/* $Id: sun4c.c,v 1.149 1997/07/20 05:59:38 davem Exp $ * sun4c.c: Doing in software what should be done in hardware. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1996 Andrew Tridgell (Andrew.Tridgell@anu.edu.au) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* TODO: Make it such that interrupt handlers cannot dick with * the user segment lists, most of the cli/sti pairs can * disappear once that is taken care of. */ /* XXX Ok the real performance win, I figure, will be to use a combined hashing * XXX and bitmap scheme to keep track of what we have mapped where. The whole * XXX incentive is to make it such that the range flushes can be serviced * XXX always in near constant time. --DaveM */ extern int num_segmaps, num_contexts; /* Define this to get extremely anal debugging, undefine for performance. */ /* #define DEBUG_SUN4C_MM */ #define UWINMASK_OFFSET (const unsigned long)(&(((struct task_struct *)0)->tss.uwinmask)) /* This is used in many routines below. */ #define FUW_INLINE do { \ register int ctr asm("g5"); \ ctr = 0; \ __asm__ __volatile__("\n" \ "1: ld [%%g6 + %2], %%g4 ! flush user windows\n" \ " orcc %%g0, %%g4, %%g0\n" \ " add %0, 1, %0\n" \ " bne 1b\n" \ " save %%sp, -64, %%sp\n" \ "2: subcc %0, 1, %0\n" \ " bne 2b\n" \ " restore %%g0, %%g0, %%g0\n" \ : "=&r" (ctr) \ : "0" (ctr), "i" (UWINMASK_OFFSET) \ : "g4", "cc"); \ } while(0); /* That's it, we prom_halt() if the cache size is something other than 65536. * So let's save some cycles and just use that everywhere except for that bootup * sanity check. */ #define SUN4C_VAC_SIZE 65536 #define SUN4C_KERNEL_BUCKETS 32 #ifndef MAX #define MAX(a,b) ((a)<(b)?(b):(a)) #endif #ifndef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) #endif #define KGPROF_PROFILING 0 #if KGPROF_PROFILING #define KGPROF_DEPTH 3 /* this needs to match the code below */ #define KGPROF_SIZE 100 static struct { unsigned addr[KGPROF_DEPTH]; unsigned count; } kgprof_counters[KGPROF_SIZE]; /* just call this function from whatever function you think needs it then look at /proc/cpuinfo to see where the function is being called from and how often. This gives a type of "kernel gprof" */ #define NEXT_PROF(prev,lvl) (prev>PAGE_OFFSET?__builtin_return_address(lvl):0) static inline void kgprof_profile(void) { unsigned ret[KGPROF_DEPTH]; int i,j; /* you can't use a variable argument to __builtin_return_address() */ ret[0] = (unsigned)__builtin_return_address(0); ret[1] = (unsigned)NEXT_PROF(ret[0],1); ret[2] = (unsigned)NEXT_PROF(ret[1],2); for (i=0;iid_machtype == (SM_SUN4C | SM_4C_SS1)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) { /* PROM on SS1 lacks this info, to be super safe we * hard code it here since this arch is cast in stone. */ sun4c_vacinfo.num_bytes = 65536; sun4c_vacinfo.linesize = 16; } else { sun4c_vacinfo.num_bytes = prom_getintdefault(prom_root_node, "vac-size", 65536); sun4c_vacinfo.linesize = prom_getintdefault(prom_root_node, "vac-linesize", 16); } sun4c_vacinfo.num_lines = (sun4c_vacinfo.num_bytes / sun4c_vacinfo.linesize); switch(sun4c_vacinfo.linesize) { case 16: sun4c_vacinfo.log2lsize = 4; break; case 32: sun4c_vacinfo.log2lsize = 5; break; default: prom_printf("probe_vac: Didn't expect vac-linesize of %d, halting\n", sun4c_vacinfo.linesize); prom_halt(); }; sun4c_vacinfo.do_hwflushes = prom_getintdefault(prom_root_node, "vac-hwflush", 0); if(sun4c_vacinfo.do_hwflushes == 0) sun4c_vacinfo.do_hwflushes = prom_getintdefault(prom_root_node, "vac_hwflush", 0); if(sun4c_vacinfo.num_bytes != 65536) { prom_printf("WEIRD Sun4C VAC cache size, tell davem"); prom_halt(); } sun4c_flush_all(); sun4c_enable_vac(); } /* Patch instructions for the low level kernel fault handler. */ extern unsigned long invalid_segment_patch1, invalid_segment_patch1_ff; extern unsigned long invalid_segment_patch2, invalid_segment_patch2_ff; extern unsigned long num_context_patch1, num_context_patch1_16; extern unsigned long num_context_patch2, num_context_patch2_16; extern unsigned long vac_linesize_patch, vac_linesize_patch_32; extern unsigned long vac_hwflush_patch1, vac_hwflush_patch1_on; extern unsigned long vac_hwflush_patch2, vac_hwflush_patch2_on; #define PATCH_INSN(src, dst) do { \ daddr = &(dst); \ iaddr = &(src); \ *daddr = *iaddr; \ } while (0); static void patch_kernel_fault_handler(void) { unsigned long *iaddr, *daddr; switch (num_segmaps) { case 128: /* Default, nothing to do. */ break; case 256: PATCH_INSN(invalid_segment_patch1_ff, invalid_segment_patch1); PATCH_INSN(invalid_segment_patch2_ff, invalid_segment_patch2); break; default: prom_printf("Unhandled number of segmaps: %d\n", num_segmaps); prom_halt(); } switch (num_contexts) { case 8: /* Default, nothing to do. */ break; case 16: PATCH_INSN(num_context_patch1_16, num_context_patch1); PATCH_INSN(num_context_patch2_16, num_context_patch2); break; default: prom_printf("Unhandled number of contexts: %d\n", num_contexts); prom_halt(); } if(sun4c_vacinfo.do_hwflushes != 0) { PATCH_INSN(vac_hwflush_patch1_on, vac_hwflush_patch1); PATCH_INSN(vac_hwflush_patch2_on, vac_hwflush_patch2); } else { switch(sun4c_vacinfo.linesize) { case 16: /* Default, nothing to do. */ break; case 32: PATCH_INSN(vac_linesize_patch_32, vac_linesize_patch); break; default: prom_printf("Impossible VAC linesize %d, halting...\n", sun4c_vacinfo.linesize); prom_halt(); }; } } static void sun4c_probe_mmu(void) { if((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) { /* Hardcode these just to be safe, PROM on SS1 does * not have this info available in the root node. */ num_segmaps = 128; num_contexts = 8; } else { num_segmaps = prom_getintdefault(prom_root_node, "mmu-npmg", 128); num_contexts = prom_getintdefault(prom_root_node, "mmu-nctx", 0x8); } patch_kernel_fault_handler(); } volatile unsigned long *sun4c_memerr_reg = 0; void sun4c_probe_memerr_reg(void) { int node; struct linux_prom_registers regs[1]; node = prom_getchild(prom_root_node); node = prom_searchsiblings(prom_root_node, "memory-error"); if (!node) return; prom_getproperty(node, "reg", (char *)regs, sizeof(regs)); sun4c_memerr_reg = sparc_alloc_io(regs[0].phys_addr, 0, regs[0].reg_size, "memory parity error", regs[0].which_io, 0); } static inline void sun4c_init_ss2_cache_bug(void) { extern unsigned long start; if((idprom->id_machtype == (SM_SUN4C | SM_4C_SS2)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_IPX)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_ELC))) { /* Whee.. */ printk("SS2 cache bug detected, uncaching trap table page\n"); sun4c_flush_page((unsigned int) &start); sun4c_put_pte(((unsigned long) &start), (sun4c_get_pte((unsigned long) &start) | _SUN4C_PAGE_NOCACHE)); } } /* Addr is always aligned on a page boundry for us already. */ static void sun4c_map_dma_area(unsigned long addr, int len) { unsigned long page, end; end = PAGE_ALIGN((addr + len)); while(addr < end) { page = get_free_page(GFP_KERNEL); if(!page) { prom_printf("alloc_dvma: Cannot get a dvma page\n"); prom_halt(); } sun4c_flush_page(page); page -= PAGE_OFFSET; page >>= PAGE_SHIFT; page |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_DIRTY | _SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_PRIV); sun4c_put_pte(addr, page); addr += PAGE_SIZE; } } /* TLB management. */ /* Don't change this struct without changing entry.S. This is used * in the in-window kernel fault handler, and you don't want to mess * with that. (See sun4c_fault in entry.S). */ struct sun4c_mmu_entry { struct sun4c_mmu_entry *next; struct sun4c_mmu_entry *prev; unsigned long vaddr; unsigned char pseg; unsigned char locked; }; static struct sun4c_mmu_entry mmu_entry_pool[256]; __initfunc(static void sun4c_init_mmu_entry_pool(void)) { int i; for(i=0; i < 256; i++) { mmu_entry_pool[i].pseg = i; mmu_entry_pool[i].next = 0; mmu_entry_pool[i].prev = 0; mmu_entry_pool[i].vaddr = 0; mmu_entry_pool[i].locked = 0; } mmu_entry_pool[invalid_segment].locked = 1; } static inline void fix_permissions(unsigned long vaddr, unsigned long bits_on, unsigned long bits_off) { unsigned long start, end; end = vaddr + SUN4C_REAL_PGDIR_SIZE; for(start = vaddr; start < end; start += PAGE_SIZE) if(sun4c_get_pte(start) & _SUN4C_PAGE_VALID) sun4c_put_pte(start, (sun4c_get_pte(start) | bits_on) & ~bits_off); } static inline void sun4c_init_map_kernelprom(unsigned long kernel_end) { unsigned long vaddr; unsigned char pseg, ctx; for(vaddr = KADB_DEBUGGER_BEGVM; vaddr < LINUX_OPPROM_ENDVM; vaddr += SUN4C_REAL_PGDIR_SIZE) { pseg = sun4c_get_segmap(vaddr); if(pseg != invalid_segment) { mmu_entry_pool[pseg].locked = 1; for(ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, vaddr, pseg); fix_permissions(vaddr, _SUN4C_PAGE_PRIV, 0); } } for(vaddr = KERNBASE; vaddr < kernel_end; vaddr += SUN4C_REAL_PGDIR_SIZE) { pseg = sun4c_get_segmap(vaddr); mmu_entry_pool[pseg].locked = 1; for(ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, vaddr, pseg); fix_permissions(vaddr, _SUN4C_PAGE_PRIV, _SUN4C_PAGE_NOCACHE); } } __initfunc(static void sun4c_init_lock_area(unsigned long start, unsigned long end)) { int i, ctx; while(start < end) { for(i=0; i < invalid_segment; i++) if(!mmu_entry_pool[i].locked) break; mmu_entry_pool[i].locked = 1; sun4c_init_clean_segmap(i); for(ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, start, mmu_entry_pool[i].pseg); start += SUN4C_REAL_PGDIR_SIZE; } } /* Don't change this struct without changing entry.S. This is used * in the in-window kernel fault handler, and you don't want to mess * with that. (See sun4c_fault in entry.S). */ struct sun4c_mmu_ring { struct sun4c_mmu_entry ringhd; int num_entries; }; static struct sun4c_mmu_ring sun4c_context_ring[16]; /* used user entries */ static struct sun4c_mmu_ring sun4c_ufree_ring; /* free user entries */ struct sun4c_mmu_ring sun4c_kernel_ring; /* used kernel entries */ struct sun4c_mmu_ring sun4c_kfree_ring; /* free kernel entries */ static inline void sun4c_init_rings(unsigned long *mempool) { int i; for(i=0; i<16; i++) { sun4c_context_ring[i].ringhd.next = sun4c_context_ring[i].ringhd.prev = &sun4c_context_ring[i].ringhd; sun4c_context_ring[i].num_entries = 0; } sun4c_ufree_ring.ringhd.next = sun4c_ufree_ring.ringhd.prev = &sun4c_ufree_ring.ringhd; sun4c_ufree_ring.num_entries = 0; sun4c_kernel_ring.ringhd.next = sun4c_kernel_ring.ringhd.prev = &sun4c_kernel_ring.ringhd; sun4c_kernel_ring.num_entries = 0; sun4c_kfree_ring.ringhd.next = sun4c_kfree_ring.ringhd.prev = &sun4c_kfree_ring.ringhd; sun4c_kfree_ring.num_entries = 0; } static inline void add_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *head = &ring->ringhd; entry->prev = head; (entry->next = head->next)->prev = entry; head->next = entry; ring->num_entries++; } static inline void add_ring_ordered(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *head = &ring->ringhd; unsigned long addr = entry->vaddr; if(head->next != &ring->ringhd) { while((head->next != &ring->ringhd) && (head->next->vaddr < addr)) head = head->next; } entry->prev = head; (entry->next = head->next)->prev = entry; head->next = entry; ring->num_entries++; } static inline void remove_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *next = entry->next; (next->prev = entry->prev)->next = next; ring->num_entries--; #ifdef DEBUG_SUN4C_MM if(ring->num_entries < 0) panic("sun4c: Ring num_entries < 0!"); #endif } static inline void free_user_entry(int ctx, struct sun4c_mmu_entry *entry) { remove_ring(sun4c_context_ring+ctx, entry); add_ring(&sun4c_ufree_ring, entry); } static inline void assign_user_entry(int ctx, struct sun4c_mmu_entry *entry) { remove_ring(&sun4c_ufree_ring, entry); add_ring_ordered(sun4c_context_ring+ctx, entry); } static inline void free_kernel_entry(struct sun4c_mmu_entry *entry, struct sun4c_mmu_ring *ring) { remove_ring(ring, entry); add_ring(&sun4c_kfree_ring, entry); } __initfunc(static void sun4c_init_fill_kernel_ring(int howmany)) { int i; while(howmany) { for(i=0; i < invalid_segment; i++) if(!mmu_entry_pool[i].locked) break; mmu_entry_pool[i].locked = 1; sun4c_init_clean_segmap(i); add_ring(&sun4c_kfree_ring, &mmu_entry_pool[i]); howmany--; } } __initfunc(static void sun4c_init_fill_user_ring(void)) { int i; for(i=0; i < invalid_segment; i++) { if(mmu_entry_pool[i].locked) continue; sun4c_init_clean_segmap(i); add_ring(&sun4c_ufree_ring, &mmu_entry_pool[i]); } } static inline void sun4c_kernel_unmap(struct sun4c_mmu_entry *kentry) { int savectx, ctx; savectx = sun4c_get_context(); for(ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(kentry->vaddr, invalid_segment); } sun4c_set_context(savectx); } static inline void sun4c_kernel_map(struct sun4c_mmu_entry *kentry) { int savectx, ctx; savectx = sun4c_get_context(); for(ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(kentry->vaddr, kentry->pseg); } sun4c_set_context(savectx); } static inline void sun4c_user_unmap(struct sun4c_mmu_entry *uentry) { sun4c_put_segmap(uentry->vaddr, invalid_segment); } static inline void sun4c_user_map(struct sun4c_mmu_entry *uentry) { unsigned long start = uentry->vaddr; unsigned long end = start + SUN4C_REAL_PGDIR_SIZE; sun4c_put_segmap(uentry->vaddr, uentry->pseg); while(start < end) { sun4c_put_pte(start, 0); start += PAGE_SIZE; } } static void sun4c_demap_context_hw(struct sun4c_mmu_ring *crp, unsigned char ctx) { struct sun4c_mmu_entry *head = &crp->ringhd; unsigned long flags; save_and_cli(flags); if(head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(ctx); sun4c_flush_context_hw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(ctx, entry); entry = next; } while(entry != head); sun4c_set_context(savectx); } restore_flags(flags); } static void sun4c_demap_context_sw(struct sun4c_mmu_ring *crp, unsigned char ctx) { struct sun4c_mmu_entry *head = &crp->ringhd; unsigned