/* $Id: sun4c.c,v 1.191 2000/04/08 02:11:41 davem Exp $ * sun4c.c: Doing in software what should be done in hardware. * * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu) * Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1996 Andrew Tridgell (Andrew.Tridgell@anu.edu.au) * Copyright (C) 1997,99 Anton Blanchard (anton@progsoc.uts.edu.au) * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz) */ #define NR_TASK_BUCKETS 512 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Because of our dynamic kernel TLB miss strategy, and how * our DVMA mapping allocation works, you _MUST_: * * 1) Disable interrupts _and_ not touch any dynamic kernel * memory while messing with kernel MMU state. By * dynamic memory I mean any object which is not in * the kernel image itself or a task_struct (both of * which are locked into the MMU). * 2) Disable interrupts while messing with user MMU state. */ extern int num_segmaps, num_contexts; #ifdef CONFIG_SUN4 #define SUN4C_VAC_SIZE sun4c_vacinfo.num_bytes #else /* That's it, we prom_halt() on sun4c if the cache size is something other than 65536. * So let's save some cycles and just use that everywhere except for that bootup * sanity check. */ #define SUN4C_VAC_SIZE 65536 #endif #define SUN4C_KERNEL_BUCKETS 32 #ifndef MAX #define MAX(a,b) ((a)<(b)?(b):(a)) #endif #ifndef MIN #define MIN(a,b) ((a)<(b)?(a):(b)) #endif /* Flushing the cache. */ struct sun4c_vac_props sun4c_vacinfo; unsigned long sun4c_kernel_faults; /* Invalidate every sun4c cache line tag. */ void sun4c_flush_all(void) { unsigned long begin, end; if (sun4c_vacinfo.on) panic("SUN4C: AIEEE, trying to invalidate vac while" " it is on."); /* Clear 'valid' bit in all cache line tags */ begin = AC_CACHETAGS; end = (AC_CACHETAGS + SUN4C_VAC_SIZE); while (begin < end) { __asm__ __volatile__("sta %%g0, [%0] %1\n\t" : : "r" (begin), "i" (ASI_CONTROL)); begin += sun4c_vacinfo.linesize; } } static __inline__ void sun4c_flush_context_hw(void) { unsigned long end = SUN4C_VAC_SIZE; __asm__ __volatile__( "1: addcc %0, -4096, %0\n\t" " bne 1b\n\t" " sta %%g0, [%0] %2" : "=&r" (end) : "0" (end), "i" (ASI_HWFLUSHCONTEXT) : "cc"); } /* Must be called minimally with IRQs disabled. */ static void sun4c_flush_segment_hw(unsigned long addr) { if (sun4c_get_segmap(addr) != invalid_segment) { unsigned long vac_size = SUN4C_VAC_SIZE; __asm__ __volatile__( "1: addcc %0, -4096, %0\n\t" " bne 1b\n\t" " sta %%g0, [%2 + %0] %3" : "=&r" (vac_size) : "0" (vac_size), "r" (addr), "i" (ASI_HWFLUSHSEG) : "cc"); } } /* Must be called minimally with interrupts disabled. */ static __inline__ void sun4c_flush_page_hw(unsigned long addr) { addr &= PAGE_MASK; if ((int)sun4c_get_pte(addr) < 0) __asm__ __volatile__("sta %%g0, [%0] %1" : : "r" (addr), "i" (ASI_HWFLUSHPAGE)); } /* Don't inline the software version as it eats too many cache lines if expanded. */ static void sun4c_flush_context_sw(void) { unsigned long nbytes = SUN4C_VAC_SIZE; unsigned long lsize = sun4c_vacinfo.linesize; __asm__ __volatile__(" add %2, %2, %%g1 add %2, %%g1, %%g2 add %2, %%g2, %%g3 add %2, %%g3, %%g4 add %2, %%g4, %%g5 add %2, %%g5, %%o4 add %2, %%o4, %%o5 1: subcc %0, %%o5, %0 sta %%g0, [%0] %3 sta %%g0, [%0 + %2] %3 sta %%g0, [%0 + %%g1] %3 sta %%g0, [%0 + %%g2] %3 sta %%g0, [%0 + %%g3] %3 sta %%g0, [%0 + %%g4] %3 sta %%g0, [%0 + %%g5] %3 bg 1b sta %%g0, [%1 + %%o4] %3 " : "=&r" (nbytes) : "0" (nbytes), "r" (lsize), "i" (ASI_FLUSHCTX) : "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc"); } /* Don't inline the software version as it eats too many cache lines if expanded. */ static void sun4c_flush_segment_sw(unsigned long addr) { if (sun4c_get_segmap(addr) != invalid_segment) { unsigned long nbytes = SUN4C_VAC_SIZE; unsigned long lsize = sun4c_vacinfo.linesize; __asm__ __volatile__(" add %2, %2, %%g1 add %2, %%g1, %%g2 add %2, %%g2, %%g3 add %2, %%g3, %%g4 add %2, %%g4, %%g5 add %2, %%g5, %%o4 add %2, %%o4, %%o5 1: subcc %1, %%o5, %1 sta %%g0, [%0] %6 sta %%g0, [%0 + %2] %6 sta %%g0, [%0 + %%g1] %6 sta %%g0, [%0 + %%g2] %6 sta %%g0, [%0 + %%g3] %6 sta %%g0, [%0 + %%g4] %6 sta %%g0, [%0 + %%g5] %6 sta %%g0, [%0 + %%o4] %6 bg 1b add %0, %%o5, %0 " : "=&r" (addr), "=&r" (nbytes), "=&r" (lsize) : "0" (addr), "1" (nbytes), "2" (lsize), "i" (ASI_FLUSHSEG) : "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc"); } } /* Bolix one page from the virtual cache. */ static void sun4c_flush_page(unsigned long addr) { addr &= PAGE_MASK; if ((sun4c_get_pte(addr) & (_SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_VALID)) != _SUN4C_PAGE_VALID) return; if (sun4c_vacinfo.do_hwflushes) { __asm__ __volatile__("sta %%g0, [%0] %1;nop;nop;nop;\n\t" : : "r" (addr), "i" (ASI_HWFLUSHPAGE)); } else { unsigned long left = PAGE_SIZE; unsigned long lsize = sun4c_vacinfo.linesize; __asm__ __volatile__("add %2, %2, %%g1\n\t" "add %2, %%g1, %%g2\n\t" "add %2, %%g2, %%g3\n\t" "add %2, %%g3, %%g4\n\t" "add %2, %%g4, %%g5\n\t" "add %2, %%g5, %%o4\n\t" "add %2, %%o4, %%o5\n" "1:\n\t" "subcc %1, %%o5, %1\n\t" "sta %%g0, [%0] %6\n\t" "sta %%g0, [%0 + %2] %6\n\t" "sta %%g0, [%0 + %%g1] %6\n\t" "sta %%g0, [%0 + %%g2] %6\n\t" "sta %%g0, [%0 + %%g3] %6\n\t" "sta %%g0, [%0 + %%g4] %6\n\t" "sta %%g0, [%0 + %%g5] %6\n\t" "sta %%g0, [%0 + %%o4] %6\n\t" "bg 1b\n\t" " add %0, %%o5, %0\n\t" : "=&r" (addr), "=&r" (left), "=&r" (lsize) : "0" (addr), "1" (left), "2" (lsize), "i" (ASI_FLUSHPG) : "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc"); } } /* Don't inline the software version as it eats too many cache lines if expanded. */ static void sun4c_flush_page_sw(unsigned long addr) { addr &= PAGE_MASK; if ((sun4c_get_pte(addr) & (_SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_VALID)) == _SUN4C_PAGE_VALID) { unsigned long left = PAGE_SIZE; unsigned long lsize = sun4c_vacinfo.linesize; __asm__ __volatile__(" add %2, %2, %%g1 add %2, %%g1, %%g2 add %2, %%g2, %%g3 add %2, %%g3, %%g4 add %2, %%g4, %%g5 add %2, %%g5, %%o4 add %2, %%o4, %%o5 1: subcc %1, %%o5, %1 sta %%g0, [%0] %6 sta %%g0, [%0 + %2] %6 sta %%g0, [%0 + %%g1] %6 sta %%g0, [%0 + %%g2] %6 sta %%g0, [%0 + %%g3] %6 sta %%g0, [%0 + %%g4] %6 sta %%g0, [%0 + %%g5] %6 sta %%g0, [%0 + %%o4] %6 bg 1b add %0, %%o5, %0 " : "=&r" (addr), "=&r" (left), "=&r" (lsize) : "0" (addr), "1" (left), "2" (lsize), "i" (ASI_FLUSHPG) : "g1", "g2", "g3", "g4", "g5", "o4", "o5", "cc"); } } /* The sun4c's do have an on chip store buffer. And the way you * clear them out isn't so obvious. The only way I can think of * to accomplish this is to read the current context register, * store the same value there, then read an external hardware * register. */ void sun4c_complete_all_stores(void) { volatile int _unused; _unused = sun4c_get_context(); sun4c_set_context(_unused); #ifdef CONFIG_SUN_AUXIO _unused = *AUXREG; #endif } /* Bootup utility functions. */ static inline void sun4c_init_clean_segmap(unsigned char pseg) { unsigned long vaddr; sun4c_put_segmap(0, pseg); for (vaddr = 0; vaddr < SUN4C_REAL_PGDIR_SIZE; vaddr += PAGE_SIZE) sun4c_put_pte(vaddr, 0); sun4c_put_segmap(0, invalid_segment); } static inline void sun4c_init_clean_mmu(unsigned long kernel_end) { unsigned long vaddr; unsigned char savectx, ctx; savectx = sun4c_get_context(); kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end); for (ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); for (vaddr = 0; vaddr < 0x20000000; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); for (vaddr = 0xe0000000; vaddr < KERNBASE; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); for (vaddr = kernel_end; vaddr < KADB_DEBUGGER_BEGVM; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); for (vaddr = LINUX_OPPROM_ENDVM; vaddr; vaddr += SUN4C_REAL_PGDIR_SIZE) sun4c_put_segmap(vaddr, invalid_segment); } sun4c_set_context(savectx); } void __init sun4c_probe_vac(void) { sun4c_disable_vac(); if (ARCH_SUN4) { switch (idprom->id_machtype) { case (SM_SUN4|SM_4_110): sun4c_vacinfo.type = NONE; sun4c_vacinfo.num_bytes = 0; sun4c_vacinfo.linesize = 0; sun4c_vacinfo.do_hwflushes = 0; prom_printf("No VAC. Get some bucks and buy a real computer."); prom_halt(); break; case (SM_SUN4|SM_4_260): sun4c_vacinfo.type = WRITE_BACK; sun4c_vacinfo.num_bytes = 128 * 1024; sun4c_vacinfo.linesize = 16; sun4c_vacinfo.do_hwflushes = 0; break; case (SM_SUN4|SM_4_330): sun4c_vacinfo.type = WRITE_THROUGH; sun4c_vacinfo.num_bytes = 128 * 1024; sun4c_vacinfo.linesize = 16; sun4c_vacinfo.do_hwflushes = 0; break; case (SM_SUN4|SM_4_470): sun4c_vacinfo.type = WRITE_BACK; sun4c_vacinfo.num_bytes = 128 * 1024; sun4c_vacinfo.linesize = 32; sun4c_vacinfo.do_hwflushes = 0; break; default: prom_printf("Cannot initialize VAC - wierd sun4 model idprom->id_machtype = %d", idprom->id_machtype); prom_halt(); }; } else { sun4c_vacinfo.type = WRITE_THROUGH; if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) { /* PROM on SS1 lacks this info, to be super safe we * hard code it here since this arch is cast in stone. */ sun4c_vacinfo.num_bytes = 65536; sun4c_vacinfo.linesize = 16; } else { sun4c_vacinfo.num_bytes = prom_getintdefault(prom_root_node, "vac-size", 65536); sun4c_vacinfo.linesize = prom_getintdefault(prom_root_node, "vac-linesize", 16); } sun4c_vacinfo.do_hwflushes = prom_getintdefault(prom_root_node, "vac-hwflush", 0); if (sun4c_vacinfo.do_hwflushes == 0) sun4c_vacinfo.do_hwflushes = prom_getintdefault(prom_root_node, "vac_hwflush", 0); if (sun4c_vacinfo.num_bytes != 65536) { prom_printf("WEIRD Sun4C VAC cache size, tell davem"); prom_halt(); } } sun4c_vacinfo.num_lines = (sun4c_vacinfo.num_bytes / sun4c_vacinfo.linesize); switch (sun4c_vacinfo.linesize) { case 16: sun4c_vacinfo.log2lsize = 4; break; case 32: sun4c_vacinfo.log2lsize = 5; break; default: prom_printf("probe_vac: Didn't expect vac-linesize of %d, halting\n", sun4c_vacinfo.linesize); prom_halt(); }; sun4c_flush_all(); sun4c_enable_vac(); } /* Patch instructions for the low level kernel fault handler. */ extern unsigned long invalid_segment_patch1, invalid_segment_patch1_ff; extern unsigned long invalid_segment_patch2, invalid_segment_patch2_ff; extern unsigned long invalid_segment_patch1_1ff, invalid_segment_patch2_1ff; extern unsigned long num_context_patch1, num_context_patch1_16; extern unsigned long num_context_patch2, num_context_patch2_16; extern unsigned long vac_linesize_patch, vac_linesize_patch_32; extern unsigned long vac_hwflush_patch1, vac_hwflush_patch1_on; extern unsigned long vac_hwflush_patch2, vac_hwflush_patch2_on; #define PATCH_INSN(src, dst) do { \ daddr = &(dst); \ iaddr = &(src); \ *daddr = *iaddr; \ } while (0); static void patch_kernel_fault_handler(void) { unsigned long *iaddr, *daddr; switch (num_segmaps) { case 128: /* Default, nothing to do. */ break; case 256: PATCH_INSN(invalid_segment_patch1_ff, invalid_segment_patch1); PATCH_INSN(invalid_segment_patch2_ff, invalid_segment_patch2); break; case 512: PATCH_INSN(invalid_segment_patch1_1ff, invalid_segment_patch1); PATCH_INSN(invalid_segment_patch2_1ff, invalid_segment_patch2); break; default: prom_printf("Unhandled number of segmaps: %d\n", num_segmaps); prom_halt(); }; switch (num_contexts) { case 8: /* Default, nothing to do. */ break; case 16: PATCH_INSN(num_context_patch1_16, num_context_patch1); #if 0 PATCH_INSN(num_context_patch2_16, num_context_patch2); #endif break; default: prom_printf("Unhandled number of contexts: %d\n", num_contexts); prom_halt(); }; if (sun4c_vacinfo.do_hwflushes != 0) { PATCH_INSN(vac_hwflush_patch1_on, vac_hwflush_patch1); PATCH_INSN(vac_hwflush_patch2_on, vac_hwflush_patch2); } else { switch (sun4c_vacinfo.linesize) { case 16: /* Default, nothing to do. */ break; case 32: PATCH_INSN(vac_linesize_patch_32, vac_linesize_patch); break; default: prom_printf("Impossible VAC linesize %d, halting...\n", sun4c_vacinfo.linesize); prom_halt(); }; } } static void __init sun4c_probe_mmu(void) { if (ARCH_SUN4) { switch (idprom->id_machtype) { case (SM_SUN4|SM_4_110): prom_printf("No support for 4100 yet\n"); prom_halt(); num_segmaps = 256; num_contexts = 8; break; case (SM_SUN4|SM_4_260): /* should be 512 segmaps. when it get fixed */ num_segmaps = 256; num_contexts = 16; break; case (SM_SUN4|SM_4_330): num_segmaps = 256; num_contexts = 16; break; case (SM_SUN4|SM_4_470): /* should be 1024 segmaps. when it get fixed */ num_segmaps = 256; num_contexts = 64; break; default: prom_printf("Invalid SUN4 model\n"); prom_halt(); }; } else { if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS1)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_SS1PLUS))) { /* Hardcode these just to be safe, PROM on SS1 does * not have this info available in the root node. */ num_segmaps = 128; num_contexts = 8; } else { num_segmaps = prom_getintdefault(prom_root_node, "mmu-npmg", 128); num_contexts = prom_getintdefault(prom_root_node, "mmu-nctx", 0x8); } } patch_kernel_fault_handler(); } volatile unsigned long *sun4c_memerr_reg = 0; void __init sun4c_probe_memerr_reg(void) { int node; struct linux_prom_registers regs[1]; if (ARCH_SUN4) { sun4c_memerr_reg = ioremap(sun4_memreg_physaddr, PAGE_SIZE); } else { node = prom_getchild(prom_root_node); node = prom_searchsiblings(prom_root_node, "memory-error"); if (!node) return; prom_getproperty(node, "reg", (char *)regs, sizeof(regs)); /* hmm I think regs[0].which_io is zero here anyways */ sun4c_memerr_reg = ioremap(regs[0].phys_addr, regs[0].reg_size); } } static inline void sun4c_init_ss2_cache_bug(void) { extern unsigned long start; if ((idprom->id_machtype == (SM_SUN4C | SM_4C_SS2)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_IPX)) || (idprom->id_machtype == (SM_SUN4 | SM_4_330)) || (idprom->id_machtype == (SM_SUN4C | SM_4C_ELC))) { /* Whee.. */ printk("SS2 cache bug detected, uncaching trap table page\n"); sun4c_flush_page((unsigned int) &start); sun4c_put_pte(((unsigned long) &start), (sun4c_get_pte((unsigned long) &start) | _SUN4C_PAGE_NOCACHE)); } } /* Addr is always aligned on a page boundry for us already. */ static void sun4c_map_dma_area(unsigned long va, u32 addr, int len) { unsigned long page, end; end = PAGE_ALIGN((addr + len)); while (addr < end) { page = va; sun4c_flush_page(page); page -= PAGE_OFFSET; page >>= PAGE_SHIFT; page |= (_SUN4C_PAGE_VALID | _SUN4C_PAGE_DIRTY | _SUN4C_PAGE_NOCACHE | _SUN4C_PAGE_PRIV); sun4c_put_pte(addr, page); addr += PAGE_SIZE; va += PAGE_SIZE; } } static unsigned long sun4c_translate_dvma(unsigned long busa) { /* Fortunately for us, bus_addr == uncached_virt in sun4c. */ unsigned long pte = sun4c_get_pte(busa); return (pte << PAGE_SHIFT) + PAGE_OFFSET; } static void sun4c_unmap_dma_area(unsigned long busa, int len) { /* Fortunately for us, bus_addr == uncached_virt in sun4c. */ /* XXX Implement this */ } static void sun4c_inval_dma_area(unsigned long virt, int len) { } static void sun4c_flush_dma_area(unsigned long virt, int len) { } /* TLB management. */ /* Don't change this struct without changing entry.S. This is used * in the in-window kernel fault handler, and you don't want to mess * with that. (See sun4c_fault in entry.S). */ struct sun4c_mmu_entry { struct sun4c_mmu_entry *next; struct sun4c_mmu_entry *prev; unsigned long vaddr; unsigned char pseg; unsigned char locked; /* For user mappings only, and completely hidden from kernel * TLB miss code. */ unsigned char ctx; struct sun4c_mmu_entry *lru_next; struct sun4c_mmu_entry *lru_prev; }; static struct sun4c_mmu_entry mmu_entry_pool[SUN4C_MAX_SEGMAPS]; static void __init sun4c_init_mmu_entry_pool(void) { int i; for (i=0; i < SUN4C_MAX_SEGMAPS; i++) { mmu_entry_pool[i].pseg = i; mmu_entry_pool[i].next = 0; mmu_entry_pool[i].prev = 0; mmu_entry_pool[i].vaddr = 0; mmu_entry_pool[i].locked = 0; mmu_entry_pool[i].ctx = 0; mmu_entry_pool[i].lru_next = 0; mmu_entry_pool[i].lru_prev = 0; } mmu_entry_pool[invalid_segment].locked = 1; } static inline void fix_permissions(unsigned long vaddr, unsigned long bits_on, unsigned long bits_off) { unsigned long start, end; end = vaddr + SUN4C_REAL_PGDIR_SIZE; for (start = vaddr; start < end; start += PAGE_SIZE) if (sun4c_get_pte(start) & _SUN4C_PAGE_VALID) sun4c_put_pte(start, (sun4c_get_pte(start) | bits_on) & ~bits_off); } static inline void sun4c_init_map_kernelprom(unsigned long kernel_end) { unsigned long vaddr; unsigned char pseg, ctx; #ifdef CONFIG_SUN4 /* sun4/110 and 260 have no kadb. */ if ((idprom->id_machtype != (SM_SUN4 | SM_4_260)) && (idprom->id_machtype != (SM_SUN4 | SM_4_110))) { #endif for (vaddr = KADB_DEBUGGER_BEGVM; vaddr < LINUX_OPPROM_ENDVM; vaddr += SUN4C_REAL_PGDIR_SIZE) { pseg = sun4c_get_segmap(vaddr); if (pseg != invalid_segment) { mmu_entry_pool[pseg].locked = 1; for (ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, vaddr, pseg); fix_permissions(vaddr, _SUN4C_PAGE_PRIV, 0); } } #ifdef CONFIG_SUN4 } #endif for (vaddr = KERNBASE; vaddr < kernel_end; vaddr += SUN4C_REAL_PGDIR_SIZE) { pseg = sun4c_get_segmap(vaddr); mmu_entry_pool[pseg].locked = 1; for (ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, vaddr, pseg); fix_permissions(vaddr, _SUN4C_PAGE_PRIV, _SUN4C_PAGE_NOCACHE); } } static void __init sun4c_init_lock_area(unsigned long start, unsigned long end) { int i, ctx; while (start < end) { for (i = 0; i < invalid_segment; i++) if (!mmu_entry_pool[i].locked) break; mmu_entry_pool[i].locked = 1; sun4c_init_clean_segmap(i); for (ctx = 0; ctx < num_contexts; ctx++) prom_putsegment(ctx, start, mmu_entry_pool[i].pseg); start += SUN4C_REAL_PGDIR_SIZE; } } /* Don't change this struct without changing entry.S. This is used * in