/* * arch/sparc/math-emu/math.c * * Copyright (C) 1998 Peter Maydell (pmaydell@chiark.greenend.org.uk) * Copyright (C) 1997, 1999 Jakub Jelinek (jj@ultra.linux.cz) * Copyright (C) 1999 David S. Miller (davem@redhat.com) * * This is a good place to start if you're trying to understand the * emulation code, because it's pretty simple. What we do is * essentially analyse the instruction to work out what the operation * is and which registers are involved. We then execute the appropriate * FXXXX function. [The floating point queue introduces a minor wrinkle; * see below...] * The fxxxxx.c files each emulate a single insn. They look relatively * simple because the complexity is hidden away in an unholy tangle * of preprocessor macros. * * The first layer of macros is single.h, double.h, quad.h. Generally * these files define macros for working with floating point numbers * of the three IEEE formats. FP_ADD_D(R,A,B) is for adding doubles, * for instance. These macros are usually defined as calls to more * generic macros (in this case _FP_ADD(D,2,R,X,Y) where the number * of machine words required to store the given IEEE format is passed * as a parameter. [double.h and co check the number of bits in a word * and define FP_ADD_D & co appropriately]. * The generic macros are defined in op-common.h. This is where all * the grotty stuff like handling NaNs is coded. To handle the possible * word sizes macros in op-common.h use macros like _FP_FRAC_SLL_##wc() * where wc is the 'number of machine words' parameter (here 2). * These are defined in the third layer of macros: op-1.h, op-2.h * and op-4.h. These handle operations on floating point numbers composed * of 1,2 and 4 machine words respectively. [For example, on sparc64 * doubles are one machine word so macros in double.h eventually use * constructs in op-1.h, but on sparc32 they use op-2.h definitions.] * soft-fp.h is on the same level as op-common.h, and defines some * macros which are independent of both word size and FP format. * Finally, sfp-machine.h is the machine dependent part of the * code: it defines the word size and what type a word is. It also * defines how _FP_MUL_MEAT_t() maps to _FP_MUL_MEAT_n_* : op-n.h * provide several possible flavours of multiply algorithm, most * of which require that you supply some form of asm or C primitive to * do the actual multiply. (such asm primitives should be defined * in sfp-machine.h too). udivmodti4.c is the same sort of thing. * * There may be some errors here because I'm working from a * SPARC architecture manual V9, and what I really want is V8... * Also, the insns which can generate exceptions seem to be a * greater subset of the FPops than for V9 (for example, FCMPED * has to be emulated on V8). So I think I'm going to have * to emulate them all just to be on the safe side... * * Emulation routines originate from soft-fp package, which is * part of glibc and has appropriate copyrights in it (allegedly). * * NB: on sparc int == long == 4 bytes, long long == 8 bytes. * Most bits of the kernel seem to go for long rather than int, * so we follow that practice... */ /* TODO: * fpsave() saves the FP queue but fpload() doesn't reload it. * Therefore when we context switch or change FPU ownership * we have to check to see if the queue had anything in it and * emulate it if it did. This is going to be a pain. */ #include #include #include #include #include "sfp-util.h" #include "soft-fp.h" #define FLOATFUNC(x) extern int x(void *,void *,void *) /* The Vn labels indicate what