long flags; save_and_cli(flags); if(head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(ctx); sun4c_flush_context_sw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(ctx, entry); entry = next; } while(entry != head); sun4c_set_context(savectx); } restore_flags(flags); } static inline void sun4c_demap_one(struct sun4c_mmu_ring *crp, unsigned char ctx) { /* by using .prev we get a kind of "lru" algorithm */ struct sun4c_mmu_entry *entry = crp->ringhd.prev; unsigned long flags; int savectx = sun4c_get_context(); #ifdef DEBUG_SUN4C_MM if(entry == &crp->ringhd) panic("sun4c_demap_one: Freeing from empty ctx ring."); #endif FUW_INLINE save_and_cli(flags); sun4c_set_context(ctx); sun4c_flush_segment(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(ctx, entry); sun4c_set_context(savectx); restore_flags(flags); } static int sun4c_user_taken_entries = 0; /* This is how much we have. */ static int max_user_taken_entries = 0; /* This limits us and prevents deadlock. */ static inline struct sun4c_mmu_entry *sun4c_kernel_strategy(void) { struct sun4c_mmu_entry *this_entry; /* If some are free, return first one. */ if(sun4c_kfree_ring.num_entries) { this_entry = sun4c_kfree_ring.ringhd.next; return this_entry; } /* Else free one up. */ this_entry = sun4c_kernel_ring.ringhd.prev; sun4c_flush_segment(this_entry->vaddr); sun4c_kernel_unmap(this_entry); free_kernel_entry(this_entry, &sun4c_kernel_ring); this_entry = sun4c_kfree_ring.ringhd.next; return this_entry; } void sun4c_shrink_kernel_ring(void) { struct sun4c_mmu_entry *entry; unsigned long flags; /* If an interrupt comes in here, we die... */ save_and_cli(flags); if (sun4c_user_taken_entries) { entry = sun4c_kernel_strategy(); remove_ring(&sun4c_kfree_ring, entry); add_ring(&sun4c_ufree_ring, entry); sun4c_user_taken_entries--; #if 0 printk("shrink: ufree= %d, kfree= %d, kernel= %d\n", sun4c_ufree_ring.num_entries, sun4c_kfree_ring.num_entries, sun4c_kernel_ring.num_entries); #endif #ifdef DEBUG_SUN4C_MM if(sun4c_user_taken_entries < 0) panic("sun4c_shrink_kernel_ring: taken < 0."); #endif } restore_flags(flags); } /* Using this method to free up mmu entries eliminates a lot of * potential races since we have a kernel that incurs tlb * replacement faults. There may be performance penalties. */ static inline struct sun4c_mmu_entry *sun4c_user_strategy(void) { struct ctx_list *next_one; struct sun4c_mmu_ring *rp = 0; unsigned char ctx; #ifdef DEBUG_SUN4C_MM int lim = num_contexts; #endif /* If some are free, return first one. */ if(sun4c_ufree_ring.num_entries) { #ifdef DEBUG_SUN4C_MM if(sun4c_ufree_ring.ringhd.next == &sun4c_ufree_ring.ringhd) panic("sun4c_user_strategy: num_entries!=0 but ring empty."); #endif return sun4c_ufree_ring.ringhd.next; } if (sun4c_user_taken_entries) { sun4c_shrink_kernel_ring(); #ifdef DEBUG_SUN4C_MM if(sun4c_ufree_ring.ringhd.next == &sun4c_ufree_ring.ringhd) panic("sun4c_user_strategy: kernel shrunk but ufree empty."); #endif return sun4c_ufree_ring.ringhd.next; } /* Grab one from the LRU context. */ next_one = ctx_used.next; while ((sun4c_context_ring[next_one->ctx_number].num_entries == 0) #ifdef DEBUG_SUN4C_MM && (--lim >= 0) #endif ) next_one = next_one->next; #ifdef DEBUG_SUN4C_MM if(lim < 0) panic("No user segmaps!"); #endif ctx = next_one->ctx_number; rp = &sun4c_context_ring[ctx]; sun4c_demap_one(rp, ctx); #ifdef DEBUG_SUN4C_MM if(sun4c_ufree_ring.ringhd.next == &sun4c_ufree_ring.ringhd) panic("sun4c_user_strategy: demapped one but ufree empty."); #endif return sun4c_ufree_ring.ringhd.next; } void sun4c_grow_kernel_ring(void) { struct sun4c_mmu_entry *entry; #if 0 printk("grow: "); #endif /* Prevent deadlock condition. */ if(sun4c_user_taken_entries >= max_user_taken_entries) { #if 0 printk("deadlock avoidance, taken= %d max= %d\n", sun4c_user_taken_entries, max_user_taken_entries); #endif return; } if (sun4c_ufree_ring.num_entries) { entry = sun4c_ufree_ring.ringhd.next; #ifdef DEBUG_SUN4C_MM if(entry == &sun4c_ufree_ring.ringhd) panic("\nsun4c_grow_kernel_ring: num_entries!=0, ring empty."); #endif remove_ring(&sun4c_ufree_ring, entry); add_ring(&sun4c_kfree_ring, entry); #ifdef DEBUG_SUN4C_MM if(sun4c_user_taken_entries < 0) panic("\nsun4c_grow_kernel_ring: taken < 0."); #endif sun4c_user_taken_entries++; #if 0 printk("ufree= %d, kfree= %d, kernel= %d\n", sun4c_ufree_ring.num_entries, sun4c_kfree_ring.num_entries, sun4c_kernel_ring.num_entries); #endif } } static inline void alloc_user_segment(unsigned long address, unsigned char ctx) { struct sun4c_mmu_entry *entry; unsigned long flags; save_and_cli(flags); entry = sun4c_user_strategy(); entry->vaddr = (address & SUN4C_REAL_PGDIR_MASK); assign_user_entry(ctx, entry); sun4c_user_map(entry); restore_flags(flags); } /* This is now a fast in-window trap handler to avoid any and all races. */ static void sun4c_quick_kernel_fault(unsigned long address) { printk("Kernel faults at addr 0x%08lx\n", address); panic("sun4c kernel fault handler bolixed..."); } /* 2 page buckets for task struct and kernel stack allocation. * * TASK_STACK_BEGIN * bucket[0] * bucket[1] * [ ... ] * bucket[NR_TASKS-1] * TASK_STACK_BEGIN + (sizeof(struct task_bucket) * NR_TASKS) * * Each slot looks like: * * page 1 -- task struct + beginning of kernel stack * page 2 -- rest of kernel stack */ union task_union *sun4c_bucket[NR_TASKS]; static int sun4c_lowbucket_avail; #define BUCKET_EMPTY ((union task_union *) 0) #define BUCKET_SHIFT (PAGE_SHIFT + 1) /* log2(sizeof(struct task_bucket)) */ #define BUCKET_SIZE (1 << BUCKET_SHIFT) #define BUCKET_NUM(addr) ((((addr) - SUN4C_LOCK_VADDR) >> BUCKET_SHIFT)) #define BUCKET_ADDR(num) (((num) << BUCKET_SHIFT) + SUN4C_LOCK_VADDR) #define BUCKET_PTE(page) \ ((((page) - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(SUN4C_PAGE_KERNEL)) #define BUCKET_PTE_PAGE(pte) \ (PAGE_OFFSET + (((pte) & 0xffff) << PAGE_SHIFT)) static inline void get_locked_segment(unsigned long addr) { struct sun4c_mmu_entry *stolen; unsigned long flags; save_and_cli(flags); addr &= SUN4C_REAL_PGDIR_MASK; stolen = sun4c_user_strategy(); remove_ring(&sun4c_ufree_ring, stolen); max_user_taken_entries--; #ifdef DEBUG_SUN4C_MM if(max_user_taken_entries < 0) panic("get_locked_segment: max_user_taken < 0."); #endif stolen->vaddr = addr; FUW_INLINE sun4c_kernel_map(stolen); restore_flags(flags); } static inline void free_locked_segment(unsigned long addr) { struct sun4c_mmu_entry *entry; unsigned long flags; unsigned char pseg; save_and_cli(flags); addr &= SUN4C_REAL_PGDIR_MASK; pseg = sun4c_get_segmap(addr); entry = &mmu_entry_pool[pseg]; FUW_INLINE sun4c_flush_segment(addr); sun4c_kernel_unmap(entry); add_ring(&sun4c_ufree_ring, entry); #ifdef DEBUG_SUN4C_MM if(max_user_taken_entries < 0) panic("free_locked_segment: max_user_taken < 0."); #endif max_user_taken_entries++; restore_flags(flags); } static inline void