/* * linux/fs/binfmt_aout.c * * Copyright (C) 1991, 1992, 1996 Linus Torvalds * * Hacked a bit by DaveM to make it work with 32-bit SunOS * binaries on the sparc64 port. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static int load_aout32_binary(struct linux_binprm *, struct pt_regs * regs); static int load_aout32_library(int fd); static int aout32_core_dump(long signr, struct pt_regs * regs); extern void dump_thread(struct pt_regs *, struct user *); static struct linux_binfmt aout32_format = { NULL, NULL, load_aout32_binary, load_aout32_library, aout32_core_dump }; static void set_brk(unsigned long start, unsigned long end) { start = PAGE_ALIGN(start); end = PAGE_ALIGN(end); if (end <= start) return; do_mmap(NULL, start, end - start, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE, 0); } /* * These are the only things you should do on a core-file: use only these * macros to write out all the necessary info. */ #define DUMP_WRITE(addr,nr) \ while (file.f_op->write(&file,(char *)(addr),(nr),&file.f_pos) != (nr)) \ goto close_coredump #define DUMP_SEEK(offset) \ if (file.f_op->llseek) { \ if (file.f_op->llseek(&file,(offset),0) != (offset)) \ goto close_coredump; \ } else file.f_pos = (offset) /* * Routine writes a core dump image in the current directory. * Currently only a stub-function. * * Note that setuid/setgid files won't make a core-dump if the uid/gid * changed due to the set[u|g]id. It's enforced by the "current->dumpable" * field, which also makes sure the core-dumps won't be recursive if the * dumping of the process results in another error.. */ static inline int do_aout32_core_dump(long signr, struct pt_regs * regs) { struct dentry * dentry = NULL; struct inode * inode = NULL; struct file file; mm_segment_t fs; int has_dumped = 0; char corefile[6+sizeof(current->comm)]; unsigned long dump_start, dump_size; struct user dump; # define START_DATA(u) (u.u_tsize) # define START_STACK(u) ((regs->u_regs[UREG_FP]) & ~(PAGE_SIZE - 1)) if (!current->dumpable || current->mm->count != 1) return 0; current->dumpable = 0; /* See if we have enough room to write the upage. */ if (current->rlim[RLIMIT_CORE].rlim_cur < PAGE_SIZE) return 0; fs = get_fs(); set_fs(KERNEL_DS); memcpy(corefile,"core.",5); #if 0 memcpy(corefile+5,current->comm,sizeof(current->comm)); #else corefile[4] = '\0'; #endif dentry = open_namei(corefile,O_CREAT | 2 | O_TRUNC, 0600); if (IS_ERR(dentry)) { dentry = NULL; goto end_coredump; } inode = dentry->d_inode; if (!S_ISREG(inode->i_mode)) goto end_coredump; if (!inode->i_op || !inode->i_op->default_file_ops) goto end_coredump; if (get_write_access(inode)) goto end_coredump; file.f_mode = 3; file.f_flags = 0; file.f_count = 1; file.f_dentry = dentry; file.f_pos = 0; file.f_reada = 0; file.f_op = inode->i_op->default_file_ops; if (file.f_op->open) if (file.f_op->open(inode,&file)) goto done_coredump; if (!file.f_op->write) goto close_coredump; has_dumped = 1; current->flags |= PF_DUMPCORE; strncpy(dump.u_comm, current->comm, sizeof(current->comm)); dump.signal = signr; dump_thread(regs, &dump); /* If the size of the dump file exceeds the rlimit, then see what would happen if we wrote the stack, but not the data area. */ if ((dump.u_dsize+dump.u_ssize) > current->rlim[RLIMIT_CORE].rlim_cur) dump.u_dsize = 0; /* Make sure we have enough room to write the stack and data areas. */ if ((dump.u_ssize) > current->rlim[RLIMIT_CORE].rlim_cur) dump.u_ssize = 0; /* make sure we actually have a data and stack area to dump */ set_fs(USER_DS); if (verify_area(VERIFY_READ, (void *) START_DATA(dump), dump.u_dsize)) dump.u_dsize = 0; if (verify_area(VERIFY_READ, (void *) START_STACK(dump), dump.u_ssize)) dump.u_ssize = 0; set_fs(KERNEL_DS); /* struct user */ DUMP_WRITE(&dump,sizeof(dump)); /* now we start writing out the user space info */ set_fs(USER_DS); /* Dump the data area */ if (dump.u_dsize != 0) { dump_start = START_DATA(dump); dump_size = dump.u_dsize; DUMP_WRITE(dump_start,dump_size); } /* Now