version of the SPARC architecture gas thinks * each insn is. This is from the binutils source :-> */ /* quadword instructions */ FLOATFUNC(FSQRTQ); /* v8 */ FLOATFUNC(FADDQ); /* v8 */ FLOATFUNC(FSUBQ); /* v8 */ FLOATFUNC(FMULQ); /* v8 */ FLOATFUNC(FDIVQ); /* v8 */ FLOATFUNC(FDMULQ); /* v8 */ FLOATFUNC(FQTOS); /* v8 */ FLOATFUNC(FQTOD); /* v8 */ FLOATFUNC(FITOQ); /* v8 */ FLOATFUNC(FSTOQ); /* v8 */ FLOATFUNC(FDTOQ); /* v8 */ FLOATFUNC(FQTOI); /* v8 */ FLOATFUNC(FCMPQ); /* v8 */ FLOATFUNC(FCMPEQ); /* v8 */ /* single/double instructions (subnormal): should all work */ FLOATFUNC(FSQRTS); /* v7 */ FLOATFUNC(FSQRTD); /* v7 */ FLOATFUNC(FADDS); /* v6 */ FLOATFUNC(FADDD); /* v6 */ FLOATFUNC(FSUBS); /* v6 */ FLOATFUNC(FSUBD); /* v6 */ FLOATFUNC(FMULS); /* v6 */ FLOATFUNC(FMULD); /* v6 */ FLOATFUNC(FDIVS); /* v6 */ FLOATFUNC(FDIVD); /* v6 */ FLOATFUNC(FSMULD); /* v8 */ FLOATFUNC(FDTOS); /* v6 */ FLOATFUNC(FSTOD); /* v6 */ FLOATFUNC(FSTOI); /* v6 */ FLOATFUNC(FDTOI); /* v6 */ FLOATFUNC(FABSS); /* v6 */ FLOATFUNC(FCMPS); /* v6 */ FLOATFUNC(FCMPES); /* v6 */ FLOATFUNC(FCMPD); /* v6 */ FLOATFUNC(FCMPED); /* v6 */ FLOATFUNC(FMOVS); /* v6 */ FLOATFUNC(FNEGS); /* v6 */ FLOATFUNC(FITOS); /* v6 */ FLOATFUNC(FITOD); /* v6 */ #define FSR_TEM_SHIFT 23UL #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT) #define FSR_AEXC_SHIFT 5UL #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT) #define FSR_CEXC_SHIFT 0UL #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT) static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs); /* Unlike the Sparc64 version (which has a struct fpustate), we * pass the taskstruct corresponding to the task which currently owns the * FPU. This is partly because we don't have the fpustate struct and * partly because the task owning the FPU isn't always current (as is * the case for the Sparc64 port). This is probably SMP-related... * This function returns 1 if all queued insns were emulated successfully. * The test for unimplemented FPop in kernel mode has been moved into * kernel/traps.c for simplicity. */ int do_mathemu(struct pt_regs *regs, struct task_struct *fpt) { /* regs->pc isn't necessarily the PC at which the offending insn is sitting. * The FPU maintains a queue of FPops which cause traps. * When it hits an instruction that requires that the trapped op succeeded * (usually because it reads a reg. that the trapped op wrote) then it * causes this exception. We need to emulate all the insns on the queue * and then allow the op to proceed. * This code should also handle the case where the trap was precise, * in which case the queue length is zero and regs->pc points at the * single FPop to be emulated. (this case is untested, though :->) * You'll need this case if you want to be able to emulate all FPops * because the FPU either doesn't exist or has been software-disabled. * [The UltraSPARC makes FP a precise trap; this isn't as stupid as it * might sound because the Ultra does funky things with a superscalar * architecture.] */ /* You wouldn't believe how often I typed 'ftp' when I meant 'fpt' :-> */ int i; int retcode = 0; /* assume all succeed */ unsigned long insn; #ifdef DEBUG_MATHEMU printk("In do_mathemu()... pc is %08lx\n", regs->pc); printk("fpqdepth is %ld\n", fpt->tss.fpqdepth); for (i = 0; i < fpt->tss.fpqdepth; i++) printk("%d: %08lx at %08lx\n", i, fpt->tss.fpqueue[i].insn, (unsigned long)fpt->tss.fpqueue[i].insn_addr); #endif if (fpt->tss.fpqdepth == 0) { /* no queue, guilty insn is at regs->pc */ #ifdef DEBUG_MATHEMU printk("precise