the in-window kernel fault handler, and you don't want to mess * with that. (See sun4c_fault in entry.S). */ struct sun4c_mmu_ring { struct sun4c_mmu_entry ringhd; int num_entries; }; static struct sun4c_mmu_ring sun4c_context_ring[SUN4C_MAX_CONTEXTS]; /* used user entries */ static struct sun4c_mmu_ring sun4c_ufree_ring; /* free user entries */ static struct sun4c_mmu_ring sun4c_ulru_ring; /* LRU user entries */ struct sun4c_mmu_ring sun4c_kernel_ring; /* used kernel entries */ struct sun4c_mmu_ring sun4c_kfree_ring; /* free kernel entries */ static inline void sun4c_init_rings(void) { int i; for (i = 0; i < SUN4C_MAX_CONTEXTS; i++) { sun4c_context_ring[i].ringhd.next = sun4c_context_ring[i].ringhd.prev = &sun4c_context_ring[i].ringhd; sun4c_context_ring[i].num_entries = 0; } sun4c_ufree_ring.ringhd.next = sun4c_ufree_ring.ringhd.prev = &sun4c_ufree_ring.ringhd; sun4c_ufree_ring.num_entries = 0; sun4c_ulru_ring.ringhd.lru_next = sun4c_ulru_ring.ringhd.lru_prev = &sun4c_ulru_ring.ringhd; sun4c_ulru_ring.num_entries = 0; sun4c_kernel_ring.ringhd.next = sun4c_kernel_ring.ringhd.prev = &sun4c_kernel_ring.ringhd; sun4c_kernel_ring.num_entries = 0; sun4c_kfree_ring.ringhd.next = sun4c_kfree_ring.ringhd.prev = &sun4c_kfree_ring.ringhd; sun4c_kfree_ring.num_entries = 0; } static void add_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *head = &ring->ringhd; entry->prev = head; (entry->next = head->next)->prev = entry; head->next = entry; ring->num_entries++; } static __inline__ void add_lru(struct sun4c_mmu_entry *entry) { struct sun4c_mmu_ring *ring = &sun4c_ulru_ring; struct sun4c_mmu_entry *head = &ring->ringhd; entry->lru_next = head; (entry->lru_prev = head->lru_prev)->lru_next = entry; head->lru_prev = entry; } static void add_ring_ordered(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *head = &ring->ringhd; unsigned long addr = entry->vaddr; while ((head->next != &ring->ringhd) && (head->next->vaddr < addr)) head = head->next; entry->prev = head; (entry->next = head->next)->prev = entry; head->next = entry; ring->num_entries++; add_lru(entry); } static __inline__ void remove_ring(struct sun4c_mmu_ring *ring, struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *next = entry->next; (next->prev = entry->prev)->next = next; ring->num_entries--; } static void remove_lru(struct sun4c_mmu_entry *entry) { struct sun4c_mmu_entry *next = entry->lru_next; (next->lru_prev = entry->lru_prev)->lru_next = next; } static void free_user_entry(int ctx, struct sun4c_mmu_entry *entry) { remove_ring(sun4c_context_ring+ctx, entry); remove_lru(entry); add_ring(&sun4c_ufree_ring, entry); } static void free_kernel_entry(struct sun4c_mmu_entry *entry, struct sun4c_mmu_ring *ring) { remove_ring(ring, entry); add_ring(&sun4c_kfree_ring, entry); } static void __init sun4c_init_fill_kernel_ring(int howmany) { int i; while (howmany) { for (i = 0; i < invalid_segment; i++) if (!mmu_entry_pool[i].locked) break; mmu_entry_pool[i].locked = 1; sun4c_init_clean_segmap(i); add_ring(&sun4c_kfree_ring, &mmu_entry_pool[i]); howmany--; } } static void __init sun4c_init_fill_user_ring(void) { int i; for (i = 0; i < invalid_segment; i++) { if (mmu_entry_pool[i].locked) continue; sun4c_init_clean_segmap(i); add_ring(&sun4c_ufree_ring, &mmu_entry_pool[i]); } } static void sun4c_kernel_unmap(struct sun4c_mmu_entry *kentry) { int savectx, ctx; savectx = sun4c_get_context(); for (ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(kentry->vaddr, invalid_segment); } sun4c_set_context(savectx); } static void sun4c_kernel_map(struct sun4c_mmu_entry *kentry) { int savectx, ctx; savectx = sun4c_get_context(); for (ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(kentry->vaddr, kentry->pseg); } sun4c_set_context(savectx); } #define sun4c_user_unmap(__entry) \ sun4c_put_segmap((__entry)->vaddr, invalid_segment) static void sun4c_demap_context_hw(struct sun4c_mmu_ring *crp, unsigned char ctx) { struct sun4c_mmu_entry *head = &crp->ringhd; unsigned long flags; save_and_cli(flags); if (head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); flush_user_windows(); sun4c_set_context(ctx); sun4c_flush_context_hw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(ctx, entry); entry = next; } while (entry != head); sun4c_set_context(savectx); } restore_flags(flags); } static void sun4c_demap_context_sw(struct sun4c_mmu_ring *crp, unsigned char ctx) { struct sun4c_mmu_entry *head = &crp->ringhd; unsigned long flags; save_and_cli(flags); if (head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); flush_user_windows(); sun4c_set_context(ctx); sun4c_flush_context_sw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(ctx, entry); entry = next; } while (entry != head); sun4c_set_context(savectx); } restore_flags(flags); } static int sun4c_user_taken_entries = 0; /* This is how much we have. */ static int max_user_taken_entries = 0; /* This limits us and prevents deadlock. */ static struct sun4c_mmu_entry *sun4c_kernel_strategy(void) { struct sun4c_mmu_entry *this_entry; /* If some are free, return first one. */ if (sun4c_kfree_ring.num_entries) { this_entry = sun4c_kfree_ring.ringhd.next; return this_entry; } /* Else free one up. */ this_entry = sun4c_kernel_ring.ringhd.prev; if (sun4c_vacinfo.do_hwflushes) sun4c_flush_segment_hw(this_entry->vaddr); else sun4c_flush_segment_sw(this_entry->vaddr); sun4c_kernel_unmap(this_entry); free_kernel_entry(this_entry, &sun4c_kernel_ring); this_entry = sun4c_kfree_ring.ringhd.next; return this_entry; } /* Using this method to free up mmu entries eliminates a lot of * potential races since we have a kernel that incurs tlb * replacement faults. There may be performance penalties. * * NOTE: Must be called with interrupts disabled. */ static struct sun4c_mmu_entry *sun4c_user_strategy(void) { struct sun4c_mmu_entry *entry; unsigned char ctx; int savectx; /* If some are free, return first one. */ if (sun4c_ufree_ring.num_entries) { entry = sun4c_ufree_ring.ringhd.next; goto unlink_out; } if (sun4c_user_taken_entries) { entry = sun4c_kernel_strategy(); sun4c_user_taken_entries--; goto kunlink_out; } /* Grab from the beginning of the LRU list. */ entry = sun4c_ulru_ring.ringhd.lru_next; ctx = entry->ctx; savectx = sun4c_get_context(); flush_user_windows(); sun4c_set_context(ctx); if (sun4c_vacinfo.do_hwflushes) sun4c_flush_segment_hw(entry->vaddr); else sun4c_flush_segment_sw(entry->vaddr); sun4c_user_unmap(entry); remove_ring(sun4c_context_ring + ctx, entry); remove_lru(entry); sun4c_set_context(savectx); return entry; unlink_out: remove_ring(&sun4c_ufree_ring, entry); return entry; kunlink_out: remove_ring(&sun4c_kfree_ring, entry); return entry; } /* NOTE: Must be called with interrupts disabled. */ void sun4c_grow_kernel_ring(void) { struct sun4c_mmu_entry *entry; /* Prevent deadlock condition. */ if (sun4c_user_taken_entries >= max_user_taken_entries) return; if (sun4c_ufree_ring.num_entries) { entry = sun4c_ufree_ring.ringhd.next; remove_ring(&sun4c_ufree_ring, entry); add_ring(&sun4c_kfree_ring, entry); sun4c_user_taken_entries++; } } /* This is now a fast in-window trap handler to avoid any and all races. */ static void sun4c_quick_kernel_fault(unsigned long address) { printk("Kernel faults at addr 0x%08lx\n", address); panic("sun4c kernel fault handler bolixed..."); } /* 2 page buckets for task struct and kernel stack allocation. * * TASK_STACK_BEGIN * bucket[0] * bucket[1] * [ ... ] * bucket[NR_TASK_BUCKETS-1] * TASK_STACK_BEGIN + (sizeof(struct task_bucket) * NR_TASK_BUCKETS) * * Each slot looks like: * * page 1 -- task struct + beginning of kernel stack * page 2 -- rest of kernel stack */ union task_union *sun4c_bucket[NR_TASK_BUCKETS]; static int sun4c_lowbucket_avail; #define BUCKET_EMPTY ((union task_union *) 0) #define BUCKET_SHIFT (PAGE_SHIFT + 1) /* log2(sizeof(struct task_bucket)) */ #define BUCKET_SIZE (1 << BUCKET_SHIFT) #define BUCKET_NUM(addr) ((((addr) - SUN4C_LOCK_VADDR) >> BUCKET_SHIFT)) #define BUCKET_ADDR(num) (((num) << BUCKET_SHIFT) + SUN4C_LOCK_VADDR) #define BUCKET_PTE(page) \ ((((page) - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(SUN4C_PAGE_KERNEL)) #define BUCKET_PTE_PAGE(pte) \ (PAGE_OFFSET + (((pte) & SUN4C_PFN_MASK) << PAGE_SHIFT)) static void get_locked_segment(unsigned long addr) { struct sun4c_mmu_entry *stolen; unsigned long flags; save_and_cli(flags); addr &= SUN4C_REAL_PGDIR_MASK; stolen = sun4c_user_strategy(); max_user_taken_entries--; stolen->vaddr = addr; flush_user_windows(); sun4c_kernel_map(stolen); restore_flags(flags); } static void free_locked_segment(unsigned long addr) { struct sun4c_mmu_entry *entry; unsigned long flags; unsigned char pseg; save_and_cli(flags); addr &= SUN4C_REAL_PGDIR_MASK; pseg = sun4c_get_segmap(addr); entry = &mmu_entry_pool[pseg]; flush_user_windows(); if (sun4c_vacinfo.do_hwflushes) sun4c_flush_segment_hw(addr); else sun4c_flush_segment_sw(addr); sun4c_kernel_unmap(entry); add_ring(&sun4c_ufree_ring, entry); max_user_taken_entries++; restore_flags(flags); } static inline void garbage_collect(int entry) { int start, end; /* 32 buckets per segment... */ entry &= ~31; start = entry; for (end = (start + 32); start < end; start++) if (sun4c_bucket[start] != BUCKET_EMPTY) return; /* Entire segment empty, release it. */ free_locked_segment(BUCKET_ADDR(entry)); } #ifdef CONFIG_SUN4 #define TASK_STRUCT_ORDER 0 #else #define TASK_STRUCT_ORDER 1 #endif static struct task_struct *sun4c_alloc_task_struct(void) { unsigned long addr, pages; int entry; pages = __get_free_pages(GFP_KERNEL, TASK_STRUCT_ORDER); if (!pages) return (struct task_struct *) 0; for (entry = sun4c_lowbucket_avail; entry < NR_TASK_BUCKETS; entry++) if (sun4c_bucket[entry] == BUCKET_EMPTY) break; if (entry == NR_TASK_BUCKETS) { free_pages(pages, TASK_STRUCT_ORDER); return (struct task_struct *) 0; } if (entry >= sun4c_lowbucket_avail) sun4c_lowbucket_avail = entry + 1; addr = BUCKET_ADDR(entry); sun4c_bucket[entry] = (union task_union *) addr; if(sun4c_get_segmap(addr) == invalid_segment) get_locked_segment(addr); /* We are changing the virtual color of the page(s) * so we must flush the cache to guarentee consistancy. */ if (sun4c_vacinfo.do_hwflushes) { sun4c_flush_page_hw(pages); #ifndef CONFIG_SUN4 sun4c_flush_page_hw(pages + PAGE_SIZE); #endif } else { sun4c_flush_page_sw(pages); #ifndef CONFIG_SUN4 sun4c_flush_page_sw(pages + PAGE_SIZE); #endif } sun4c_put_pte(addr, BUCKET_PTE(pages)); #ifndef CONFIG_SUN4 sun4c_put_pte(addr + PAGE_SIZE, BUCKET_PTE(pages + PAGE_SIZE)); #endif return (struct task_struct *) addr; } static void sun4c_free_task_struct_hw(struct task_struct *tsk) { unsigned long tsaddr = (unsigned long) tsk; unsigned long pages = BUCKET_PTE_PAGE(sun4c_get_pte(tsaddr)); int entry = BUCKET_NUM(tsaddr); if (atomic_dec_and_test(&(tsk)->thread.refcount)) { /* We are deleting a mapping, so the flush here is mandatory. */ sun4c_flush_page_hw(tsaddr); #ifndef CONFIG_SUN4 sun4c_flush_page_hw(tsaddr + PAGE_SIZE); #endif sun4c_put_pte(tsaddr, 0); #ifndef CONFIG_SUN4 sun4c_put_pte(tsaddr + PAGE_SIZE, 0); #endif sun4c_bucket[entry] = BUCKET_EMPTY; if (entry < sun4c_lowbucket_avail) sun4c_lowbucket_avail = entry; free_pages(pages, TASK_STRUCT_ORDER); garbage_collect(entry); } } static void sun4c_free_task_struct_sw(struct task_struct *tsk) { unsigned long tsaddr = (unsigned long) tsk; unsigned long pages = BUCKET_PTE_PAGE(sun4c_get_pte(tsaddr)); int entry = BUCKET_NUM(tsaddr); if (atomic_dec_and_test(&(tsk)->thread.refcount)) { /* We are deleting a mapping, so the flush here is mandatory. */ sun4c_flush_page_sw(tsaddr); #ifndef CONFIG_SUN4 sun4c_flush_page_sw(tsaddr + PAGE_SIZE); #endif sun4c_put_pte(tsaddr, 0); #ifndef CONFIG_SUN4 sun4c_put_pte(tsaddr + PAGE_SIZE, 0); #endif sun4c_bucket[entry] = BUCKET_EMPTY; if (entry < sun4c_lowbucket_avail) sun4c_lowbucket_avail = entry; free_pages(pages, TASK_STRUCT_ORDER); garbage_collect(entry); } } static void sun4c_get_task_struct(struct task_struct *tsk) { atomic_inc(&(tsk)->thread.refcount); } static void __init sun4c_init_buckets(void) { int entry; if (sizeof(union task_union) != (PAGE_SIZE << TASK_STRUCT_ORDER)) { prom_printf("task union not %d page(s)!\n", 1 << TASK_STRUCT_ORDER); } for (entry = 0; entry < NR_TASK_BUCKETS; entry++) sun4c_bucket[entry] = BUCKET_EMPTY; sun4c_lowbucket_avail = 0; } static unsigned long sun4c_iobuffer_start; static unsigned long sun4c_iobuffer_end; static unsigned long sun4c_iobuffer_high; static unsigned long *sun4c_iobuffer_map; static int iobuffer_map_size; /* * Alias our pages so they do not cause a trap. * Also one page may be aliased into several I/O areas and we may * finish these I/O separately. */ static char *sun4c_lockarea(char *vaddr, unsigned long size) { unsigned long base, scan; unsigned long npages; unsigned long vpage; unsigned long pte; unsigned long apage; unsigned long high; unsigned long flags; npages = (((unsigned long)vaddr & ~PAGE_MASK) + size + (PAGE_SIZE-1)) >> PAGE_SHIFT; scan = 0; save_and_cli(flags); for (;;) { scan = find_next_zero_bit(sun4c_iobuffer_map, iobuffer_map_size, scan); if ((base = scan) + npages > iobuffer_map_size) goto abend; for (;;) { if (scan >= base + npages) goto found; if (test_bit(scan, sun4c_iobuffer_map)) break; scan++; } } found: high = ((base + npages) << PAGE_SHIFT) + sun4c_iobuffer_start; high = SUN4C_REAL_PGDIR_ALIGN(high); while (high > sun4c_iobuffer_high) { get_locked_segment(sun4c_iobuffer_high); sun4c_iobuffer_high += SUN4C_REAL_PGDIR_SIZE; } vpage = ((unsigned long) vaddr) & PAGE_MASK; for (scan = base; scan < base+npages; scan++) { pte = ((vpage-PAGE_OFFSET) >> PAGE_SHIFT); pte |= pgprot_val(SUN4C_PAGE_KERNEL); pte |= _SUN4C_PAGE_NOCACHE; set_bit(scan, sun4c_iobuffer_map); apage = (scan << PAGE_SHIFT) + sun4c_iobuffer_start; /* Flush original mapping so we see the right things later. */ sun4c_flush_page(vpage); sun4c_put_pte(apage, pte); vpage += PAGE_SIZE; } restore_flags(flags); return (char *) ((base << PAGE_SHIFT) + sun4c_iobuffer_start + (((unsigned long) vaddr) & ~PAGE_MASK)); abend: restore_flags(flags); printk("DMA vaddr=0x%p size=%08lx\n", vaddr, size); panic("Out of iobuffer table"); return 0; } static void sun4c_unlockarea(char *vaddr, unsigned long size) { unsigned long vpage, npages; unsigned long flags; int scan, high; vpage = (unsigned long)vaddr & PAGE_MASK; npages = (((unsigned long)vaddr & ~PAGE_MASK) + size + (PAGE_SIZE-1)) >> PAGE_SHIFT; save_and_cli(flags); while (npages != 0) { --npages; /* This mapping is marked non-cachable, no flush necessary. */ sun4c_put_pte(vpage, 0); clear_bit((vpage - sun4c_iobuffer_start) >> PAGE_SHIFT, sun4c_iobuffer_map); vpage += PAGE_SIZE; } /* garbage collect */ scan = (sun4c_iobuffer_high - sun4c_iobuffer_start) >> PAGE_SHIFT; while (scan >= 0 && !sun4c_iobuffer_map[scan >> 5]) scan -= 32; scan += 32; high = sun4c_iobuffer_start + (scan << PAGE_SHIFT); high = SUN4C_REAL_PGDIR_ALIGN(high) + SUN4C_REAL_PGDIR_SIZE; while (high < sun4c_iobuffer_high) { sun4c_iobuffer_high -= SUN4C_REAL_PGDIR_SIZE; free_locked_segment(sun4c_iobuffer_high); } restore_flags(flags); } /* Note the scsi code at init time passes to here buffers * which sit on the kernel stack, those are already locked * by implication and fool the page locking code above * if passed to by mistake. */ static __u32 sun4c_get_scsi_one(char *bufptr, unsigned long len, struct sbus_bus *sbus) { unsigned long page; page = ((unsigned long)bufptr) & PAGE_MASK; if (MAP_NR(page) > max_mapnr) { sun4c_flush_page(page); return (__u32)bufptr; /* already locked */ } return (__u32)sun4c_lockarea(bufptr, len); } static void sun4c_get_scsi_sgl(struct scatterlist *sg, int sz, struct sbus_bus *sbus) { while (sz >= 0) { sg[sz].dvma_address = (__u32)sun4c_lockarea(sg[sz].address, sg[sz].length); sg[sz].dvma_length = sg[sz].length; sz--; } } static void sun4c_release_scsi_one(__u32 bufptr, unsigned long len, struct sbus_bus *sbus) { if (bufptr < sun4c_iobuffer_start) return; /* On kernel stack or similar, see above */ sun4c_unlockarea((char *)bufptr, len); } static void sun4c_release_scsi_sgl(struct scatterlist *sg, int sz, struct sbus_bus *sbus) { while (sz >= 0) { sun4c_unlockarea((char *)sg[sz].dvma_address, sg[sz].length); sz--; } } #define TASK_ENTRY_SIZE BUCKET_SIZE /* see above */ #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) struct vm_area_struct sun4c_kstack_vma; static void __init sun4c_init_lock_areas(void) { unsigned long sun4c_taskstack_start; unsigned long sun4c_taskstack_end; int bitmap_size; sun4c_init_buckets(); sun4c_taskstack_start = SUN4C_LOCK_VADDR; sun4c_taskstack_end = (sun4c_taskstack_start + (TASK_ENTRY_SIZE * NR_TASK_BUCKETS)); if (sun4c_taskstack_end >= SUN4C_LOCK_END) { prom_printf("Too many tasks, decrease NR_TASK_BUCKETS please.