garbage_collect(int entry) { int start, end; /* 32 buckets per segment... */ entry &= ~31; start = entry; for(end = (start + 32); start < end; start++) if(sun4c_bucket[start] != BUCKET_EMPTY) return; /* Entire segment empty, release it. */ free_locked_segment(BUCKET_ADDR(entry)); } static struct task_struct *sun4c_alloc_task_struct(void) { unsigned long addr, pages; int entry; pages = __get_free_pages(GFP_KERNEL, 1, 0); if(!pages) return (struct task_struct *) 0; for(entry = sun4c_lowbucket_avail; entry < NR_TASKS; entry++) if(sun4c_bucket[entry] == BUCKET_EMPTY) break; if(entry == NR_TASKS) { free_pages(pages, 1); return (struct task_struct *) 0; } if(entry >= sun4c_lowbucket_avail) sun4c_lowbucket_avail = entry + 1; addr = BUCKET_ADDR(entry); sun4c_bucket[entry] = (union task_union *) addr; if(sun4c_get_segmap(addr) == invalid_segment) get_locked_segment(addr); sun4c_put_pte(addr, BUCKET_PTE(pages)); sun4c_put_pte(addr + PAGE_SIZE, BUCKET_PTE(pages + PAGE_SIZE)); return (struct task_struct *) addr; } static void sun4c_free_task_struct_hw(struct task_struct *tsk) { unsigned long tsaddr = (unsigned long) tsk; unsigned long pages = BUCKET_PTE_PAGE(sun4c_get_pte(tsaddr)); int entry = BUCKET_NUM(tsaddr); /* We are deleting a mapping, so the flush here is mandatory. */ sun4c_flush_page_hw(tsaddr); sun4c_flush_page_hw(tsaddr + PAGE_SIZE); sun4c_put_pte(tsaddr, 0); sun4c_put_pte(tsaddr + PAGE_SIZE, 0); sun4c_bucket[entry] = BUCKET_EMPTY; if(entry < sun4c_lowbucket_avail) sun4c_lowbucket_avail = entry; free_pages(pages, 1); garbage_collect(entry); } static void sun4c_free_task_struct_sw(struct task_struct *tsk) { unsigned long tsaddr = (unsigned long) tsk; unsigned long pages = BUCKET_PTE_PAGE(sun4c_get_pte(tsaddr)); int entry = BUCKET_NUM(tsaddr); /* We are deleting a mapping, so the flush here is mandatory. */ sun4c_flush_page_sw(tsaddr); sun4c_flush_page_sw(tsaddr + PAGE_SIZE); sun4c_put_pte(tsaddr, 0); sun4c_put_pte(tsaddr + PAGE_SIZE, 0); sun4c_bucket[entry] = BUCKET_EMPTY; if(entry < sun4c_lowbucket_avail) sun4c_lowbucket_avail = entry; free_pages(pages, 1); garbage_collect(entry); } __initfunc(static void sun4c_init_buckets(void)) { int entry; if(sizeof(union task_union) != (PAGE_SIZE << 1)) { prom_printf("task union not 2 pages!\n"); prom_halt(); } for(entry = 0; entry < NR_TASKS; entry++) sun4c_bucket[entry] = BUCKET_EMPTY; sun4c_lowbucket_avail = 0; } static unsigned long sun4c_iobuffer_start; static unsigned long sun4c_iobuffer_end; static unsigned long sun4c_iobuffer_high; static unsigned long *sun4c_iobuffer_map; static int iobuffer_map_size; /* * Alias our pages so they do not cause a trap. * Also one page may be aliased into several I/O areas and we may * finish these I/O separately. */ static char *sun4c_lockarea(char *vaddr, unsigned long size) { unsigned long base, scan; unsigned long npages; unsigned long vpage; unsigned long pte; unsigned long apage; unsigned long high; unsigned long flags; npages = (((unsigned long)vaddr & ~PAGE_MASK) + size + (PAGE_SIZE-1)) >> PAGE_SHIFT; scan = 0; save_and_cli(flags); for (;;) { scan = find_next_zero_bit(sun4c_iobuffer_map, iobuffer_map_size, scan); if ((base = scan) + npages > iobuffer_map_size) goto abend; for (;;) { if (scan >= base + npages) goto found; if (test_bit(scan, sun4c_iobuffer_map)) break; scan++; } } found: high = ((base + npages) << PAGE_SHIFT) + sun4c_iobuffer_start; high = SUN4C_REAL_PGDIR_ALIGN(high); while (high > sun4c_iobuffer_high) { get_locked_segment(sun4c_iobuffer_high); sun4c_iobuffer_high += SUN4C_REAL_PGDIR_SIZE; } vpage = ((unsigned long) vaddr) & PAGE_MASK; for (scan = base; scan < base+npages; scan++) { pte = ((vpage-PAGE_OFFSET) >> PAGE_SHIFT); pte |= pgprot_val(SUN4C_PAGE_KERNEL); pte |= _SUN4C_PAGE_NOCACHE; set_bit(scan, sun4c_iobuffer_map); apage = (scan << PAGE_SHIFT) + sun4c_iobuffer_start; /* Flush original mapping so we see the right things later. */ sun4c_flush_page(vpage); sun4c_put_pte(apage, pte); vpage += PAGE_SIZE; } restore_flags(flags); return (char *) ((base << PAGE_SHIFT) + sun4c_iobuffer_start + (((unsigned long) vaddr) & ~PAGE_MASK)); abend: restore_flags(flags); printk("DMA vaddr=0x%p size=%08lx\n", vaddr, size); panic("Out of iobuffer table"); return 0; } static void sun4c_unlockarea(char *vaddr, unsigned long size) { unsigned long vpage, npages; unsigned long flags; int scan, high; vpage = (unsigned long)vaddr & PAGE_MASK; npages = (((unsigned long)vaddr & ~PAGE_MASK) + size + (PAGE_SIZE-1)) >> PAGE_SHIFT; save_and_cli(flags); while (npages != 0) { --npages; /* This mapping is marked non-cachable, no flush necessary. */ sun4c_put_pte(vpage, 0); clear_bit((vpage - sun4c_iobuffer_start) >> PAGE_SHIFT, sun4c_iobuffer_map); vpage += PAGE_SIZE; } /* garbage collect */ scan = (sun4c_iobuffer_high - sun4c_iobuffer_start) >> PAGE_SHIFT; while (scan >= 0 && !sun4c_iobuffer_map[scan >> 5]) scan -= 32; scan += 32; high = sun4c_iobuffer_start + (scan << PAGE_SHIFT); high = SUN4C_REAL_PGDIR_ALIGN(high) + SUN4C_REAL_PGDIR_SIZE; while (high < sun4c_iobuffer_high) { sun4c_iobuffer_high -= SUN4C_REAL_PGDIR_SIZE; free_locked_segment(sun4c_iobuffer_high); } restore_flags(flags); } /* Note the scsi code at init time passes to here buffers * which sit on the kernel stack, those are already locked * by implication and fool the page locking code above * if passed to by mistake. */ static __u32 sun4c_get_scsi_one(char *bufptr, unsigned long len, struct linux_sbus *sbus) { unsigned long page; page = ((unsigned long)bufptr) & PAGE_MASK; if(MAP_NR(page) > max_mapnr) { sun4c_flush_page(page); return (__u32)bufptr; /* already locked */ } return (__u32)sun4c_lockarea(bufptr, len); } static void sun4c_get_scsi_sgl(struct mmu_sglist *sg, int sz, struct linux_sbus *sbus) { while(sz >= 0) { sg[sz].dvma_addr = (__u32)sun4c_lockarea(sg[sz].addr, sg[sz].len); sz--; } } static void sun4c_release_scsi_one(__u32 bufptr, unsigned long len, struct linux_sbus *sbus) { if(bufptr < sun4c_iobuffer_start) return; /* On kernel stack or similar, see above */ sun4c_unlockarea((char *)bufptr, len); } static void sun4c_release_scsi_sgl(struct mmu_sglist *sg, int sz, struct linux_sbus *sbus) { while(sz >= 0) { sun4c_unlockarea((char *)sg[sz].dvma_addr, sg[sz].len); sz--; } } #define TASK_ENTRY_SIZE BUCKET_SIZE /* see above */ #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) struct vm_area_struct sun4c_kstack_vma; __initfunc(static unsigned long sun4c_init_lock_areas(unsigned long start_mem)) { unsigned long sun4c_taskstack_start; unsigned long sun4c_taskstack_end; int bitmap_size; sun4c_init_buckets(); sun4c_taskstack_start = SUN4C_LOCK_VADDR; sun4c_taskstack_end = (sun4c_taskstack_start + (TASK_ENTRY_SIZE * NR_TASKS)); if(sun4c_taskstack_end >= SUN4C_LOCK_END) { prom_printf("Too many tasks, decrease NR_TASKS please.