trap at %08lx\n", regs->pc); #endif if (!get_user(insn, (u32 *)regs->pc)) { retcode = do_one_mathemu(insn, &fpt->tss.fsr, fpt->tss.float_regs); if (retcode) { /* in this case we need to fix up PC & nPC */ regs->pc = regs->npc; regs->npc += 4; } } return retcode; } /* Normal case: need to empty the queue... */ for (i = 0; i < fpt->tss.fpqdepth; i++) { retcode = do_one_mathemu(fpt->tss.fpqueue[i].insn, &(fpt->tss.fsr), fpt->tss.float_regs); if (!retcode) /* insn failed, no point doing any more */ break; } /* Now empty the queue and clear the queue_not_empty flag */ if(retcode) fpt->tss.fsr &= ~(0x3000 | FSR_CEXC_MASK); else fpt->tss.fsr &= ~0x3000; fpt->tss.fpqdepth = 0; return retcode; } /* All routines returning an exception to raise should detect * such exceptions _before_ rounding to be consistant with * the behavior of the hardware in the implemented cases * (and thus with the recommendations in the V9 architecture * manual). * * We return 0 if a SIGFPE should be sent, 1 otherwise. */ static int record_exception(unsigned long *pfsr, int eflag) { unsigned long fsr = *pfsr; int would_trap; /* Determine if this exception would have generated a trap. */ would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL; /* If trapping, we only want to signal one bit. */ if(would_trap != 0) { eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT); if((eflag & (eflag - 1)) != 0) { if(eflag & FP_EX_INVALID) eflag = FP_EX_INVALID; else if(eflag & FP_EX_OVERFLOW) eflag = FP_EX_OVERFLOW; else if(eflag & FP_EX_UNDERFLOW) eflag = FP_EX_UNDERFLOW; else if(eflag & FP_EX_DIVZERO) eflag = FP_EX_DIVZERO; else if(eflag & FP_EX_INEXACT) eflag = FP_EX_INEXACT; } } /* Set CEXC, here is the rule: * * In general all FPU ops will set one and only one * bit in the CEXC field, this is always the case * when the IEEE exception trap is enabled in TEM. */ fsr &= ~(FSR_CEXC_MASK); fsr |= ((long)eflag << FSR_CEXC_SHIFT); /* Set the AEXC field, rule is: * * If a trap would not be generated, the * CEXC just generated is OR'd into the * existing value of AEXC. */ if(would_trap == 0) fsr |= ((long)eflag << FSR_AEXC_SHIFT); /* If trapping, indicate fault trap type IEEE. */ if(would_trap != 0) fsr |= (1UL << 14); *pfsr = fsr; return (would_trap ? 0 : 1); } static int do_one_mathemu(u32 insn, unsigned long *fsr, unsigned long *fregs) { /* Emulate the given insn, updating fsr and fregs appropriately. */ int type = 0; /* 01 is single, 10 is double, 11 is quad, * 000011 is rs1, 001100 is rs2, 110000 is rd (00 in rd is fcc) * 111100000000 tells which ftt that may happen in * (this field not used on sparc32 code, as we can't * extract trap type info for ops on the FP queue) */ int freg, eflag; int (*func)(void *,void *,void *) = NULL; void *rs1 = NULL, *rs2 = NULL, *rd = NULL; #ifdef DEBUG_MATHEMU printk("In do_mathemu(), emulating %08lx\n", insn); #endif if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ { switch ((insn >> 5) & 0x1ff) { /* QUAD - ftt == 3 */ case 0x001: type = 0x314; func = FMOVS; break; case 0x005: type = 0x314; func = FNEGS; break; case 0x009: type = 0x314; func = FABSS; break; case 0x02b: type = 0x33c; func = FSQRTQ; break; case 0x043: type = 0x33f; func = FADDQ; break; case 0x047: type = 0x33f; func = FSUBQ; break; case 0x04b: type = 0x33f; func = FMULQ; break; case 0x04f: type = 0x33f; func = FDIVQ; break; case 0x06e: type = 0x33a; func = FDMULQ; break; case 0x0c7: type = 0x31c; func = FQTOS; break; case 0x0cb: type = 0x32c; func = FQTOD; break; case 0x0cc: type = 0x334; func = FITOQ; break; case 0x0cd: type = 0x334; func = FSTOQ; break; case 0x0ce: type = 0x338; func = FDTOQ; break; case 0x0d3: type = 0x31c; func = FQTOI; break; /* SUBNORMAL - ftt == 2 */ case 0x029: type = 0x214; func = FSQRTS; break; case 0x02a: type = 0x228; func = FSQRTD; break; case 0x041: type = 0x215; func = FADDS; break; case 0x042: type = 0x22a; func = FADDD; break; case 0x045: type = 0x215; func = FSUBS; break; case 0x046: type = 0x22a; func = FSUBD; break; case 0x049: type = 0x215; func = FMULS; break; case 0x04a: type = 0x22a; func = FMULD; break; case 0x04d: type = 0x215; func = FDIVS; break; case 0x04e: type = 0x22a; func = FDIVD; break; case 0x069: type = 0x225; func = FSMULD; break; case 0x0c6: type = 0x218; func = FDTOS; break; case 0x0c9: type = 0x224; func = FSTOD; break; case 0x0d1: type = 0x214; func = FSTOI; break; case 0x0d2: type = 0x218; func = FDTOI; break; default: #ifdef DEBUG_MATHEMU printk("unknown FPop1: %03lx\n",(insn>>5)&0x1ff); #endif } } else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ { switch ((insn >> 5) & 0x1ff) { case 0x051: type = 0x305; func = FCMPS; break; case 0x052: type = 0x30a; func = FCMPD; break; case 0x053: type = 0x30f; func = FCMPQ; break; case 0x055: type = 0x305; func = FCMPES; break; case 0x056: type = 0x30a; func = FCMPED; break; case 0x057: type = 0x30f; func = FCMPEQ; break; default: #ifdef DEBUG_MATHEMU printk("unknown FPop2: %03lx\n",(insn>>5)&0x1ff); #endif } } if (!type) { /* oops, didn't recognise that FPop */ printk("attempt to emulate unrecognised FPop!\n"); return 0; } /* Decode the registers to be used */ freg = (*fsr >> 14) & 0xf; *fsr &= ~0x1c000; /* clear the traptype bits */ freg = ((insn >> 14) & 0x1f); switch (type & 0x3) { /* is rs1 single, double or quad? */ case 3: if (freg & 3) { /* quadwords must have bits 4&5 of the */ /* encoded reg. number set to zero. */ *fsr |= (6 << 14); return 0; /* simulate invalid_fp_register exception */ } /* fall through */ case 2: if (freg & 1) { /* doublewords must have bit 5 zeroed */ *fsr |= (6 << 14); return 0; } } rs1 = (void *)&fregs[freg]; freg = (insn & 0x1f); switch ((type >> 2) & 0x3) { /* same again for rs2 */ case 3: if (freg & 3) { /* quadwords must have bits 4&5 of the */ /* encoded reg. number set to zero. */ *fsr |= (6 << 14); return 0; /* simulate invalid_fp_register exception */ } /* fall through */ case 2: if (freg & 1) { /* doublewords must have bit 5 zeroed */ *fsr |= (6 << 14); return 0; } } rs2 = (void *)&fregs[freg]; freg = ((insn >> 25) & 0x1f); switch ((type >> 4) & 0x3) { /* and finally rd. This one's a bit different */ case 0: /* dest is fcc. (this must be FCMPQ or FCMPEQ) */ if (freg) { /* V8 has only one set of condition codes, so */ /* anything but 0 in the rd field is an error */ *fsr |= (6 << 14); /* (should probably flag as invalid opcode */ return 0; /* but SIGFPE will do :-> ) */ } rd = (void *)(fsr); /* FCMPQ and FCMPEQ are special and only */ break; /* set bits they're supposed to :-> */ case 3: if (freg & 3) { /* quadwords must have bits 4&5 of the */ /* encoded reg. number set to zero. */ *fsr |= (6 << 14); return 0; /* simulate invalid_fp_register exception */ } /* fall through */ case 2: if (freg & 1) { /* doublewords must have bit 5 zeroed */ *fsr |= (6 << 14); return 0; } /* fall through */ case 1: rd = (void *)&fregs[freg]; break; } #ifdef DEBUG_MATHEMU printk("executing insn...\n"); #endif eflag = func(rd, rs2, rs1); /* do the Right Thing */ if(eflag == 0) return 1; /* success! */ return record_exception(fsr, eflag); }