp_cpu_in_msg[me]) return; } else if(msg == MSG_STOP_CPU) { irq = IRQ_STOP_CPU; } else { goto barf; } smp_cpu_in_msg[me]++; if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) { mask = cpu_present_map; if(target == MSG_ALL_BUT_SELF) mask &= ~(1 << me); for(i = 0; i < 4; i++) { if(mask & (1 << i)) set_cpu_int(mid_xlate[i], irq); } } else { set_cpu_int(mid_xlate[target], irq); } smp_cpu_in_msg[me]--; return; barf: printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me); panic("Bogon SMP message pass."); } static struct smp_funcall { smpfunc_t func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */ unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */ } ccall_info; static spinlock_t cross_call_lock = SPIN_LOCK_UNLOCKED; /* Cross calls must be serialized, at least currently. */ void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { if(smp_processors_ready) { register int ncpus = smp_num_cpus; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); /* Init function glue. */ ccall_info.func = func; ccall_info.arg1 = arg1; ccall_info.arg2 = arg2; ccall_info.arg3 = arg3; ccall_info.arg4 = arg4; ccall_info.arg5 = arg5; /* Init receive/complete mapping, plus fire the IPI's off. */ { register unsigned long mask; register int i; mask = (cpu_present_map & ~(1 << smp_processor_id())); for(i = 0; i < ncpus; i++) { if(mask & (1 << i)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; set_cpu_int(mid_xlate[i], IRQ_CROSS_CALL); } else { ccall_info.processors_in[i] = 1; ccall_info.processors_out[i] = 1; } } } /* First, run local copy. */ func(arg1, arg2, arg3, arg4, arg5); { register int i; i = 0; do { while(!ccall_info.processors_in[i]) barrier(); } while(++i < ncpus); i = 0; do { while(!ccall_info.processors_out[i]) barrier(); } while(++i < ncpus); } spin_unlock_irqrestore(&cross_call_lock, flags); } else func(arg1, arg2, arg3, arg4, arg5); /* Just need to run local copy. */ } /* Running cross calls. */ void smp4m_cross_call_irq(void) { int i = smp_processor_id(); ccall_info.processors_in[i] = 1; ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } /* Protects counters touched during level14 ticker */ static spinlock_t ticker_lock = SPIN_LOCK_UNLOCKED; #ifdef CONFIG_PROFILE /* 32-bit Sparc specific profiling function. */ static inline void sparc_do_profile(unsigned long pc) { if(prof_buffer && current->pid) { extern int _stext; pc -= (unsigned long) &_stext; pc >>= prof_shift; spin_lock(&ticker_lock); if(pc < prof_len) prof_buffer[pc]++; else prof_buffer[prof_len - 1]++; spin_unlock(&ticker_lock); } } #endif extern unsigned int prof_multiplier[NR_CPUS]; extern unsigned int prof_counter[NR_CPUS]; extern void update_one_process(struct task_struct *p, unsigned long ticks, unsigned long user, unsigned long system, int cpu); void smp4m_percpu_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); clear_profile_irq(mid_xlate[cpu]); #ifdef CONFIG_PROFILE if(!user_mode(regs)) sparc_do_profile(regs->pc); #endif if(!--prof_counter[cpu]) { int user = user_mode(regs); if(current->pid) { update_one_process(current, 1, user, !user, cpu); if(--current->counter < 0) { current->counter = 0; need_resched = 1; } spin_lock(&ticker_lock); if(user) { if(current->priority < DEF_PRIORITY) { kstat.cpu_nice++; kstat.per_cpu_nice[cpu]++; } else { kstat.cpu_user++; kstat.per_cpu_user[cpu]++; } } else { kstat.cpu_system++; kstat.per_cpu_system[cpu]++; } spin_unlock(&ticker_lock); } prof_counter[cpu] = prof_multiplier[cpu]; } } extern unsigned int lvl14_resolution; __initfunc(static void smp_setup_percpu_timer(void)) { int cpu = smp_processor_id(); prof_counter[cpu] = prof_multiplier[cpu] = 1; load_profile_irq(mid_xlate[cpu], lvl14_resolution); if(cpu == boot_cpu_id) enable_pil_irq(14); } __initfunc(void smp4m_blackbox_id(unsigned *addr)) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */ addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */ } __initfunc(void smp4m_blackbox_current(unsigned *addr)) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */ addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */ } __initfunc(void sun4m_init_smp(void)) { BTFIXUPSET_BLACKBOX(smp_processor_id, smp4m_blackbox_id); BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current); BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(smp_bogo_info, smp4m_bogo_info, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(smp_info, smp4m_info, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM); }