/* sun4m_smp.c: Sparc SUN4M SMP support. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define __KERNEL_SYSCALLS__ #include #define IRQ_RESCHEDULE 13 #define IRQ_STOP_CPU 14 #define IRQ_CROSS_CALL 15 extern ctxd_t *srmmu_ctx_table_phys; extern int linux_num_cpus; extern void calibrate_delay(void); extern struct task_struct *current_set[NR_CPUS]; extern volatile int smp_processors_ready; extern unsigned long cpu_present_map; extern int smp_num_cpus; extern int smp_threads_ready; extern unsigned char mid_xlate[NR_CPUS]; extern volatile unsigned long cpu_callin_map[NR_CPUS]; extern unsigned long smp_proc_in_lock[NR_CPUS]; extern struct cpuinfo_sparc cpu_data[NR_CPUS]; extern unsigned long cpu_offset[NR_CPUS]; extern unsigned char boot_cpu_id; extern int smp_activated; extern volatile int __cpu_number_map[NR_CPUS]; extern volatile int __cpu_logical_map[NR_CPUS]; extern volatile unsigned long ipi_count; extern volatile int smp_process_available; extern volatile int smp_commenced; extern int __smp4m_processor_id(void); extern unsigned long totalram_pages; /*#define SMP_DEBUG*/ #ifdef SMP_DEBUG #define SMP_PRINTK(x) printk x #else #define SMP_PRINTK(x) #endif static inline unsigned long swap(volatile unsigned long *ptr, unsigned long val) { __asm__ __volatile__("swap [%1], %0\n\t" : "=&r" (val), "=&r" (ptr) : "0" (val), "1" (ptr)); return val; } static void smp_setup_percpu_timer(void); extern void cpu_probe(void); void __init smp4m_callin(void) { int cpuid = hard_smp_processor_id(); local_flush_cache_all(); local_flush_tlb_all(); set_irq_udt(mid_xlate[boot_cpu_id]); /* Get our local ticker going. */ smp_setup_percpu_timer(); calibrate_delay(); smp_store_cpu_info(cpuid); local_flush_cache_all(); local_flush_tlb_all(); /* * Unblock the master CPU _only_ when the scheduler state * of all secondary CPUs will be up-to-date, so after * the SMP initialization the master will be just allowed * to call the scheduler code. */ init_idle(); /* Allow master to continue. */ swap((unsigned long *)&cpu_callin_map[cpuid], 1); local_flush_cache_all(); local_flush_tlb_all(); cpu_probe(); /* Fix idle thread fields. */ __asm__ __volatile__("ld [%0], %%g6\n\t" : : "r" (¤t_set[cpuid]) : "memory" /* paranoid */); /* Attach to the address space of init_task. */ atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; while(!smp_commenced) barrier(); local_flush_cache_all(); local_flush_tlb_all(); __sti(); } extern int cpu_idle(void *unused); extern void init_IRQ(void); extern void cpu_panic(void); extern int start_secondary(void *unused); /* * Cycle through the processors asking the PROM to start each one. */ extern struct prom_cpuinfo linux_cpus[NR_CPUS]; extern struct linux_prom_registers smp_penguin_ctable; extern unsigned long trapbase_cpu1[]; extern unsigned long trapbase_cpu2[]; extern unsigned long trapbase_cpu3[]; void __init smp4m_boot_cpus(void) { int cpucount = 0; int i = 0; int first, prev; printk("Entering SMP Mode...\n"); __sti(); cpu_present_map = 0; for(i=0; i < linux_num_cpus; i++) cpu_present_map |= (1<processor = boot_cpu_id; smp_store_cpu_info(boot_cpu_id); set_irq_udt(mid_xlate[boot_cpu_id]); smp_setup_percpu_timer(); init_idle(); local_flush_cache_all(); if(linux_num_cpus == 1) return; /* Not an MP box. */ for(i = 0; i < NR_CPUS; i++) { if(i == boot_cpu_id) continue; if(cpu_present_map & (1 << i)) { extern unsigned long sun4m_cpu_startup; unsigned long *entry = &sun4m_cpu_startup; struct task_struct *p; int timeout; /* Cook up an idler for this guy. */ kernel_thread(start_secondary, NULL, CLONE_PID); cpucount++; p = init_task.prev_task; init_tasks[i] = p; p->processor = i; p->has_cpu = 1; /* we schedule the first task manually */ current_set[i] = p; del_from_runqueue(p); unhash_process(p); /* See trampoline.S for details... */ entry += ((i-1) * 3); /* * Initialize the contexts table * Since the call to prom_startcpu() trashes the structure, * we need to re-initialize it for each cpu */ smp_penguin_ctable.which_io = 0; smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys; smp_penguin_ctable.reg_size = 0; /* whirrr, whirrr, whirrrrrrrrr... */ printk("Starting CPU %d at %p\n", i, entry); mid_xlate[i] = (linux_cpus[i].mid & ~8); local_flush_cache_all(); prom_startcpu(linux_cpus[i].prom_node, &smp_penguin_ctable, 0, (char *)entry); /* wheee... it's going... */ for(timeout = 0; timeout < 10000; timeout++) { if(cpu_callin_map[i]) break; udelay(200); } if(cpu_callin_map[i]) { /* Another "Red Snapper". */ __cpu_number_map[i] = i; __cpu_logical_map[i] = i; } else { cpucount--; printk("Processor %d is stuck.\n", i); } } if(!(cpu_callin_map[i])) { cpu_present_map &= ~(1 << i); __cpu_number_map[i] = -1; } } local_flush_cache_all(); if(cpucount == 0) { printk("Error: only one Processor found.\n"); cpu_present_map = (1 << smp_processor_id()); } else { unsigned long bogosum = 0; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) bogosum += cpu_data[i].udelay_val; } printk("Total of %d Processors activated (%lu.%02lu BogoMIPS).\n", cpucount + 1, bogosum/(500000/HZ), (bogosum/(5000/HZ))%100); smp_activated = 1; smp_num_cpus = cpucount + 1; } /* Setup CPU list for IRQ distribution scheme. */ first = prev = -1; for(i = 0; i < NR_CPUS; i++) { if(cpu_present_map & (1 << i)) { if(first == -1) first = i; if(prev != -1) cpu_data[prev].next = i; cpu_data[i].mid = mid_xlate[i]; prev = i; } } cpu_data[prev].next = first; /* Free unneeded trap tables */ if (!(cpu_present_map & (1 << 1))) { ClearPageReserved(virt_to_page(trapbase_cpu1)); set_page_count(virt_to_page(trapbase_cpu1), 1); free_page((unsigned long)trapbase_cpu1); totalram_pages++; num_physpages++; } if (!(cpu_present_map & (1 << 2))) { ClearPageReserved(virt_to_page(trapbase_cpu2)); set_page_count(virt_to_page(trapbase_cpu2), 1); free_page((unsigned long)trapbase_cpu2); totalram_pages++; num_physpages++; } if (!(cpu_present_map & (1 << 3))) { ClearPageReserved(virt_to_page(trapbase_cpu3)); set_page_count(virt_to_page(trapbase_cpu3), 1); free_page((unsigned long)trapbase_cpu3); totalram_pages++; num_physpages++; } /* Ok, they are spinning and ready to go. */ smp_processors_ready = 1; } /* At each hardware IRQ, we get this called to forward IRQ reception * to the next processor. The caller must disable the IRQ level being * serviced globally so that there are no double interrupts received. */ void smp4m_irq_rotate(int cpu) { if(smp_processors_ready) set_irq_udt(cpu_data[cpu_data[cpu].next].mid); } /* Cross calls, in order to work efficiently and atomically do all * the message passing work themselves, only stopcpu and reschedule * messages come through here. */ void smp4m_message_pass(int target, int msg, unsigned long data, int wait) { static unsigned long smp_cpu_in_msg[NR_CPUS]; unsigned long mask; int me = smp_processor_id(); int irq, i; if(msg == MSG_RESCHEDULE) { irq = IRQ_RESCHEDULE; if(smp_cpu_in_msg[me]) return; } else if(msg == MSG_STOP_CPU) { irq = IRQ_STOP_CPU; } else { goto barf; } smp_cpu_in_msg[me]++; if(target == MSG_ALL_BUT_SELF || target == MSG_ALL) { mask = cpu_present_map; if(target == MSG_ALL_BUT_SELF) mask &= ~(1 << me); for(i = 0; i < 4; i++) { if(mask & (1 << i)) set_cpu_int(mid_xlate[i], irq); } } else { set_cpu_int(mid_xlate[target], irq); } smp_cpu_in_msg[me]--; return; barf: printk("Yeeee, trying to send SMP msg(%d) on cpu %d\n", msg, me); panic("Bogon SMP message pass."); } static struct smp_funcall { smpfunc_t func; unsigned long arg1; unsigned long arg2; unsigned long arg3; unsigned long arg4; unsigned long arg5; unsigned long processors_in[NR_CPUS]; /* Set when ipi entered. */ unsigned long processors_out[NR_CPUS]; /* Set when ipi exited. */ } ccall_info; static spinlock_t cross_call_lock = SPIN_LOCK_UNLOCKED; /* Cross calls must be serialized, at least currently. */ void smp4m_cross_call(smpfunc_t func, unsigned long arg1, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { if(smp_processors_ready) { register int ncpus = smp_num_cpus; unsigned long flags; spin_lock_irqsave(&cross_call_lock, flags); /* Init function glue. */ ccall_info.func = func; ccall_info.arg1 = arg1; ccall_info.arg2 = arg2; ccall_info.arg3 = arg3; ccall_info.arg4 = arg4; ccall_info.arg5 = arg5; /* Init receive/complete mapping, plus fire the IPI's off. */ { register unsigned long mask; register int i; mask = (cpu_present_map & ~(1 << smp_processor_id())); for(i = 0; i < ncpus; i++) { if(mask & (1 << i)) { ccall_info.processors_in[i] = 0; ccall_info.processors_out[i] = 0; set_cpu_int(mid_xlate[i], IRQ_CROSS_CALL); } else { ccall_info.processors_in[i] = 1; ccall_info.processors_out[i] = 1; } } } { register int i; i = 0; do { while(!ccall_info.processors_in[i]) barrier(); } while(++i < ncpus); i = 0; do { while(!ccall_info.processors_out[i]) barrier(); } while(++i < ncpus); } spin_unlock_irqrestore(&cross_call_lock, flags); } } /* Running cross calls. */ void smp4m_cross_call_irq(void) { int i = smp_processor_id(); ccall_info.processors_in[i] = 1; ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3, ccall_info.arg4, ccall_info.arg5); ccall_info.processors_out[i] = 1; } extern unsigned int prof_multiplier[NR_CPUS]; extern unsigned int prof_counter[NR_CPUS]; extern void sparc_do_profile(unsigned long pc, unsigned long o7); void smp4m_percpu_timer_interrupt(struct pt_regs *regs) { int cpu = smp_processor_id(); clear_profile_irq(mid_xlate[cpu]); if(!user_mode(regs)) sparc_do_profile(regs->pc, regs->u_regs[UREG_RETPC]); if(!--prof_counter[cpu]) { int user = user_mode(regs); irq_enter(cpu, 0); update_process_times(user); irq_exit(cpu, 0); prof_counter[cpu] = prof_multiplier[cpu]; } } extern unsigned int lvl14_resolution; static void __init smp_setup_percpu_timer(void) { int cpu = smp_processor_id(); prof_counter[cpu] = prof_multiplier[cpu] = 1; load_profile_irq(mid_xlate[cpu], lvl14_resolution); if(cpu == boot_cpu_id) enable_pil_irq(14); } void __init smp4m_blackbox_id(unsigned *addr) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[1] = 0x8130200c | rd | rs1; /* srl reg, 0xc, reg */ addr[2] = 0x80082003 | rd | rs1; /* and reg, 3, reg */ } void __init smp4m_blackbox_current(unsigned *addr) { int rd = *addr & 0x3e000000; int rs1 = rd >> 11; addr[0] = 0x81580000 | rd; /* rd %tbr, reg */ addr[2] = 0x8130200a | rd | rs1; /* srl reg, 0xa, reg */ addr[4] = 0x8008200c | rd | rs1; /* and reg, 3, reg */ } void __init sun4m_init_smp(void) { BTFIXUPSET_BLACKBOX(smp_processor_id, smp4m_blackbox_id); BTFIXUPSET_BLACKBOX(load_current, smp4m_blackbox_current); BTFIXUPSET_CALL(smp_cross_call, smp4m_cross_call, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(smp_message_pass, smp4m_message_pass, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__smp_processor_id, __smp4m_processor_id, BTFIXUPCALL_NORM); }