\n"); prom_halt(); } sun4c_iobuffer_start = sun4c_iobuffer_high = SUN4C_REAL_PGDIR_ALIGN(sun4c_taskstack_end); sun4c_iobuffer_end = SUN4C_LOCK_END; bitmap_size = (sun4c_iobuffer_end - sun4c_iobuffer_start) >> PAGE_SHIFT; bitmap_size = (bitmap_size + 7) >> 3; bitmap_size = LONG_ALIGN(bitmap_size); iobuffer_map_size = bitmap_size << 3; sun4c_iobuffer_map = __alloc_bootmem(bitmap_size, SMP_CACHE_BYTES, 0UL); memset((void *) sun4c_iobuffer_map, 0, bitmap_size); sun4c_kstack_vma.vm_mm = &init_mm; sun4c_kstack_vma.vm_start = sun4c_taskstack_start; sun4c_kstack_vma.vm_end = sun4c_taskstack_end; sun4c_kstack_vma.vm_page_prot = PAGE_SHARED; sun4c_kstack_vma.vm_flags = VM_READ | VM_WRITE | VM_EXEC; insert_vm_struct(&init_mm, &sun4c_kstack_vma); } /* Cache flushing on the sun4c. */ static void sun4c_flush_cache_all(void) { unsigned long begin, end; flush_user_windows(); begin = (KERNBASE + SUN4C_REAL_PGDIR_SIZE); end = (begin + SUN4C_VAC_SIZE); if (sun4c_vacinfo.linesize == 32) { while (begin < end) { __asm__ __volatile__(" ld [%0 + 0x00], %%g0 ld [%0 + 0x20], %%g0 ld [%0 + 0x40], %%g0 ld [%0 + 0x60], %%g0 ld [%0 + 0x80], %%g0 ld [%0 + 0xa0], %%g0 ld [%0 + 0xc0], %%g0 ld [%0 + 0xe0], %%g0 ld [%0 + 0x100], %%g0 ld [%0 + 0x120], %%g0 ld [%0 + 0x140], %%g0 ld [%0 + 0x160], %%g0 ld [%0 + 0x180], %%g0 ld [%0 + 0x1a0], %%g0 ld [%0 + 0x1c0], %%g0 ld [%0 + 0x1e0], %%g0 " : : "r" (begin)); begin += 512; } } else { while (begin < end) { __asm__ __volatile__(" ld [%0 + 0x00], %%g0 ld [%0 + 0x10], %%g0 ld [%0 + 0x20], %%g0 ld [%0 + 0x30], %%g0 ld [%0 + 0x40], %%g0 ld [%0 + 0x50], %%g0 ld [%0 + 0x60], %%g0 ld [%0 + 0x70], %%g0 ld [%0 + 0x80], %%g0 ld [%0 + 0x90], %%g0 ld [%0 + 0xa0], %%g0 ld [%0 + 0xb0], %%g0 ld [%0 + 0xc0], %%g0 ld [%0 + 0xd0], %%g0 ld [%0 + 0xe0], %%g0 ld [%0 + 0xf0], %%g0 " : : "r" (begin)); begin += 256; } } } static void sun4c_flush_cache_mm_hw(struct mm_struct *mm) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { flush_user_windows(); if (sun4c_context_ring[new_ctx].num_entries) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if (head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); sun4c_set_context(new_ctx); sun4c_flush_context_hw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while (entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } } static void sun4c_flush_cache_range_hw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; flush_user_windows(); save_and_cli(flags); /* All user segmap chains are ordered on entry->vaddr. */ for (entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; /* Tracing various job mixtures showed that this conditional * only passes ~35% of the time for most worse case situations, * therefore we avoid all of this gross overhead ~65% of the time. */ if ((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); sun4c_set_context(new_ctx); /* At this point, always, (start >= entry->vaddr) and * (entry->vaddr < end), once the latter condition * ceases to hold, or we hit the end of the list, we * exit the loop. The ordering of all user allocated * segmaps makes this all work out so beautifully. */ do { struct sun4c_mmu_entry *next = entry->next; unsigned long realend; /* "realstart" is always >= entry->vaddr */ realend = entry->vaddr + SUN4C_REAL_PGDIR_SIZE; if (end < realend) realend = end; if ((realend - entry->vaddr) <= (PAGE_SIZE << 3)) { unsigned long page = entry->vaddr; while (page < realend) { sun4c_flush_page_hw(page); page += PAGE_SIZE; } } else { sun4c_flush_segment_hw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); } entry = next; } while ((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } static void sun4c_flush_cache_page_hw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; /* Sun4c has no separate I/D caches so cannot optimize for non * text page flushes. */ if (new_ctx != NO_CONTEXT) { int octx = sun4c_get_context(); unsigned long flags; flush_user_windows(); save_and_cli(flags); sun4c_set_context(new_ctx); sun4c_flush_page_hw(page); sun4c_set_context(octx); restore_flags(flags); } } static void sun4c_flush_page_to_ram_hw(unsigned long page) { unsigned long flags; save_and_cli(flags); sun4c_flush_page_hw(page); restore_flags(flags); } static void sun4c_flush_cache_mm_sw(struct mm_struct *mm) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { flush_user_windows(); if (sun4c_context_ring[new_ctx].num_entries) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if (head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); sun4c_set_context(new_ctx); sun4c_flush_context_sw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while (entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } } static void sun4c_flush_cache_range_sw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; flush_user_windows(); save_and_cli(flags); /* All user segmap chains are ordered on entry->vaddr. */ for (entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; /* Tracing various job mixtures showed that this conditional * only passes ~35% of the time for most worse case situations, * therefore we avoid all of this gross overhead ~65% of the time. */ if ((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); sun4c_set_context(new_ctx); /* At this point, always, (start >= entry->vaddr) and * (entry->vaddr < end), once the latter condition * ceases to hold, or we hit the end of the list, we * exit the loop. The ordering of all user allocated * segmaps makes this all work out so beautifully. */ do { struct sun4c_mmu_entry *next = entry->next; unsigned long realend; /* "realstart" is always >= entry->vaddr */ realend = entry->vaddr + SUN4C_REAL_PGDIR_SIZE; if (end < realend) realend = end; if ((realend - entry->vaddr) <= (PAGE_SIZE << 3)) { unsigned long page = entry->vaddr; while (page < realend) { sun4c_flush_page_sw(page); page += PAGE_SIZE; } } else { sun4c_flush_segment_sw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); } entry = next; } while ((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } static void sun4c_flush_cache_page_sw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; /* Sun4c has no separate I/D caches so cannot optimize for non * text page flushes. */ if (new_ctx != NO_CONTEXT) { int octx = sun4c_get_context(); unsigned long flags; flush_user_windows(); save_and_cli(flags); sun4c_set_context(new_ctx); sun4c_flush_page_sw(page); sun4c_set_context(octx); restore_flags(flags); } } static void sun4c_flush_page_to_ram_sw(unsigned long page) { unsigned long flags; save_and_cli(flags); sun4c_flush_page_sw(page); restore_flags(flags); } /* Sun4c cache is unified, both instructions and data live there, so * no need to flush the on-stack instructions for new signal handlers. */ static void sun4c_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr) { } /* TLB flushing on the sun4c. These routines count on the cache * flushing code to flush the user register windows so that we need * not do so when we get here. */ static void sun4c_flush_tlb_all(void) { struct sun4c_mmu_entry *this_entry, *next_entry; unsigned long flags; int savectx, ctx; save_and_cli(flags); this_entry = sun4c_kernel_ring.ringhd.next; savectx = sun4c_get_context(); flush_user_windows(); while (sun4c_kernel_ring.num_entries) { next_entry = this_entry->next; if (sun4c_vacinfo.do_hwflushes) sun4c_flush_segment_hw(this_entry->vaddr); else sun4c_flush_segment_sw(this_entry->vaddr); for (ctx = 0; ctx < num_contexts; ctx++) { sun4c_set_context(ctx); sun4c_put_segmap(this_entry->vaddr, invalid_segment); } free_kernel_entry(this_entry, &sun4c_kernel_ring); this_entry = next_entry; } sun4c_set_context(savectx); restore_flags(flags); } static void sun4c_flush_tlb_mm_hw(struct mm_struct *mm) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if (head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); sun4c_set_context(new_ctx); sun4c_flush_context_hw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while (entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } static void sun4c_flush_tlb_range_hw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; save_and_cli(flags); /* See commentary in sun4c_flush_cache_range_*(). */ for (entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; if ((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); sun4c_set_context(new_ctx); do { struct sun4c_mmu_entry *next = entry->next; sun4c_flush_segment_hw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while ((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } static void sun4c_flush_tlb_page_hw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { int savectx = sun4c_get_context(); unsigned long flags; save_and_cli(flags); sun4c_set_context(new_ctx); page &= PAGE_MASK; sun4c_flush_page_hw(page); sun4c_put_pte(page, 0); sun4c_set_context(savectx); restore_flags(flags); } } static void sun4c_flush_tlb_mm_sw(struct mm_struct *mm) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; unsigned long flags; save_and_cli(flags); if (head->next != head) { struct sun4c_mmu_entry *entry = head->next; int savectx = sun4c_get_context(); sun4c_set_context(new_ctx); sun4c_flush_context_sw(); do { struct sun4c_mmu_entry *next = entry->next; sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while (entry != head); sun4c_set_context(savectx); } restore_flags(flags); } } static void sun4c_flush_tlb_range_sw(struct mm_struct *mm, unsigned long start, unsigned long end) { int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { struct sun4c_mmu_entry *head = &sun4c_context_ring[new_ctx].ringhd; struct