\n"); prom_halt(); } sun4c_iobuffer_start = sun4c_iobuffer_high = SUN4C_REAL_PGDIR_ALIGN(sun4c_taskstack_end); sun4c_iobuffer_end = SUN4C_LOCK_END; bitmap_size = (sun4c_iobuffer_end - sun4c_iobuffer_start) >> PAGE_SHIFT; bitmap_size = (bitmap_size + 7) >> 3; bitmap_size = LONG_ALIGN(bitmap_size); iobuffer_map_size = bitmap_size << 3; sun4c_iobuffer_map = (unsigned long *) start_mem; memset((void *) start_mem, 0, bitmap_size); start_mem += bitmap_size; sun4c_kstack_vma.vm_mm = init_task.mm; sun4c_kstack_vma.vm_start = sun4c_taskstack_start; sun4c_kstack_vma.vm_end = sun4c_taskstack_end; sun4c_kstack_vma.vm_page_prot = PAGE_SHARED; sun4c_kstack_vma.vm_flags = VM_READ | VM_WRITE | VM_EXEC; insert_vm_struct(&init_mm, &sun4c_kstack_vma); return start_mem; } /* Cache flushing on the sun4c. */ static void sun4c_flush_cache_all(void) { unsigned long begin, end; FUW_INLINE begin = (KERNBASE + SUN4C_REAL_PGDIR_SIZE); end = (begin + SUN4C_VAC_SIZE); if(sun4c_vacinfo.linesize == 32) { while(begin < end) { __asm__ __volatile__(" ld [%0 + 0x00], %%g0 ld [%0 + 0x20], %%g0 ld [%0 + 0x40], %%g0 ld [%0 + 0x60], %%g0 ld [%0 + 0x80], %%g0 ld [%0 + 0xa0], %%g0 ld [%0 + 0xc0], %%g0 ld [%0 + 0xe0], %%g0 ld [%0 + 0x100], %%g0 ld [%0 + 0x120], %%g0 ld [%0 + 0x140], %%g0 ld [%0 + 0x160], %%g0 ld [%0 + 0x180], %%g0 ld [%0 + 0x1a0], %%g0 ld [%0 + 0x1c0], %%g0 ld [%0 + 0x1e0], %%g0 " : : "r" (begin)); begin += 512; } } else { while(begin < end) { __asm__ __volatile__(" ld [%0 + 0x00], %%g0 ld [%0 + 0x10], %%g0 ld [%0 + 0x20], %%g0 ld [%0 + 0x30], %%g0 ld [%0 + 0x40], %%g0 ld [%0 + 0x50], %%g0 ld [%0 + 0x60], %%g0 ld [%0 + 0x70], %%g0 ld [%0 + 0x80], %%g0 ld [%0 + 0x90], %%g0 ld [%0 + 0xa0], %%g0 ld [%0 + 0xb0], %%g0 ld [%0 + 0xc0], %%g0 ld [%0 + 0xd0], %%g0 ld [%0 + 0xe0], %%g0 ld [%0 + 0xf0], %%g0 " : : "r" (begin)); begin += 256; } } } static void sun4c_flush_cache_mm_hw(struct mm_struct *mm) { int new_ctx = mm->context; if(new_ctx != NO_CONTEXT && sun4c_context_ring[new_ctx].num_entries) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if(head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); sun4c_flush_context_hw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while(entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } static void sun4c_flush_cache_range_hw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; #if KGPROF_PROFILING kgprof_profile(); #endif if(new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; FUW_INLINE save_and_cli(flags); /* All user segmap chains are ordered on entry->vaddr. */ for(entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; /* Tracing various job mixtures showed that this conditional * only passes ~35% of the time for most worse case situations, * therefore we avoid all of this gross overhead ~65% of the time. */ if((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); sun4c_set_context(new_ctx); /* At this point, always, (start >= entry->vaddr) and * (entry->vaddr < end), once the latter condition * ceases to hold, or we hit the end of the list, we * exit the loop. The ordering of all user allocated * segmaps makes this all work out so beautifully. */ do { struct sun4c_mmu_entry *next = entry->next; unsigned long realend; /* "realstart" is always >= entry->vaddr */ realend = entry->vaddr + SUN4C_REAL_PGDIR_SIZE; if(end < realend) realend = end; if((realend - entry->vaddr) <= (PAGE_SIZE << 3)) { unsigned long page = entry->vaddr; while(page < realend) { sun4c_flush_page_hw(page); page += PAGE_SIZE; } } else { sun4c_flush_segment_hw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); } entry = next; } while((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } /* XXX no save_and_cli/restore_flags needed, but put here if darkside still crashes */ static void sun4c_flush_cache_page_hw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; /* Sun4c has no separate I/D caches so cannot optimize for non * text page flushes. */ if(new_ctx != NO_CONTEXT) { int octx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); sun4c_flush_page_hw(page); sun4c_set_context(octx); } } static void sun4c_flush_page_to_ram_hw(unsigned long page) { sun4c_flush_page_hw(page); } static void sun4c_flush_cache_mm_sw(struct mm_struct *mm) { int new_ctx = mm->context; if(new_ctx != NO_CONTEXT && sun4c_context_ring[new_ctx].num_entries) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if(head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); sun4c_flush_context_sw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while(entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } static void sun4c_flush_cache_range_sw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; #if KGPROF_PROFILING kgprof_profile(); #endif if(new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; FUW_INLINE save_and_cli(flags); /* All user segmap chains are ordered on entry->vaddr. */ for(entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; /* Tracing various job mixtures showed that this conditional * only passes ~35% of the time for most worse case situations, * therefore we avoid all of this gross overhead ~65% of the time. */ if((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); sun4c_set_context(new_ctx); /* At this point, always, (start >= entry->vaddr) and * (entry->vaddr < end), once the latter condition * ceases to hold, or we hit the end of the list, we * exit the loop. The ordering of all user allocated * segmaps makes this all work out so beautifully. */ do { struct sun4c_mmu_entry *next = entry->next; unsigned long realend; /* "realstart" is always >= entry->vaddr */ realend = entry->vaddr + SUN4C_REAL_PGDIR_SIZE; if(end < realend) realend = end; if((realend - entry->vaddr) <= (PAGE_SIZE << 3)) { unsigned long page = entry->vaddr; while(page < realend) { sun4c_flush_page_sw(page); page += PAGE_SIZE; } } else { sun4c_flush_segment_sw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); } entry = next; } while((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } static void sun4c_flush_cache_page_sw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; /* Sun4c has no separate I/D caches so cannot optimize for non * text page flushes. */ if(new_ctx != NO_CONTEXT) { int octx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); sun4c_flush_page_sw(page); sun4c_set_context(octx); } } static void sun4c_flush_page_to_ram_sw(unsigned long page) { sun4c_flush_page_sw(page); } /* Sun4c cache is unified, both instructions and data live there, so * no need to flush the on-stack instructions for new signal handlers. */ static void sun4c_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { } /* TLB flushing on the sun4c. These routines count on the cache * flushing code to flush the user register windows so that we need * not do so when we get here. */ static void sun4c_flush_tlb_all(void) { struct sun4c_mmu_entry *this_entry, *next_entry; unsigned long flags; int savectx, ctx; save_and_cli(flags); this_entry = sun4c_kernel_ring.ringhd.next; savectx = sun4c_get_context(); flush_user_windows(); while (sun4c_kernel_ring.num_entries) { next_entry = this_entry->next; sun4c_flush_segment(this_entry->vaddr); for(ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(this_entry->vaddr, invalid_segment); } free_kernel_entry(this_entry, &sun4c_kernel_ring); this_entry = next_entry; } sun4c_set_context(savectx); restore_flags(flags); } static void sun4c_flush_tlb_mm_hw(struct mm_struct *mm) { int new_ctx = mm->context; if(new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if(head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); sun4c_flush_context_hw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while(entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } static void sun4c_flush_tlb_range_hw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; if(new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; #if KGPROF_PROFILING kgprof_profile(); #endif save_and_cli(flags); /* See commentary in sun4c_flush_cache_range_*(). */ for(entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; if((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); /* This window flush is paranoid I think... -DaveM */ FUW_INLINE sun4c_set_context(new_ctx); do { struct sun4c_mmu_entry *next = entry->next; sun4c_flush_segment_hw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } static void sun4c_flush_tlb_page_hw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; if(new_ctx != NO_CONTEXT) { int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); page &= PAGE_MASK; sun4c_flush_page_hw(page); sun4c_put_pte(page, 0); sun4c_set_context(savectx); } } static void sun4c_flush_tlb_mm_sw(struct mm_struct *mm) { int new_ctx = mm->context; if(new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if(head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); sun4c_flush_context_sw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while(entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } static void sun4c_flush_tlb_range_sw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; if(new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; #if KGPROF_PROFILING kgprof_profile(); #endif save_and_cli(flags); /* See commentary in sun4c_flush_cache_range_*(). */ for(entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; if((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); /* This window flush is paranoid I think... -DaveM */ FUW_INLINE sun4c_set_context(new_ctx); do { struct sun4c_mmu_entry *next = entry->next; sun4c_flush_segment_sw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } static void sun4c_flush_tlb_page_sw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; if(new_ctx != NO_CONTEXT) { int savectx = sun4c_get_context(); FUW_INLINE sun4c_set_context(new_ctx); page &= PAGE_MASK; sun4c_flush_page_sw(page); sun4c_put_pte(page, 0); sun4c_set_context(savectx); } } static void sun4c_set_pte(pte_t *ptep, pte_t pte) { *ptep = pte; } void sun4c_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type, int rdonly) { unsigned long page_entry; page_entry = ((physaddr >> PAGE_SHIFT) & 0xffff); page_entry |= ((pg_iobits | _SUN4C_PAGE_PRIV) & ~(_SUN4C_PAGE_PRESENT)); if(rdonly) page_entry &= ~_SUN4C_WRITEABLE; sun4c_put_pte(virt_addr, page_entry); } void sun4c_unmapioaddr(unsigned long virt_addr) { sun4c_put_pte(virt_addr, 0); } static void sun4c_alloc_context_hw(struct mm_struct *mm) { struct ctx_list *ctxp; ctxp = ctx_free.next; if(ctxp != &ctx_free) { remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); mm->context = ctxp->ctx_number; ctxp->ctx_mm = mm; return; } ctxp = ctx_used.next; if(ctxp->ctx_mm == current->mm) ctxp = ctxp->next; #ifdef DEBUG_SUN4C_MM if(ctxp == &ctx_used) panic("out of mmu contexts"); #endif remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); ctxp->ctx_mm->context = NO_CONTEXT; ctxp->ctx_mm = mm; mm->context = ctxp->ctx_number; sun4c_demap_context_hw(&sun4c_context_ring[ctxp->ctx_number], ctxp->ctx_number); } static void sun4c_switch_to_context_hw(struct task_struct *tsk) { struct ctx_list *ctx; if(tsk->mm->context == NO_CONTEXT) { sun4c_alloc_context_hw(tsk->mm); } else { /* Update the LRU ring of contexts. */ ctx = ctx_list_pool + tsk->mm->context; remove_from_ctx_list(ctx); add_to_used_ctxlist(ctx); } sun4c_set_context(tsk->mm->context); } static void sun4c_init_new_context_hw(struct mm_struct *mm) { sun4c_alloc_context_hw(mm); if(mm == current->mm) sun4c_set_context(mm->context); } static void sun4c_destroy_context_hw(struct mm_struct *mm) { struct ctx_list *ctx_old; if(mm->context != NO_CONTEXT && mm->count == 1) { sun4c_demap_context_hw(&sun4c_context_ring[mm->context], mm->context); ctx_old = ctx_list_pool + mm->context; remove_from_ctx_list(ctx_old); add_to_free_ctxlist(ctx_old); mm->context = NO_CONTEXT; } } static void sun4c_alloc_context_sw(struct mm_struct *mm) { struct ctx_list *ctxp; ctxp = ctx_free.next; if(ctxp != &ctx_free) { remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); mm->context = ctxp->ctx_number; ctxp->ctx_mm = mm; return; } ctxp = ctx_used.next; if(ctxp->ctx_mm == current->mm) ctxp = ctxp->next; #ifdef DEBUG_SUN4C_MM if(ctxp == &ctx_used) panic("out of mmu contexts"); #endif remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); ctxp->ctx_mm->context = NO_CONTEXT; ctxp->ctx_mm = mm; mm->context = ctxp->ctx_number; sun4c_demap_context_sw(&sun4c_context_ring[ctxp->ctx_number], ctxp->ctx_number); } static void sun4c_switch_to_context_sw(struct task_struct *tsk) { struct ctx_list *ctx; if(tsk->mm->context == NO_CONTEXT) { sun4c_alloc_context_sw(tsk->mm); } else { /* Update the LRU ring of contexts. */ ctx = ctx_list_pool + tsk->mm->context; remove_from_ctx_list(ctx); add_to_used_ctxlist(ctx); } sun4c_set_context(tsk->mm->context); } static void sun4c_init_new_context_sw(struct mm_struct *mm) { sun4c_alloc_context_sw(mm); if(mm == current->mm) sun4c_set_context(mm->context); } static void sun4c_destroy_context_sw(struct mm_struct *mm) { struct ctx_list *ctx_old; if(mm->context != NO_CONTEXT && mm->count == 1) { sun4c_demap_context_sw(&sun4c_context_ring[mm->context], mm->context); ctx_old = ctx_list_pool + mm->context; remove_from_ctx_list(ctx_old); add_to_free_ctxlist(ctx_old); mm->context = NO_CONTEXT; } } #if KGPROF_PROFILING static char s4cinfo[10240]; #else static char s4cinfo[512]; #endif static char *sun4c_mmu_info(void) { int used_user_entries, i; used_user_entries = 0; for(i=0; i < num_contexts; i++) used_user_entries += sun4c_context_ring[i].num_entries; sprintf(s4cinfo, "vacsize\t\t: %d bytes\n" "vachwflush\t: %s\n" "vaclinesize\t: %d bytes\n" "mmuctxs\t\t: %d\n" "mmupsegs\t: %d\n" "kernelpsegs\t: %d\n" "kfreepsegs\t: %d\n" "usedpsegs\t: %d\n" "ufreepsegs\t: %d\n" "user_taken\t: %d\n" "max_taken\t: %d\n" "context\t\t: %d flushes\n" "segment\t\t: %d