/* $Id: pci_sabre.c,v 1.20 2000/06/26 19:40:27 davem Exp $ * pci_sabre.c: Sabre specific PCI controller support. * * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu) * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com) */ #include #include #include #include #include #include #include #include #include #include "pci_impl.h" /* All SABRE registers are 64-bits. The following accessor * routines are how they are accessed. The REG parameter * is a physical address. */ #define sabre_read(__reg) \ ({ u64 __ret; \ __asm__ __volatile__("ldxa [%1] %2, %0" \ : "=r" (__ret) \ : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ : "memory"); \ __ret; \ }) #define sabre_write(__reg, __val) \ __asm__ __volatile__("stxa %0, [%1] %2" \ : /* no outputs */ \ : "r" (__val), "r" (__reg), \ "i" (ASI_PHYS_BYPASS_EC_E)) /* SABRE PCI controller register offsets and definitions. */ #define SABRE_UE_AFSR 0x0030UL #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */ #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */ #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */ #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */ #define SABRE_UECE_AFAR 0x0038UL #define SABRE_CE_AFSR 0x0040UL #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */ #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */ #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */ #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */ #define SABRE_IOMMU_CONTROL 0x0200UL #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */ #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */ #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */ #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */ #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */ #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000 #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000 #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000 #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000 #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000 #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000 #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000 #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */ #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */ #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */ #define SABRE_IOMMU_TSBBASE 0x0208UL #define SABRE_IOMMU_FLUSH 0x0210UL #define SABRE_IMAP_A_SLOT0 0x0c00UL #define SABRE_IMAP_B_SLOT0 0x0c20UL #define SABRE_IMAP_SCSI 0x1000UL #define SABRE_IMAP_ETH 0x1008UL #define SABRE_IMAP_BPP 0x1010UL #define SABRE_IMAP_AU_REC 0x1018UL #define SABRE_IMAP_AU_PLAY 0x1020UL #define SABRE_IMAP_PFAIL 0x1028UL #define SABRE_IMAP_KMS 0x1030UL #define SABRE_IMAP_FLPY 0x1038UL #define SABRE_IMAP_SHW 0x1040UL #define SABRE_IMAP_KBD 0x1048UL #define SABRE_IMAP_MS 0x1050UL #define SABRE_IMAP_SER 0x1058UL #define SABRE_IMAP_UE 0x1070UL #define SABRE_IMAP_CE 0x1078UL #define SABRE_IMAP_PCIERR 0x1080UL #define SABRE_IMAP_GFX 0x1098UL #define SABRE_IMAP_EUPA 0x10a0UL #define SABRE_ICLR_A_SLOT0 0x1400UL #define SABRE_ICLR_B_SLOT0 0x1480UL #define SABRE_ICLR_SCSI 0x1800UL #define SABRE_ICLR_ETH 0x1808UL #define SABRE_ICLR_BPP 0x1810UL #define SABRE_ICLR_AU_REC 0x1818UL #define SABRE_ICLR_AU_PLAY 0x1820UL #define SABRE_ICLR_PFAIL 0x1828UL #define SABRE_ICLR_KMS 0x1830UL #define SABRE_ICLR_FLPY 0x1838UL #define SABRE_ICLR_SHW 0x1840UL #define SABRE_ICLR_KBD 0x1848UL #define SABRE_ICLR_MS 0x1850UL #define SABRE_ICLR_SER 0x1858UL #define SABRE_ICLR_UE 0x1870UL #define SABRE_ICLR_CE 0x1878UL #define SABRE_ICLR_PCIERR 0x1880UL #define SABRE_WRSYNC 0x1c20UL #define SABRE_PCICTRL 0x2000UL #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */ #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */ #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */ #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */ #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */ #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */ #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */ #define SABRE_PIOAFSR 0x2010UL #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */ #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */ #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */ #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */ #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */ #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */ #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */ #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */ #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */ #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */ #define SABRE_PIOAFAR 0x2018UL #define SABRE_PCIDIAG 0x2020UL #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */ #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */ #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */ #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */ #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */ #define SABRE_PCITASR 0x2028UL #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */ #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */ #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */ #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */ #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */ #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */ #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */ #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */ #define SABRE_PIOBUF_DIAG 0x5000UL #define SABRE_DMABUF_DIAGLO 0x5100UL #define SABRE_DMABUF_DIAGHI 0x51c0UL #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */ #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */ #define SABRE_IOMMU_VADIAG 0xa400UL #define SABRE_IOMMU_TCDIAG 0xa408UL #define SABRE_IOMMU_TAG 0xa580UL #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */ #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */ #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */ #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */ #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */ #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */ #define SABRE_IOMMU_DATA 0xa600UL #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */ #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */ #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */ #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */ #define SABRE_PCI_IRQSTATE 0xa800UL #define SABRE_OBIO_IRQSTATE 0xa808UL #define SABRE_FFBCFG 0xf000UL #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */ #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */ #define SABRE_MCCTRL0 0xf010UL #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */ #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */ #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */ #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */ #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */ #define SABRE_MCCTRL1 0xf018UL #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */ #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */ #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */ #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */ #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */ #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */ #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */ #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */ #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */ #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */ #define SABRE_RESETCTRL 0xf020UL #define SABRE_CONFIGSPACE 0x001000000UL #define SABRE_IOSPACE 0x002000000UL #define SABRE_IOSPACE_SIZE 0x00000ffffUL #define SABRE_MEMSPACE 0x100000000UL #define SABRE_MEMSPACE_SIZE 0x07fffffffUL /* UltraSparc-IIi Programmer's Manual, page 325, PCI * configuration space address format: * * 32 24 23 16 15 11 10 8 7 2 1 0 * --------------------------------------------------------- * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 | * --------------------------------------------------------- */ #define SABRE_CONFIG_BASE(PBM) \ ((PBM)->parent->config_space | (1UL << 24)) #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ (((unsigned long)(BUS) << 16) | \ ((unsigned long)(DEVFN) << 8) | \ ((unsigned