sun4c_mmu_entry *entry; unsigned long flags; save_and_cli(flags); /* See commentary in sun4c_flush_cache_range_*(). */ for (entry = head->next; (entry != head) && ((entry->vaddr+SUN4C_REAL_PGDIR_SIZE) < start); entry = entry->next) ; if ((entry != head) && (entry->vaddr < end)) { int octx = sun4c_get_context(); sun4c_set_context(new_ctx); do { struct sun4c_mmu_entry *next = entry->next; sun4c_flush_segment_sw(entry->vaddr); sun4c_user_unmap(entry); free_user_entry(new_ctx, entry); entry = next; } while ((entry != head) && (entry->vaddr < end)); sun4c_set_context(octx); } restore_flags(flags); } } static void sun4c_flush_tlb_page_sw(struct vm_area_struct *vma, unsigned long page) { struct mm_struct *mm = vma->vm_mm; int new_ctx = mm->context; if (new_ctx != NO_CONTEXT) { int savectx = sun4c_get_context(); unsigned long flags; save_and_cli(flags); sun4c_set_context(new_ctx); page &= PAGE_MASK; sun4c_flush_page_sw(page); sun4c_put_pte(page, 0); sun4c_set_context(savectx); restore_flags(flags); } } static void sun4c_set_pte(pte_t *ptep, pte_t pte) { *ptep = pte; } static void sun4c_pgd_set(pgd_t * pgdp, pmd_t * pmdp) { } void sun4c_mapioaddr(unsigned long physaddr, unsigned long virt_addr, int bus_type, int rdonly) { unsigned long page_entry; page_entry = ((physaddr >> PAGE_SHIFT) & SUN4C_PFN_MASK); page_entry |= ((pg_iobits | _SUN4C_PAGE_PRIV) & ~(_SUN4C_PAGE_PRESENT)); if (rdonly) page_entry &= ~_SUN4C_WRITEABLE; sun4c_put_pte(virt_addr, page_entry); } void sun4c_unmapioaddr(unsigned long virt_addr) { sun4c_put_pte(virt_addr, 0); } static void sun4c_alloc_context_hw(struct mm_struct *old_mm, struct mm_struct *mm) { struct ctx_list *ctxp; ctxp = ctx_free.next; if (ctxp != &ctx_free) { remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); mm->context = ctxp->ctx_number; ctxp->ctx_mm = mm; return; } ctxp = ctx_used.next; if (ctxp->ctx_mm == old_mm) ctxp = ctxp->next; remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); ctxp->ctx_mm->context = NO_CONTEXT; ctxp->ctx_mm = mm; mm->context = ctxp->ctx_number; sun4c_demap_context_hw(&sun4c_context_ring[ctxp->ctx_number], ctxp->ctx_number); } /* Switch the current MM context. */ static void sun4c_switch_mm_hw(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk, int cpu) { struct ctx_list *ctx; int dirty = 0; if (mm->context == NO_CONTEXT) { dirty = 1; sun4c_alloc_context_hw(old_mm, mm); } else { /* Update the LRU ring of contexts. */ ctx = ctx_list_pool + mm->context; remove_from_ctx_list(ctx); add_to_used_ctxlist(ctx); } if (dirty || old_mm != mm) sun4c_set_context(mm->context); } static void sun4c_destroy_context_hw(struct mm_struct *mm) { struct ctx_list *ctx_old; if (mm->context != NO_CONTEXT) { sun4c_demap_context_hw(&sun4c_context_ring[mm->context], mm->context); ctx_old = ctx_list_pool + mm->context; remove_from_ctx_list(ctx_old); add_to_free_ctxlist(ctx_old); mm->context = NO_CONTEXT; } } static void sun4c_alloc_context_sw(struct mm_struct *old_mm, struct mm_struct *mm) { struct ctx_list *ctxp; ctxp = ctx_free.next; if (ctxp != &ctx_free) { remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); mm->context = ctxp->ctx_number; ctxp->ctx_mm = mm; return; } ctxp = ctx_used.next; if(ctxp->ctx_mm == old_mm) ctxp = ctxp->next; remove_from_ctx_list(ctxp); add_to_used_ctxlist(ctxp); ctxp->ctx_mm->context = NO_CONTEXT; ctxp->ctx_mm = mm; mm->context = ctxp->ctx_number; sun4c_demap_context_sw(&sun4c_context_ring[ctxp->ctx_number], ctxp->ctx_number); } /* Switch the current MM context. */ static void sun4c_switch_mm_sw(struct mm_struct *old_mm, struct mm_struct *mm, struct task_struct *tsk, int cpu) { struct ctx_list *ctx; int dirty = 0; if (mm->context == NO_CONTEXT) { dirty = 1; sun4c_alloc_context_sw(old_mm, mm); } else { /* Update the LRU ring of contexts. */ ctx = ctx_list_pool + mm->context; remove_from_ctx_list(ctx); add_to_used_ctxlist(ctx); } if (dirty || old_mm != mm) sun4c_set_context(mm->context); } static void sun4c_destroy_context_sw(struct mm_struct *mm) { struct ctx_list *ctx_old; if (mm->context != NO_CONTEXT) { sun4c_demap_context_sw(&sun4c_context_ring[mm->context], mm->context); ctx_old = ctx_list_pool + mm->context; remove_from_ctx_list(ctx_old); add_to_free_ctxlist(ctx_old); mm->context = NO_CONTEXT; } } static int sun4c_mmu_info(char *buf) { int used_user_entries, i; int len; used_user_entries = 0; for (i = 0; i < num_contexts; i++) used_user_entries += sun4c_context_ring[i].num_entries; len = sprintf(buf, "vacsize\t\t: %d bytes\n" "vachwflush\t: %s\n" "vaclinesize\t: %d bytes\n" "mmuctxs\t\t: %d\n" "mmupsegs\t: %d\n" "kernelpsegs\t: %d\n" "kfreepsegs\t: %d\n" "usedpsegs\t: %d\n" "ufreepsegs\t: %d\n" "user_taken\t: %d\n" "max_taken\t: %d\n", sun4c_vacinfo.num_bytes, (sun4c_vacinfo.do_hwflushes ? "yes" : "no"), sun4c_vacinfo.linesize, num_contexts, (invalid_segment + 1), sun4c_kernel_ring.num_entries, sun4c_kfree_ring.num_entries, used_user_entries, sun4c_ufree_ring.num_entries, sun4c_user_taken_entries, max_user_taken_entries); return len; } /* Nothing below here should touch the mmu hardware nor the mmu_entry * data structures. */ /* First the functions which the mid-level code uses to directly * manipulate the software page tables. Some defines since we are * emulating the i386 page directory layout. */ #define PGD_PRESENT 0x001 #define PGD_RW 0x002 #define PGD_USER 0x004 #define PGD_ACCESSED 0x020 #define PGD_DIRTY 0x040 #define PGD_TABLE (PGD_PRESENT | PGD_RW | PGD_USER | PGD_ACCESSED | PGD_DIRTY) static int sun4c_pte_present(pte_t pte) { return ((pte_val(pte) & (_SUN4C_PAGE_PRESENT | _SUN4C_PAGE_PRIV)) != 0); } static void sun4c_pte_clear(pte_t *ptep) { *ptep = __pte(0); } static int sun4c_pmd_none(pmd_t pmd) { return !pmd_val(pmd); } static int sun4c_pmd_bad(pmd_t pmd) { return (((pmd_val(pmd) & ~PAGE_MASK) != PGD_TABLE) || (MAP_NR(pmd_val(pmd)) > max_mapnr)); } static int sun4c_pmd_present(pmd_t pmd) { return ((pmd_val(pmd) & PGD_PRESENT) != 0); } static void sun4c_pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); } static int sun4c_pgd_none(pgd_t pgd) { return 0; } static int sun4c_pgd_bad(pgd_t pgd) { return 0; } static int sun4c_pgd_present(pgd_t pgd) { return 1; } static void sun4c_pgd_clear(pgd_t * pgdp) { } /* * The following only work if pte_present() is true. * Undefined behaviour if not.. */ static pte_t sun4c_pte_mkwrite(pte_t pte) { pte = __pte(pte_val(pte) | _SUN4C_PAGE_WRITE); if (pte_val(pte) & _SUN4C_PAGE_MODIFIED) pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE); return pte; } static pte_t sun4c_pte_mkdirty(pte_t pte) { pte = __pte(pte_val(pte) | _SUN4C_PAGE_MODIFIED); if (pte_val(pte) & _SUN4C_PAGE_WRITE) pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_WRITE); return pte; } static pte_t sun4c_pte_mkyoung(pte_t pte) { pte = __pte(pte_val(pte) | _SUN4C_PAGE_ACCESSED); if (pte_val(pte) & _SUN4C_PAGE_READ) pte = __pte(pte_val(pte) | _SUN4C_PAGE_SILENT_READ); return pte; } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. */ static pte_t sun4c_mk_pte(struct page *page, pgprot_t pgprot) { return __pte((page - mem_map) | pgprot_val(pgprot)); } static pte_t sun4c_mk_pte_phys(unsigned long phys_page, pgprot_t pgprot) { return __pte((phys_page >> PAGE_SHIFT) | pgprot_val(pgprot)); } static pte_t sun4c_mk_pte_io(unsigned long page, pgprot_t pgprot, int space) { return __pte(((page - PAGE_OFFSET) >> PAGE_SHIFT) | pgprot_val(pgprot)); } static unsigned long sun4c_pte_pagenr(pte_t pte) { return (pte_val(pte) & SUN4C_PFN_MASK); } static inline unsigned long sun4c_pmd_page(pmd_t pmd) { return (pmd_val(pmd) & PAGE_MASK); } static unsigned long sun4c_pgd_page(pgd_t pgd) { return 0; } /* to find an entry in a page-table-directory */ extern inline pgd_t *sun4c_pgd_offset(struct mm_struct * mm, unsigned long address) { return mm->pgd + (address >> SUN4C_PGDIR_SHIFT); } /* Find an entry in the second-level page table.. */ static pmd_t *sun4c_pmd_offset(pgd_t * dir, unsigned long address) { return (pmd_t *) dir; } /* Find an entry in the third-level page table.. */ pte_t *sun4c_pte_offset(pmd_t * dir, unsigned long address) { return (pte_t *) sun4c_pmd_page(*dir) + ((address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1)); } /* Please take special note on the foo_kernel() routines below, our * fast in window fault handler wants to get at the pte's for vmalloc * area with traps off, therefore they _MUST_ be locked down to prevent * a watchdog from happening. It only takes 4 pages of pte's to lock * down the maximum vmalloc space possible on sun4c so we statically * allocate these page table pieces in the kernel image. Therefore * we should never have to really allocate or free any kernel page * table information. */ /* Allocate and free page tables. The