flushes\n" "page\t\t: %d flushes\n", sun4c_vacinfo.num_bytes, (sun4c_vacinfo.do_hwflushes ? "yes" : "no"), sun4c_vacinfo.linesize, num_contexts, (invalid_segment + 1), sun4c_kernel_ring.num_entries, sun4c_kfree_ring.num_entries, used_user_entries, sun4c_ufree_ring.num_entries, sun4c_user_taken_entries, max_user_taken_entries, ctxflushes, segflushes, pageflushes); #if KGPROF_PROFILING { char *p = s4cinfo + strlen(s4cinfo); int i,j; sprintf(p,"kgprof profiling:\n"); p += strlen(p); for (i=0;i max_mapnr)); } static int sun4c_pmd_present(pmd_t pmd) { return ((pmd_val(pmd) & PGD_PRESENT) != 0); } static void sun4c_pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); } static int sun4c_pgd_none(pgd_t pgd) { return 0; } static int sun4c_pgd_bad(pgd_t pgd) { return 0; } static int sun4c_pgd_present(pgd_t pgd) { return 1; } static void sun4c_pgd_clear(pgd_t * pgdp) { } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static int sun4c_pte_write(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_WRITE; } static int sun4c_pte_dirty(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_MODIFIED; } static int sun4c_pte_young(pte_t pte) { return pte_val(pte) & _SUN4C_PAGE_ACCESSED; } static pte_t sun4c_pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~(_SUN4C_PAGE_WRITE | _SUN4C_PAGE_SILENT_WRITE)); } static pte_t sun4c_pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~(_SUN4C_PAGE_MODIFIED | _SUN4C_PAGE_SILENT_WRITE)); } static pte_t sun4c_pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~(_SUN4C_PAGE_ACCESSED | _SUN4C_PAGE_SILENT_READ)); } static pte_t sun4c_pte_mkwrite(pte_t pte) { pte = __pte(pte_val(pte) | _SUN4C_PAGE_WRITE); if (pte_val(pte) & _SUN4C_PAGE_MODIFIED) pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE); return pte; } static pte_t sun4c_pte_mkdirty(pte_t pte) { pte = __pte(pte_val(pte) | _SUN4C_PAGE_MODIFIED); if (pte_val(pte) & _SUN4C_PAGE_WRITE) pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE); return pte; } static pte_t sun4c_pte_mkyoung(pte_t pte) { pte = __pte(pte_val(pte) | _SUN4C_PAGE_ACCESSED); if (pte_val(pte) & _SUN4C_PAGE_READ) pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_READ); return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static pte_t sun4c_mk_pte(unsigned long page, pgprot_t pgprot) { return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot)); } static pte_t sun4c_mk_pte_phys(unsigned long phys_page, pgprot_t pgprot) { return __pte((phys_page >> PAGE_SHIFT) | pgprot_val(pgprot)); } static pte_t sun4c_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) { return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot)); } static pte_t sun4c_pte_modify(pte_t pte, pgprot_t newprot) { return __pte((pte_val(pte) & _SUN4C_PAGE_CHG_MASK) | pgprot_val(newprot)); } static unsigned long sun4c_pte_page(pte_t pte) { return (PAGE_OFFSET + ((pte_val(pte) & 0xffff) << (PAGE_SHIFT))); } static unsigned long sun4c_pmd_page(pmd_t pmd) { return (pmd_val(pmd) & PAGE_MASK); } /* to find an entry in a page-table-directory */ pgd_t *sun4c_pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> SUN4C_PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ static pmd_t *sun4c_pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ pte_t *sun4c_pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) sun4c_pmd_page(*dir) + ((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1)); } /* Update the root mmu directory. */ static void sun4c_update_rootmmu_dir(struct task_struct *tsk, pgd_t *pgdir) { } /* Please take special note on the foo_kernel() routines below, our * fast in window fault handler wants to get at the pte's for vmalloc * area with traps off, therefore they _MUST_ be locked down to prevent * a watchdog from happening. It only takes 4 pages of pte's to lock * down the maximum vmalloc space possible on sun4c so we statically * allocate these page table pieces in the kernel image. Therefore * we should never have to really allocate or free any kernel page * table information. */ /* Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any, and marks the page tables reserved. */ static void sun4c_pte_free_kernel(pte_t *pte) { /* This should never get called. */ panic("sun4c_pte_free_kernel called, can't happen..."); } static pte_t *sun4c_pte_alloc_kernel(pmd_t *pmd, unsigned long address) { if(address >= SUN4C_LOCK_VADDR) return NULL; address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1); if (sun4c_pmd_none(*pmd)) panic("sun4c_pmd_none for kernel pmd, can't happen..."); if (sun4c_pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd)); *pmd = __pmd(PGD_TABLE | (unsigned long) BAD_PAGETABLE); return NULL; } return (pte_t *) sun4c_pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ static void sun4c_pmd_free_kernel(pmd_t *pmd) { } static pmd_t *sun4c_pmd_alloc_kernel(pgd_t *pgd, unsigned long address) { return (pmd_t *) pgd; } static void sun4c_pte_free(pte_t *pte) { free_page((unsigned long) pte); } static pte_t *sun4c_pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1); if (sun4c_pmd_none(*pmd)) { pte_t *page = (pte_t *) get_free_page(GFP_KERNEL); if (sun4c_pmd_none(*pmd)) { if (page) { *pmd = __pmd(PGD_TABLE | (unsigned long) page); return page + address; } *pmd = __pmd(PGD_TABLE | (unsigned long) BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (sun4c_pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); *pmd = __pmd(PGD_TABLE | (unsigned long) BAD_PAGETABLE); return NULL; } return (pte_t *) sun4c_pmd_page(*pmd) + address; } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ static void sun4c_pmd_free(pmd_t * pmd) { *pmd = __pmd(0); } static pmd_t *sun4c_pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } static void sun4c_pgd_free(pgd_t *pgd) { free_page((unsigned long) pgd); } static pgd_t *sun4c_pgd_alloc(void) { return (pgd_t *) get_free_page(GFP_KERNEL); } /* There are really two cases of aliases to watch out for, and these * are: * * 1) A user's page which can be aliased with the kernels virtual * mapping of the physical page. * * 2) Multiple user mappings of the same inode/anonymous object * such that two copies of the same data for the same phys page * can live (writable) in the cache at the same time. * * We handle number 1 by flushing the kernel copy of the page always * after COW page operations. * * NOTE: We are a bit slowed down now because the VMA arg is indeed used * now, so our ref/mod bit tracking quick userfaults eat a few more * cycles than they used to. */ static void sun4c_vac_alias_fixup(struct vm_area_struct *vma, unsigned long address, pte_t pte) { struct dentry *dentry; struct inode *inode = NULL; pgd_t *pgdp; pte_t *ptep; dentry = vma->vm_dentry; if(dentry) inode = dentry->d_inode; if(inode) { unsigned long offset = (address & PAGE_MASK) - vma->vm_start; struct vm_area_struct *vmaring = inode->i_mmap; int alias_found = 0; do { unsigned long vaddr = vmaring->vm_start + offset; unsigned long start; if (S4CVAC_BADALIAS(vaddr, address)) { alias_found++; start = vmaring->vm_start; while(start < vmaring->vm_end) { pgdp = sun4c_pgd_offset(vmaring->vm_mm, start); if(!pgdp) goto next; ptep = sun4c_pte_offset((pmd_t *) pgdp, start); if(!ptep) goto next; if(pte_val(*ptep) & _SUN4C_PAGE_PRESENT) { flush_cache_page(vmaring, start); pte_val(*ptep) = (pte_val(*ptep) | _SUN4C_PAGE_NOCACHE); flush_tlb_page(vmaring, start); } next: start += PAGE_SIZE; } } } while ((vmaring = vmaring->vm_next_share) != NULL); if(alias_found && !