prepare to dump the stack area */ if (dump.u_ssize != 0) { dump_start = START_STACK(dump); dump_size = dump.u_ssize; DUMP_WRITE(dump_start,dump_size); } /* Finally dump the task struct. Not be used by gdb, but could be useful */ set_fs(KERNEL_DS); DUMP_WRITE(current,sizeof(*current)); close_coredump: if (file.f_op->release) file.f_op->release(inode,&file); done_coredump: put_write_access(inode); end_coredump: set_fs(fs); dput(dentry); return has_dumped; } static int aout32_core_dump(long signr, struct pt_regs * regs) { int retval; MOD_INC_USE_COUNT; retval = do_aout32_core_dump(signr, regs); MOD_DEC_USE_COUNT; return retval; } /* * create_aout32_tables() parses the env- and arg-strings in new user * memory and creates the pointer tables from them, and puts their * addresses on the "stack", returning the new stack pointer value. */ #define A(x) ((unsigned long)x) static u32 *create_aout32_tables(char * p, struct linux_binprm * bprm) { u32 *argv, *envp; u32 *sp; int argc = bprm->argc; int envc = bprm->envc; sp = (u32 *) ((-(unsigned long)sizeof(char *)) & (unsigned long) p); /* This imposes the proper stack alignment for a new process. */ sp = (u32 *) (((unsigned long) sp) & ~7); if ((envc+argc+3)&1) --sp; sp -= envc+1; envp = (u32 *) sp; sp -= argc+1; argv = (u32 *) sp; put_user(argc,--sp); current->mm->arg_start = (unsigned long) p; while (argc-->0) { char c; put_user(((u32)A(p)),argv++); do { get_user(c,p++); } while (c); } put_user(NULL,argv); current->mm->arg_end = current->mm->env_start = (unsigned long) p; while (envc-->0) { char c; put_user(((u32)A(p)),envp++); do { get_user(c,p++); } while (c); } put_user(NULL,envp); current->mm->env_end = (unsigned long) p; return sp; } /* * These are the functions used to load a.out style executables and shared * libraries. There is no binary dependent code anywhere else. */ static inline int do_load_aout32_binary(struct linux_binprm * bprm, struct pt_regs * regs) { struct exec ex; struct file * file; int fd; unsigned long error; unsigned long p = bprm->p; unsigned long fd_offset; unsigned long rlim; int retval; ex = *((struct exec *) bprm->buf); /* exec-header */ if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != OMAGIC && N_MAGIC(ex) != QMAGIC && N_MAGIC(ex) != NMAGIC) || N_TRSIZE(ex) || N_DRSIZE(ex) || bprm->dentry->d_inode->i_size < ex.a_text+ex.a_data+N_SYMSIZE(ex)+N_TXTOFF(ex)) { return -ENOEXEC; } current->personality = PER_LINUX; fd_offset = N_TXTOFF(ex); /* Check initial limits. This avoids letting people circumvent * size limits imposed on them by creating programs with large * arrays in the data or bss. */ rlim = current->rlim[RLIMIT_DATA].rlim_cur; if (rlim >= RLIM_INFINITY) rlim = ~0; if (ex.a_data + ex.a_bss > rlim) return -ENOMEM; /* Flush all traces of the currently running executable */ retval = flush_old_exec(bprm); if (retval) return retval; /* OK, This is the point of no return */ current->mm->end_code = ex.a_text + (current->mm->start_code = N_TXTADDR(ex)); current->mm->end_data = ex.a_data + (current->mm->start_data = N_DATADDR(ex)); current->mm->brk = ex.a_bss + (current->mm->start_brk = N_BSSADDR(ex)); current->mm->rss = 0; current->mm->mmap = NULL; current->suid = current->euid = current->fsuid = bprm->e_uid; current->sgid = current->egid = current->fsgid = bprm->e_gid; current->flags &= ~PF_FORKNOEXEC; if (N_MAGIC(ex) == NMAGIC) { /* Fuck me plenty... */ error = do_mmap(NULL, N_TXTADDR(ex), ex.a_text, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, 0); read_exec(bprm->dentry, fd_offset, (char *) N_TXTADDR(ex), ex.a_text, 0); error = do_mmap(NULL, N_DATADDR(ex), ex.a_data, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, 0); read_exec(bprm->dentry, fd_offset + ex.a_text, (char *) N_DATADDR(ex), ex.a_data, 0); goto beyond_if; } if (N_MAGIC(ex) == OMAGIC) { do_mmap(NULL, N_TXTADDR(ex) & PAGE_MASK, ex.a_text+ex.a_data + PAGE_SIZE - 1, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, 0); read_exec(bprm->dentry, fd_offset, (char *) N_TXTADDR(ex), ex.a_text+ex.a_data, 0); } else { if ((ex.a_text & 0xfff || ex.a_data & 0xfff) && (N_MAGIC(ex) != NMAGIC)) printk(KERN_NOTICE "executable not page aligned\n"); fd = open_dentry(bprm->dentry, O_RDONLY); if (fd < 0) return fd; file = current->files->fd[fd]; if (!file->f_op || !file->f_op->mmap) { sys_close(fd); do_mmap(NULL, 0, ex.a_text+ex.a_data, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_FIXED|MAP_PRIVATE, 0); read_exec(bprm->dentry, fd_offset, (char *) N_TXTADDR(ex), ex.a_text+ex.a_data, 0); goto beyond_if; } error = do_mmap(file, N_TXTADDR(ex), ex.a_text, PROT_READ | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE, fd_offset); if (error != N_TXTADDR(ex)) { sys_close(fd); send_sig(SIGKILL, current, 0); return error; } error = do_mmap(file, N_DATADDR(ex), ex.a_data, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE, fd_offset + ex.a_text); sys_close(fd); if (error != N_DATADDR(ex)) { send_sig(SIGKILL, current, 0); return error; } } beyond_if: if (current->exec_domain && current->exec_domain->module) __MOD_DEC_USE_COUNT(current->exec_domain->module); if (current->binfmt && current->binfmt->module) __MOD_DEC_USE_COUNT(current->binfmt->module); current->exec_domain = lookup_exec_domain(current->personality); current->binfmt = &aout32_format; if (current->exec_domain && current->exec_domain->module) __MOD_INC_USE_COUNT(current->exec_domain->module); if (current->binfmt && current->binfmt->module) __MOD_INC_USE_COUNT(current->binfmt->module); set_brk(current->mm->start_brk, current->mm->brk); p = setup_arg_pages(p, bprm); p = (unsigned long) create_aout32_tables((char *)p, bprm); current->mm->start_stack = p; start_thread32(regs, ex.a_entry, p); if (current->flags & PF_PTRACED) send_sig(SIGTRAP, current, 0); return 0; } static int load_aout32_binary(struct linux_binprm * bprm, struct pt_regs * regs) { int retval; MOD_INC_USE_COUNT; retval = do_load_aout32_binary(bprm, regs); MOD_DEC_USE_COUNT; return retval; } static inline int do_load_aout32_library(int fd) { struct file * file; struct exec ex; struct dentry * dentry; struct inode * inode; unsigned int len; unsigned int bss; unsigned int start_addr; unsigned long error; file = current->files->fd[fd]; if (!file || !file->f_op) return -EACCES; dentry = file->f_dentry; inode = dentry->d_inode; /* Seek into the file */ if (file->f_op->llseek) { if ((error = file->f_op->llseek(file, 0, 0)) != 0) return -ENOEXEC; } else file->f_pos = 0; set_fs(KERNEL_DS); error = file->f_op->read(file, (char *) &ex, sizeof(ex), &file->f_pos); set_fs(USER_DS); if (error != sizeof(ex)) return -ENOEXEC; /* We come in here for the regular a.out style of shared libraries */ if ((N_MAGIC(ex) != ZMAGIC && N_MAGIC(ex) != QMAGIC) || N_TRSIZE(ex) || N_DRSIZE(ex) || ((ex.a_entry & 0xfff) && N_MAGIC(ex) == ZMAGIC) || inode->i_size < ex.a_text+ex.a_data+N_SYMSIZE(ex)+N_TXTOFF(ex)) { return -ENOEXEC; } if (N_MAGIC(ex) == ZMAGIC && N_TXTOFF(ex) && (N_TXTOFF(ex) < inode->i_sb->s_blocksize)) { printk("N_TXTOFF < BLOCK_SIZE. Please convert library\n"); return -ENOEXEC; } if (N_FLAGS(ex)) return -ENOEXEC; /* For QMAGIC, the starting address is 0x20 into the page. We mask this off to get the starting address for the page */ start_addr = ex.a_entry & 0xfffff000; /* Now use mmap to map the library into memory. */ error = do_mmap(file, start_addr, ex.a_text + ex.a_data, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, N_TXTOFF(ex)); if (error != start_addr) return error; len = PAGE_ALIGN(ex.a_text + ex.a_data); bss = ex.a_text + ex.a_data + ex.a_bss; if (bss > len) { error = do_mmap(NULL, start_addr + len, bss-len, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 0); if (error != start_addr + len) return error; } return 0; } static int load_aout32_library(int fd) { int retval; MOD_INC_USE_COUNT; retval = do_load_aout32_library(fd); MOD_DEC_USE_COUNT; return retval; } __initfunc(int init_aout32_binfmt(void)) { return register_binfmt(&aout32_format); }