xxx_kernel() versions are * used to allocate a kernel page table - this turns on ASN bits * if any, and marks the page tables reserved. */ static void sun4c_pte_free_kernel(pte_t *pte) { /* This should never get called. */ panic("sun4c_pte_free_kernel called, can't happen..."); } static pte_t *sun4c_pte_alloc_kernel(pmd_t *pmd, unsigned long address) { if (address >= SUN4C_LOCK_VADDR) return NULL; address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1); if (sun4c_pmd_none(*pmd)) panic("sun4c_pmd_none for kernel pmd, can't happen..."); if (sun4c_pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc_kernel: %08lx\n", pmd_val(*pmd)); *pmd = __pmd(PGD_TABLE | (unsigned long) BAD_PAGETABLE); return NULL; } return (pte_t *) sun4c_pmd_page(*pmd) + address; } static void sun4c_free_pte_slow(pte_t *pte) { free_page((unsigned long)pte); } static void sun4c_free_pgd_slow(pgd_t *pgd) { free_page((unsigned long)pgd); } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ static void sun4c_pmd_free_kernel(pmd_t *pmd) { } static pmd_t *sun4c_pmd_alloc_kernel(pgd_t *pgd, unsigned long address) { return (pmd_t *) pgd; } extern __inline__ pgd_t *sun4c_get_pgd_fast(void) { unsigned long *ret; if ((ret = pgd_quicklist) != NULL) { pgd_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } else { pgd_t *init; ret = (unsigned long *)__get_free_page(GFP_KERNEL); memset (ret, 0, (KERNBASE / SUN4C_PGDIR_SIZE) * sizeof(pgd_t)); init = sun4c_pgd_offset(&init_mm, 0); memcpy (((pgd_t *)ret) + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD, (PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t)); } return (pgd_t *)ret; } static int sun4c_check_pgt_cache(int low, int high) { int freed = 0; if (pgtable_cache_size > high) { do { if (pgd_quicklist) free_pgd_slow(get_pgd_fast()), freed++; if (pmd_quicklist) free_pmd_slow(get_pmd_fast()), freed++; if (pte_quicklist) free_pte_slow(get_pte_fast()), freed++; } while (pgtable_cache_size > low); } return freed; } static void sun4c_set_pgdir(unsigned long address, pgd_t entry) { /* Nothing to do */ } extern __inline__ void sun4c_free_pgd_fast(pgd_t *pgd) { *(unsigned long *)pgd = (unsigned long) pgd_quicklist; pgd_quicklist = (unsigned long *) pgd; pgtable_cache_size++; } extern __inline__ pte_t *sun4c_get_pte_fast(void) { unsigned long *ret; if ((ret = (unsigned long *)pte_quicklist) != NULL) { pte_quicklist = (unsigned long *)(*ret); ret[0] = ret[1]; pgtable_cache_size--; } return (pte_t *)ret; } extern __inline__ void sun4c_free_pte_fast(pte_t *pte) { *(unsigned long *)pte = (unsigned long) pte_quicklist; pte_quicklist = (unsigned long *) pte; pgtable_cache_size++; } static void sun4c_pte_free(pte_t *pte) { sun4c_free_pte_fast(pte); } static pte_t *sun4c_pte_alloc(pmd_t * pmd, unsigned long address) { address = (address >> PAGE_SHIFT) & (SUN4C_PTRS_PER_PTE - 1); if (sun4c_pmd_none(*pmd)) { pte_t *page = (pte_t *) sun4c_get_pte_fast(); if (page) { *pmd = __pmd(PGD_TABLE | (unsigned long) page); return page + address; } page = (pte_t *) get_free_page(GFP_KERNEL); if (sun4c_pmd_none(*pmd)) { if (page) { *pmd = __pmd(PGD_TABLE | (unsigned long) page); return page + address; } *pmd = __pmd(PGD_TABLE | (unsigned long) BAD_PAGETABLE); return NULL; } free_page((unsigned long) page); } if (sun4c_pmd_bad(*pmd)) { printk("Bad pmd in pte_alloc: %08lx\n", pmd_val(*pmd)); *pmd = __pmd(PGD_TABLE | (unsigned long) BAD_PAGETABLE); return NULL; } return (pte_t *) sun4c_pmd_page(*pmd) + address; } static pte_t *sun4c_pte_get(void) { return sun4c_get_pte_fast(); } /* * allocating and freeing a pmd is trivial: the 1-entry pmd is * inside the pgd, so has no extra memory associated with it. */ static void sun4c_pmd_free(pmd_t * pmd) { } static pmd_t *sun4c_pmd_alloc(pgd_t * pgd, unsigned long address) { return (pmd_t *) pgd; } static void sun4c_pgd_free(pgd_t *pgd) { sun4c_free_pgd_fast(pgd); } static pgd_t *sun4c_pgd_alloc(void) { return sun4c_get_pgd_fast(); } /* There are really two cases of aliases to watch out for, and these * are: * * 1) A user's page which can be aliased with the kernels virtual * mapping of the physical page. * * 2) Multiple user mappings of the same inode/anonymous object * such that two copies of the same data for the same phys page * can live (writable) in the cache at the same time. * * We handle number 1 by flushing the kernel copy of the page always * after COW page operations. * * NOTE: We are a bit slowed down now because the VMA arg is indeed used * now, so our ref/mod bit tracking quick userfaults eat a few more * cycles than they used to. */ static void sun4c_vac_alias_fixup(struct vm_area_struct *vma, unsigned long address, pte_t pte) { pgd_t *pgdp; pte_t *ptep; if (vma->vm_file) { struct address_space *mapping; unsigned long offset = (address & PAGE_MASK) - vma->vm_start; struct vm_area_struct *vmaring; int alias_found = 0; mapping = vma->vm_file->f_dentry->d_inode->i_mapping; spin_lock(&mapping->i_shared_lock); vmaring = mapping->i_mmap; do { unsigned long vaddr = vmaring->vm_start + offset; unsigned long start; /* Do not mistake ourselves as another mapping. */ if (vmaring == vma) continue; if (S4CVAC_BADALIAS(vaddr, address)) { alias_found++; start = vmaring->vm_start; while (start < vmaring->vm_end) { pgdp = sun4c_pgd_offset(vmaring->vm_mm, start); if (!pgdp) goto next; ptep = sun4c_pte_offset((pmd_t *) pgdp, start); if (!ptep) goto next; if (pte_val(*ptep) & _SUN4C_PAGE_PRESENT) { flush_cache_page(vmaring, start); *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_NOCACHE); flush_tlb_page(vmaring, start); } next: start += PAGE_SIZE; } } } while ((vmaring = vmaring->vm_next_share) != NULL); spin_unlock(&mapping->i_shared_lock); if (alias_found && !(pte_val(pte) & _SUN4C_PAGE_NOCACHE)) { pgdp = sun4c_pgd_offset(vma->vm_mm, address); ptep = sun4c_pte_offset((pmd_t *) pgdp, address); *ptep = __pte(pte_val(*ptep) | _SUN4C_PAGE_NOCACHE); pte = *ptep; } } } /* An experiment, turn off by default for now... -DaveM */ #define SUN4C_PRELOAD_PSEG void sun4c_update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t pte) { unsigned long flags; int pseg; save_and_cli(flags); address &= PAGE_MASK; if ((pseg = sun4c_get_segmap(address)) == invalid_segment) { struct sun4c_mmu_entry *entry = sun4c_user_strategy(); struct mm_struct *mm = vma->vm_mm; unsigned long start, end; entry->vaddr = start = (address & SUN4C_REAL_PGDIR_MASK); entry->ctx = mm->context; add_ring_ordered(sun4c_context_ring + mm->context, entry); sun4c_put_segmap(entry->vaddr, entry->pseg); end = start + SUN4C_REAL_PGDIR_SIZE; while (start < end) { #ifdef SUN4C_PRELOAD_PSEG pgd_t *pgdp = sun4c_pgd_offset(mm, start); pte_t *ptep; if (!pgdp) goto no_mapping; ptep = sun4c_pte_offset((pmd_t *) pgdp, start); if (!ptep || !(pte_val(*ptep) & _SUN4C_PAGE_PRESENT)) goto no_mapping; sun4c_put_pte(start, pte_val(*ptep)); goto next; no_mapping: #endif sun4c_put_pte(start, 0); #ifdef SUN4C_PRELOAD_PSEG next: #endif start += PAGE_SIZE; } if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) sun4c_vac_alias_fixup(vma, address, pte); #ifndef SUN4C_PRELOAD_PSEG sun4c_put_pte(address, pte_val(pte)); #endif restore_flags(flags); return; } else { struct sun4c_mmu_entry *entry = &mmu_entry_pool[pseg]; remove_lru(entry); add_lru(entry); } if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == (VM_WRITE|VM_SHARED)) sun4c_vac_alias_fixup(vma, address, pte); sun4c_put_pte(address, pte_val(pte)); restore_flags(flags); } extern void sparc_context_init(int); extern unsigned long end; extern unsigned long bootmem_init(void); extern unsigned long last_valid_pfn; extern void sun_serial_setup(void); void __init sun4c_paging_init(void) { int i, cnt; unsigned long kernel_end, vaddr; extern struct resource sparc_iomap; unsigned long end_pfn; kernel_end = (unsigned long) &end; kernel_end += (SUN4C_REAL_PGDIR_SIZE * 4); kernel_end = SUN4C_REAL_PGDIR_ALIGN(kernel_end); last_valid_pfn = end_pfn = bootmem_init(); /* This does not logically belong here, but we need to * call it at the moment we are able to use the bootmem * allocator. */ sun_serial_setup(); sun4c_probe_mmu(); invalid_segment = (num_segmaps - 1); sun4c_init_mmu_entry_pool(); sun4c_init_rings(); sun4c_init_map_kernelprom(kernel_end); sun4c_init_clean_mmu(kernel_end); sun4c_init_fill_kernel_ring(SUN4C_KERNEL_BUCKETS); sun4c_init_lock_area(sparc_iomap.start, IOBASE_END); sun4c_init_lock_area(DVMA_VADDR, DVMA_END); sun4c_init_lock_areas(); sun4c_init_fill_user_ring(); sun4c_set_context(0); memset(swapper_pg_dir, 0, PAGE_SIZE); memset(pg0, 0, PAGE_SIZE); memset(pg1, 0, PAGE_SIZE); memset(pg2, 0, PAGE_SIZE); memset(pg3, 0, PAGE_SIZE); /* Save work later. */ vaddr = SUN4C_VMALLOC_START; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg0); vaddr += SUN4C_PGDIR_SIZE; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg1); vaddr += SUN4C_PGDIR_SIZE; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg2); vaddr += SUN4C_PGDIR_SIZE; swapper_pg_dir[vaddr>>SUN4C_PGDIR_SHIFT] = __pgd(PGD_TABLE | (unsigned long) pg3); sun4c_init_ss2_cache_bug(); sparc_context_init(num_contexts); { unsigned long zones_size[MAX_NR_ZONES] = { 0, 0, 0}; zones_size[ZONE_DMA] = end_pfn; free_area_init(zones_size); } cnt = 0; for (i = 0; i < num_segmaps; i++) if (mmu_entry_pool[i].locked) cnt++; max_user_taken_entries = num_segmaps - cnt - 40 - 1; printk("SUN4C: %d mmu entries for the kernel\n", cnt); } /* Load up routines and constants for sun4c mmu */ void __init ld_mmu_sun4c(void) { extern void ___xchg32_sun4c(void); printk("Loading sun4c MMU routines\n"); /* First the constants */ BTFIXUPSET_SIMM13(pmd_shift, SUN4C_PMD_SHIFT); BTFIXUPSET_SETHI(pmd_size, SUN4C_PMD_SIZE); BTFIXUPSET_SETHI(pmd_mask, SUN4C_PMD_MASK); BTFIXUPSET_SIMM13(pgdir_shift, SUN4C_PGDIR_SHIFT); BTFIXUPSET_SETHI(pgdir_size, SUN4C_PGDIR_SIZE); BTFIXUPSET_SETHI(pgdir_mask, SUN4C_PGDIR_MASK); BTFIXUPSET_SIMM13(ptrs_per_pte, SUN4C_PTRS_PER_PTE); BTFIXUPSET_SIMM13(ptrs_per_pmd, SUN4C_PTRS_PER_PMD); BTFIXUPSET_SIMM13(ptrs_per_pgd, SUN4C_PTRS_PER_PGD); BTFIXUPSET_SIMM13(user_ptrs_per_pgd, KERNBASE / SUN4C_PGDIR_SIZE); BTFIXUPSET_INT(page_none, pgprot_val(SUN4C_PAGE_NONE)); BTFIXUPSET_INT(page_shared, pgprot_val(SUN4C_PAGE_SHARED)); BTFIXUPSET_INT(page_copy, pgprot_val(SUN4C_PAGE_COPY)); BTFIXUPSET_INT(page_readonly, pgprot_val(SUN4C_PAGE_READONLY)); BTFIXUPSET_INT(page_kernel, pgprot_val(SUN4C_PAGE_KERNEL)); pg_iobits = _SUN4C_PAGE_PRESENT | _SUN4C_READABLE | _SUN4C_WRITEABLE | _SUN4C_PAGE_IO | _SUN4C_PAGE_NOCACHE; /* Functions */ #ifndef __SMP__ BTFIXUPSET_CALL(___xchg32, ___xchg32_sun4c, BTFIXUPCALL_NORM); #endif BTFIXUPSET_CALL(get_pte_fast, sun4c_pte_get, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(get_pgd_fast, sun4c_pgd_alloc, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(free_pte_slow, sun4c_free_pte_slow, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(free_pgd_slow, sun4c_free_pgd_slow, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(do_check_pgt_cache, sun4c_check_pgt_cache, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(set_pgdir, sun4c_set_pgdir, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(flush_cache_all, sun4c_flush_cache_all, BTFIXUPCALL_NORM); if (sun4c_vacinfo.do_hwflushes) { BTFIXUPSET_CALL(flush_cache_mm, sun4c_flush_cache_mm_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, sun4c_flush_cache_range_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, sun4c_flush_cache_page_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, sun4c_flush_page_to_ram_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, sun4c_flush_tlb_mm_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, sun4c_flush_tlb_range_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, sun4c_flush_tlb_page_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(free_task_struct, sun4c_free_task_struct_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(switch_mm, sun4c_switch_mm_hw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(destroy_context, sun4c_destroy_context_hw, BTFIXUPCALL_NORM); } else { BTFIXUPSET_CALL(flush_cache_mm, sun4c_flush_cache_mm_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_range, sun4c_flush_cache_range_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_cache_page, sun4c_flush_cache_page_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(__flush_page_to_ram, sun4c_flush_page_to_ram_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_mm, sun4c_flush_tlb_mm_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_range, sun4c_flush_tlb_range_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_tlb_page, sun4c_flush_tlb_page_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(free_task_struct, sun4c_free_task_struct_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(switch_mm, sun4c_switch_mm_sw, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(destroy_context, sun4c_destroy_context_sw, BTFIXUPCALL_NORM); } BTFIXUPSET_CALL(flush_tlb_all, sun4c_flush_tlb_all, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(flush_sig_insns, sun4c_flush_sig_insns, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(set_pte, sun4c_set_pte, BTFIXUPCALL_STO1O0); BTFIXUPSET_CALL(pte_pagenr, sun4c_pte_pagenr, BTFIXUPCALL_NORM); #if PAGE_SHIFT <= 12 BTFIXUPSET_CALL(pmd_page, sun4c_pmd_page, BTFIXUPCALL_ANDNINT(PAGE_SIZE - 1)); #else BTFIXUPSET_CALL(pmd_page, sun4c_pmd_page, BTFIXUPCALL_NORM); #endif BTFIXUPSET_CALL(pte_present, sun4c_pte_present, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_clear, sun4c_pte_clear, BTFIXUPCALL_STG0O0); BTFIXUPSET_CALL(pmd_bad, sun4c_pmd_bad, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_present, sun4c_pmd_present, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_clear, sun4c_pmd_clear, BTFIXUPCALL_STG0O0); BTFIXUPSET_CALL(pgd_none, sun4c_pgd_none, BTFIXUPCALL_RETINT(0)); BTFIXUPSET_CALL(pgd_bad, sun4c_pgd_bad, BTFIXUPCALL_RETINT(0)); BTFIXUPSET_CALL(pgd_present, sun4c_pgd_present, BTFIXUPCALL_RETINT(1)); BTFIXUPSET_CALL(pgd_clear, sun4c_pgd_clear, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(mk_pte, sun4c_mk_pte, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mk_pte_phys, sun4c_mk_pte_phys, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mk_pte_io, sun4c_mk_pte_io, BTFIXUPCALL_NORM); BTFIXUPSET_INT(pte_modify_mask, _SUN4C_PAGE_CHG_MASK); BTFIXUPSET_CALL(pmd_offset, sun4c_pmd_offset, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_offset, sun4c_pte_offset, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_free_kernel, sun4c_pte_free_kernel, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_free_kernel, sun4c_pmd_free_kernel, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(pte_alloc_kernel, sun4c_pte_alloc_kernel, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_alloc_kernel, sun4c_pmd_alloc_kernel, BTFIXUPCALL_RETO0); BTFIXUPSET_CALL(pte_free, sun4c_pte_free, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_alloc, sun4c_pte_alloc, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pmd_free, sun4c_pmd_free, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(pmd_alloc, sun4c_pmd_alloc, BTFIXUPCALL_RETO0); BTFIXUPSET_CALL(pgd_free, sun4c_pgd_free, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pgd_alloc, sun4c_pgd_alloc, BTFIXUPCALL_NORM); BTFIXUPSET_HALF(pte_writei, _SUN4C_PAGE_WRITE); BTFIXUPSET_HALF(pte_dirtyi, _SUN4C_PAGE_MODIFIED); BTFIXUPSET_HALF(pte_youngi, _SUN4C_PAGE_ACCESSED); BTFIXUPSET_HALF(pte_wrprotecti, _SUN4C_PAGE_WRITE|_SUN4C_PAGE_SILENT_WRITE); BTFIXUPSET_HALF(pte_mkcleani, _SUN4C_PAGE_MODIFIED|_SUN4C_PAGE_SILENT_WRITE); BTFIXUPSET_HALF(pte_mkoldi, _SUN4C_PAGE_ACCESSED|_SUN4C_PAGE_SILENT_READ); BTFIXUPSET_CALL(pte_mkwrite, sun4c_pte_mkwrite, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_mkdirty, sun4c_pte_mkdirty, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(pte_mkyoung, sun4c_pte_mkyoung, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(update_mmu_cache, sun4c_update_mmu_cache, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_lockarea, sun4c_lockarea, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_unlockarea, sun4c_unlockarea, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_get_scsi_one, sun4c_get_scsi_one, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_get_scsi_sgl, sun4c_get_scsi_sgl, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_release_scsi_one, sun4c_release_scsi_one, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_release_scsi_sgl, sun4c_release_scsi_sgl, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_map_dma_area, sun4c_map_dma_area, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_unmap_dma_area, sun4c_unmap_dma_area, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_translate_dvma, sun4c_translate_dvma, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_flush_dma_area, sun4c_flush_dma_area, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(mmu_inval_dma_area, sun4c_inval_dma_area, BTFIXUPCALL_NORM); /* Task struct and kernel stack allocating/freeing. */ BTFIXUPSET_CALL(alloc_task_struct, sun4c_alloc_task_struct, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(get_task_struct, sun4c_get_task_struct, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(quick_kernel_fault, sun4c_quick_kernel_fault, BTFIXUPCALL_NORM); BTFIXUPSET_CALL(mmu_info, sun4c_mmu_info, BTFIXUPCALL_NORM); /* These should _never_ get called with two level tables. */ BTFIXUPSET_CALL(pgd_set, sun4c_pgd_set, BTFIXUPCALL_NOP); BTFIXUPSET_CALL(pgd_page, sun4c_pgd_page, BTFIXUPCALL_RETO0); }