(pte_val(pte) & _SUN4C_PAGE_NOCACHE)) { pgdp = sun4c_pgd_offset(vma->vm_mm, address); ptep = sun4c_pte_offset((pmd_t *) pgdp, address); pte_val(*ptep) = (pte_val(*ptep) | _SUN4C_PAGE_NOCACHE); pte = pte_val(*ptep); } } } void sun4c_update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { unsigned long flags; save_and_cli(flags); address &= PAGE_MASK; if(sun4c_get_segmap(address) == invalid_segment) alloc_user_segment(address, sun4c_get_context()); if((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) sun4c_vac_alias_fixup(vma, address, pte); sun4c_put_pte(address, pte_val(pte)); restore_flags(flags); } extern unsigned long free_area_init(unsigned long, unsigned long); extern unsigned long sparc_context_init(unsigned long, int); extern unsigned long end; __initfunc(unsigned long sun4c_paging_init(unsigned long start_mem, unsigned long end_mem)) { int i, cnt; unsigned long kernel_end, vaddr; extern unsigned long sparc_iobase_vaddr; kernel_end = (unsigned long) &end; kernel_end += (SUN4C_REAL_PGDIR_SIZE * 4); kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end); sun4c_probe_mmu(); invalid_segment = (num_segmaps - 1); sun4c_init_mmu_entry_pool(); sun4c_init_rings(&start_mem); sun4c_init_map_kernelprom(kernel_end); sun4c_init_clean_mmu(kernel_end); sun4c_init_fill_kernel_ring(SUN4C_KERNEL_BUCKETS); sun4c_init_lock_area(sparc_iobase_vaddr, IOBASE_END); sun4c_init_lock_area(DVMA_VADDR, DVMA_END); start_mem = sun4c_init_lock_areas(start_mem); sun4c_init_fill_user_ring(); sun4c_set_context(0); memset(swapper_pg_dir, 0, PAGE_SIZE); memset(pg0, 0, PAGE_SIZE); memset(pg1, 0, PAGE_SIZE); memset(pg2, 0, PAGE_SIZE); memset(pg3, 0, PAGE_SIZE); /* Save work later. */ vaddr = SUN4C_VMALLOC_START; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg0); vaddr += SUN4C_PGDIR_SIZE; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg1); vaddr += SUN4C_PGDIR_SIZE; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg2); vaddr += SUN4C_PGDIR_SIZE; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg3); sun4c_init_ss2_cache_bug(); start_mem = PAGE_ALIGN(start_mem); start_mem = sparc_context_init(start_mem, num_contexts); start_mem = free_area_init(start_mem, end_mem); cnt = 0; for(i = 0; i < num_segmaps; i++) if(mmu_entry_pool[i].locked) cnt++; max_user_taken_entries = num_segmaps - cnt - 40 - 1; printk("SUN4C: %d mmu entries for the kernel\n", cnt); return start_mem; } /* Load up routines and constants for sun4c mmu */ __initfunc(void ld_mmu_sun4c(void)) { printk("Loading sun4c MMU routines\n"); /* First the constants */ pmd_shift = SUN4C_PMD_SHIFT; pmd_size = SUN4C_PMD_SIZE; pmd_mask = SUN4C_PMD_MASK; pgdir_shift = SUN4C_PGDIR_SHIFT; pgdir_size = SUN4C_PGDIR_SIZE; pgdir_mask = SUN4C_PGDIR_MASK; ptrs_per_pte = SUN4C_PTRS_PER_PTE; ptrs_per_pmd = SUN4C_PTRS_PER_PMD; ptrs_per_pgd = SUN4C_PTRS_PER_PGD; page_none = SUN4C_PAGE_NONE; page_shared = SUN4C_PAGE_SHARED; page_copy = SUN4C_PAGE_COPY; page_readonly = SUN4C_PAGE_READONLY; page_kernel = SUN4C_PAGE_KERNEL; pg_iobits = _SUN4C_PAGE_PRESENT | _SUN4C_READABLE | _SUN4C_WRITEABLE | _SUN4C_PAGE_IO | _SUN4C_PAGE_NOCACHE; /* Functions */ flush_cache_all = sun4c_flush_cache_all; if(sun4c_vacinfo.do_hwflushes) { flush_cache_mm = sun4c_flush_cache_mm_hw; flush_cache_range = sun4c_flush_cache_range_hw; flush_cache_page = sun4c_flush_cache_page_hw; flush_page_to_ram = sun4c_flush_page_to_ram_hw; flush_tlb_mm = sun4c_flush_tlb_mm_hw; flush_tlb_range = sun4c_flush_tlb_range_hw; flush_tlb_page = sun4c_flush_tlb_page_hw; free_task_struct = sun4c_free_task_struct_hw; switch_to_context = sun4c_switch_to_context_hw; destroy_context = sun4c_destroy_context_hw; init_new_context = sun4c_init_new_context_hw; } else { flush_cache_mm = sun4c_flush_cache_mm_sw; flush_cache_range = sun4c_flush_cache_range_sw; flush_cache_page = sun4c_flush_cache_page_sw; flush_page_to_ram = sun4c_flush_page_to_ram_sw; flush_tlb_mm = sun4c_flush_tlb_mm_sw; flush_tlb_range = sun4c_flush_tlb_range_sw; flush_tlb_page = sun4c_flush_tlb_page_sw; free_task_struct = sun4c_free_task_struct_sw; switch_to_context = sun4c_switch_to_context_sw; destroy_context = sun4c_destroy_context_sw; init_new_context = sun4c_init_new_context_sw; } flush_tlb_all = sun4c_flush_tlb_all; flush_sig_insns = sun4c_flush_sig_insns; set_pte = sun4c_set_pte; pmd_align = sun4c_pmd_align; pgdir_align = sun4c_pgdir_align; vmalloc_start = sun4c_vmalloc_start; pte_page = sun4c_pte_page; pmd_page = sun4c_pmd_page; sparc_update_rootmmu_dir = sun4c_update_rootmmu_dir; pte_none = sun4c_pte_none; pte_present = sun4c_pte_present; pte_clear = sun4c_pte_clear; pmd_none = sun4c_pmd_none; pmd_bad = sun4c_pmd_bad; pmd_present = sun4c_pmd_present; pmd_clear = sun4c_pmd_clear; pgd_none = sun4c_pgd_none; pgd_bad = sun4c_pgd_bad; pgd_present = sun4c_pgd_present; pgd_clear = sun4c_pgd_clear; mk_pte = sun4c_mk_pte; mk_pte_phys = sun4c_mk_pte_phys; mk_pte_io = sun4c_mk_pte_io; pte_modify = sun4c_pte_modify; pgd_offset = sun4c_pgd_offset; pmd_offset = sun4c_pmd_offset; pte_offset = sun4c_pte_offset; pte_free_kernel = sun4c_pte_free_kernel; pmd_free_kernel = sun4c_pmd_free_kernel; pte_alloc_kernel = sun4c_pte_alloc_kernel; pmd_alloc_kernel = sun4c_pmd_alloc_kernel; pte_free = sun4c_pte_free; pte_alloc = sun4c_pte_alloc; pmd_free = sun4c_pmd_free; pmd_alloc = sun4c_pmd_alloc; pgd_free = sun4c_pgd_free; pgd_alloc = sun4c_pgd_alloc; pte_write = sun4c_pte_write; pte_dirty = sun4c_pte_dirty; pte_young = sun4c_pte_young; pte_wrprotect = sun4c_pte_wrprotect; pte_mkclean = sun4c_pte_mkclean; pte_mkold = sun4c_pte_mkold; pte_mkwrite = sun4c_pte_mkwrite; pte_mkdirty = sun4c_pte_mkdirty; pte_mkyoung = sun4c_pte_mkyoung; update_mmu_cache = sun4c_update_mmu_cache; mmu_lockarea = sun4c_lockarea; mmu_unlockarea = sun4c_unlockarea; mmu_get_scsi_one = sun4c_get_scsi_one; mmu_get_scsi_sgl = sun4c_get_scsi_sgl; mmu_release_scsi_one = sun4c_release_scsi_one; mmu_release_scsi_sgl = sun4c_release_scsi_sgl; mmu_map_dma_area = sun4c_map_dma_area; mmu_v2p = sun4c_v2p; mmu_p2v = sun4c_p2v; /* Task struct and kernel stack allocating/freeing. */ alloc_task_struct = sun4c_alloc_task_struct; quick_kernel_fault = sun4c_quick_kernel_fault; mmu_info = sun4c_mmu_info; /* These should _never_ get called with two level tables. */ pgd_set = 0; pgd_page = 0; }