long)(REG))) static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm, unsigned char bus, unsigned int devfn, int where) { if (!pbm) return NULL; return (void *) (SABRE_CONFIG_BASE(pbm) | SABRE_CONFIG_ENCODE(bus, devfn, where)); } static int sabre_out_of_range(unsigned char devfn) { return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) || ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) || (PCI_SLOT(devfn) > 1)); } static int __sabre_out_of_range(struct pci_pbm_info *pbm, unsigned char bus, unsigned char devfn) { return ((pbm->parent == 0) || ((pbm == &pbm->parent->pbm_B) && (bus == pbm->pci_first_busno) && PCI_SLOT(devfn) > 8) || ((pbm == &pbm->parent->pbm_A) && (bus == pbm->pci_first_busno) && PCI_SLOT(devfn) > 8)); } static int __sabre_read_byte(struct pci_dev *dev, int where, u8 *value) { struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number]; unsigned char bus = dev->bus->number; unsigned int devfn = dev->devfn; u8 *addr; *value = 0xff; addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; pci_config_read8(addr, value); return PCIBIOS_SUCCESSFUL; } static int __sabre_read_word(struct pci_dev *dev, int where, u16 *value) { struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number]; unsigned char bus = dev->bus->number; unsigned int devfn = dev->devfn; u16 *addr; *value = 0xffff; addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; if (where & 0x01) { printk("pcibios_read_config_word: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_read16(addr, value); return PCIBIOS_SUCCESSFUL; } static int __sabre_read_dword(struct pci_dev *dev, int where, u32 *value) { struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number]; unsigned char bus = dev->bus->number; unsigned int devfn = dev->devfn; u32 *addr; *value = 0xffffffff; addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; if (where & 0x03) { printk("pcibios_read_config_dword: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_read32(addr, value); return PCIBIOS_SUCCESSFUL; } static int sabre_read_byte(struct pci_dev *dev, int where, u8 *value) { if (dev->bus->number) return __sabre_read_byte(dev, where, value); if (sabre_out_of_range(dev->devfn)) { *value = 0xff; return PCIBIOS_SUCCESSFUL; } if (where < 8) { u16 tmp; __sabre_read_word(dev, where & ~1, &tmp); if (where & 1) *value = tmp >> 8; else *value = tmp & 0xff; return PCIBIOS_SUCCESSFUL; } else return __sabre_read_byte(dev, where, value); } static int sabre_read_word(struct pci_dev *dev, int where, u16 *value) { if (dev->bus->number) return __sabre_read_word(dev, where, value); if (sabre_out_of_range(dev->devfn)) { *value = 0xffff; return PCIBIOS_SUCCESSFUL; } if (where < 8) return __sabre_read_word(dev, where, value); else { u8 tmp; __sabre_read_byte(dev, where, &tmp); *value = tmp; __sabre_read_byte(dev, where + 1, &tmp); *value |= tmp << 8; return PCIBIOS_SUCCESSFUL; } } static int sabre_read_dword(struct pci_dev *dev, int where, u32 *value) { u16 tmp; if (dev->bus->number) return __sabre_read_dword(dev, where, value); if (sabre_out_of_range(dev->devfn)) { *value = 0xffffffff; return PCIBIOS_SUCCESSFUL; } sabre_read_word(dev, where, &tmp); *value = tmp; sabre_read_word(dev, where + 2, &tmp); *value |= tmp << 16; return PCIBIOS_SUCCESSFUL; } static int __sabre_write_byte(struct pci_dev *dev, int where, u8 value) { struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number]; unsigned char bus = dev->bus->number; unsigned int devfn = dev->devfn; u8 *addr; addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; pci_config_write8(addr, value); return PCIBIOS_SUCCESSFUL; } static int __sabre_write_word(struct pci_dev *dev, int where, u16 value) { struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number]; unsigned char bus = dev->bus->number; unsigned int devfn = dev->devfn; u16 *addr; addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; if (where & 0x01) { printk("pcibios_write_config_word: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_write16(addr, value); return PCIBIOS_SUCCESSFUL; } static int __sabre_write_dword(struct pci_dev *dev, int where, u32 value) { struct pci_pbm_info *pbm = pci_bus2pbm[dev->bus->number]; unsigned char bus = dev->bus->number; unsigned int devfn = dev->devfn; u32 *addr; addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); if (!addr) return PCIBIOS_SUCCESSFUL; if (__sabre_out_of_range(pbm, bus, devfn)) return PCIBIOS_SUCCESSFUL; if (where & 0x03) { printk("pcibios_write_config_dword: misaligned reg [%x]\n", where); return PCIBIOS_SUCCESSFUL; } pci_config_write32(addr, value); return PCIBIOS_SUCCESSFUL; } static int sabre_write_byte(struct pci_dev *dev, int where, u8 value) { if (dev->bus->number) return __sabre_write_byte(dev, where, value); if (sabre_out_of_range(dev->devfn)) return PCIBIOS_SUCCESSFUL; if (where < 8) { u16 tmp; __sabre_read_word(dev, where & ~1, &tmp); if (where & 1) { value &= 0x00ff; value |= tmp << 8; } else { value &= 0xff00; value |= tmp; } return __sabre_write_word(dev, where & ~1, tmp); } else return __sabre_write_byte(dev, where, value); } static int sabre_write_word(struct pci_dev *dev, int where, u16 value) { if (dev->bus->number) return __sabre_write_word(dev, where, value); if (sabre_out_of_range(dev->devfn)) return PCIBIOS_SUCCESSFUL; if (where < 8) return __sabre_write_word(dev, where, value); else { __sabre_write_byte(dev, where, value & 0xff); __sabre_write_byte(dev, where + 1, value >> 8); return PCIBIOS_SUCCESSFUL; } } static int sabre_write_dword(struct pci_dev *dev, int where, u32 value) { if (dev->bus->number) return __sabre_write_dword(dev, where, value); if (sabre_out_of_range(dev->devfn)) return PCIBIOS_SUCCESSFUL; sabre_write_word(dev, where, value & 0xffff); sabre_write_word(dev, where + 2, value >> 16); return PCIBIOS_SUCCESSFUL; } static struct pci_ops sabre_ops = { sabre_read_byte, sabre_read_word, sabre_read_dword, sabre_write_byte, sabre_write_word, sabre_write_dword }; static unsigned long sabre_pcislot_imap_offset(unsigned long ino) { unsigned int bus = (ino & 0x10) >> 4; unsigned int slot = (ino & 0x0c) >> 2; if (bus == 0) return SABRE_IMAP_A_SLOT0 + (slot * 8); else return SABRE_IMAP_B_SLOT0 + (slot * 8); } static unsigned long __onboard_imap_off[] = { /*0x20*/ SABRE_IMAP_SCSI, /*0x21*/ SABRE_IMAP_ETH, /*0x22*/ SABRE_IMAP_BPP, /*0x23*/ SABRE_IMAP_AU_REC, /*0x24*/ SABRE_IMAP_AU_PLAY, /*0x25*/ SABRE_IMAP_PFAIL, /*0x26*/ SABRE_IMAP_KMS, /*0x27*/ SABRE_IMAP_FLPY, /*0x28*/ SABRE_IMAP_SHW, /*0x29*/ SABRE_IMAP_KBD, /*0x2a*/ SABRE_IMAP_MS, /*0x2b*/ SABRE_IMAP_SER, /*0x2c*/ 0 /* reserved */, /*0x2d*/ 0 /* reserved */, /*0x2e*/ SABRE_IMAP_UE, /*0x2f*/ SABRE_IMAP_CE, /*0x30*/ SABRE_IMAP_PCIERR, }; #define SABRE_ONBOARD_IRQ_BASE 0x20 #define SABRE_ONBOARD_IRQ_LAST 0x30 #define sabre_onboard_imap_offset(__ino) \ __onboard_imap_off[(__ino) - SABRE_ONBOARD_IRQ_BASE] #define sabre_iclr_offset(ino) \ ((ino & 0x20) ? (SABRE_ICLR_SCSI + (((ino) & 0x1f) << 3)) : \ (SABRE_ICLR_A_SLOT0 + (((ino) & 0x1f)<<3))) /* PCI SABRE INO number to Sparc PIL level. */ static unsigned char sabre_pil_table[] = { /*0x00*/0, 0, 0, 0, /* PCI A slot 0 Int A, B, C, D */ /*0x04*/0, 0, 0, 0, /* PCI A slot 1 Int A, B, C, D */ /*0x08*/0, 0, 0, 0, /* PCI A slot 2 Int A, B, C, D */ /*0x0c*/0, 0, 0, 0, /* PCI A slot 3 Int A, B, C, D */ /*0x10*/0, 0, 0, 0, /* PCI B slot 0 Int A, B, C, D */ /*0x14*/0, 0, 0, 0, /* PCI B slot 1 Int A, B, C, D */ /*0x18*/0, 0, 0, 0, /* PCI B slot 2 Int A, B, C, D */ /*0x1c*/0, 0, 0, 0, /* PCI B slot 3 Int A, B, C, D */ /*0x20*/3, /* SCSI */ /*0x21*/5, /* Ethernet */ /*0x22*/8, /* Parallel Port */ /*0x23*/13, /* Audio Record */ /*0x24*/14, /* Audio Playback */ /*0x25*/15, /* PowerFail */ /*0x26*/3, /* second SCSI */ /*0x27*/11, /* Floppy */ /*0x28*/2, /* Spare Hardware */ /*0x29*/9, /* Keyboard */ /*0x2a*/4, /* Mouse */ /*0x2b*/12, /* Serial */ /*0x2c*/10, /* Timer 0 */ /*0x2d*/11, /* Timer 1 */ /*0x2e*/15, /* Uncorrectable ECC */ /*0x2f*/15, /* Correctable ECC */ /*0x30*/15, /* PCI Bus A Error */ /*0x31*/15, /* PCI Bus B Error */ /*0x32*/1, /* Power Management */ }; static int __init sabre_ino_to_pil(struct pci_dev *pdev, unsigned int ino) { int ret; ret = sabre_pil_table[ino]; if (ret == 0 && pdev == NULL) { ret = 1; } else if (ret == 0) { switch ((pdev->class >> 16) & 0x0f) { case PCI_BASE_CLASS_STORAGE: ret = 4; case PCI_BASE_CLASS_NETWORK: ret = 6; case PCI_BASE_CLASS_DISPLAY: ret = 9; case PCI_BASE_CLASS_MULTIMEDIA: case PCI_BASE_CLASS_MEMORY: case PCI_BASE_CLASS_BRIDGE: ret = 10; default: ret = 1; }; } return ret; } static unsigned int __init sabre_irq_build(struct pci_controller_info *p, struct pci_dev *pdev, unsigned int ino) { struct ino_bucket *bucket; unsigned long imap, iclr; unsigned long imap_off, iclr_off; int pil, inofixup = 0; ino &= PCI_IRQ_INO; if (ino < SABRE_ONBOARD_IRQ_BASE) { /* PCI slot */ imap_off = sabre_pcislot_imap_offset(ino); } else { /* onboard device */ if (ino > SABRE_ONBOARD_IRQ_LAST) { prom_printf("sabre_irq_build: Wacky INO [%x]\n", ino); prom_halt(); } imap_off = sabre_onboard_imap_offset(ino); } /* Now build the IRQ bucket. */ pil = sabre_ino_to_pil(pdev, ino); imap = p->controller_regs + imap_off; imap += 4; iclr_off = sabre_iclr_offset(ino); iclr = p->controller_regs + iclr_off; iclr += 4; if ((ino & 0x20) == 0) inofixup = ino & 0x03; bucket = __bucket(build_irq(pil, inofixup, iclr, imap)); bucket->flags |= IBF_PCI; if (pdev) { struct pcidev_cookie *pcp = pdev->sysdata; /* When a device lives behind a bridge deeper in the * PCI bus topology than APB, a special sequence must * run to make sure all pending DMA transfers at the * time of IRQ delivery are visible in the coherency * domain by the cpu. This sequence is to perform * a read on the far side of the non-APB bridge, then * perform a read of Sabre's DMA write-sync register. * * Currently, the PCI_CONFIG register for the device * is used for this read from the far side of the bridge. */ if (pdev->bus->number != pcp->pbm->pci_first_busno) { bucket->flags |= IBF_DMA_SYNC; bucket->synctab_ent = dma_sync_reg_table_entry++; dma_sync_reg_table[bucket->synctab_ent] = (unsigned long) sabre_pci_config_mkaddr( pcp->pbm, pdev->bus->number, pdev->devfn, PCI_COMMAND); } } return __irq(bucket); } /* SABRE error handling support. */ static void sabre_check_iommu_error(struct pci_controller_info *p, unsigned long afsr, unsigned long afar) { unsigned long iommu_tag[16]; unsigned long iommu_data[16]; unsigned long flags; u64 control; int i; spin_lock_irqsave(&p->iommu.lock, flags); control = sabre_read(p->iommu.iommu_control); if (control & SABRE_IOMMUCTRL_ERR) { char *type_string; /* Clear the error encountered bit. * NOTE: On Sabre this is write 1 to clear, * which is different from Psycho. */ sabre_write(p->iommu.iommu_control, control); switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) { case 1: type_string = "Invalid Error"; break; case 3: type_string = "ECC Error"; break; default: type_string = "Unknown"; break; }; printk("SABRE%d: IOMMU Error, type[%s]\n", p->index, type_string); /* Enter diagnostic mode and probe for error'd * entries in the IOTLB. */ control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR); sabre_write(p->iommu.iommu_control, (control | SABRE_IOMMUCTRL_DENAB)); for (i = 0; i < 16; i++) { unsigned long base = p->controller_regs; iommu_tag[i] = sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL)); iommu_data[i] = sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL)); sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0); sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0); } sabre_write(p->iommu.iommu_control, control); for (i = 0; i < 16; i++) { unsigned long tag, data; tag = iommu_tag[i]; if (!(tag & SABRE_IOMMUTAG_ERR)) continue; data = iommu_data[i]; switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) { case 1: type_string = "Invalid Error"; break; case 3: type_string = "ECC Error"; break; default: type_string = "Unknown"; break; }; printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n", p->index, i, tag, type_string, ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0), ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8), ((tag & SABRE_IOMMUTAG_VPN) << PAGE_SHIFT)); printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n", p->index, i, data, ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0), ((data & SABRE_IOMMUDATA_USED) ? 1 : 0), ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0), ((data & SABRE_IOMMUDATA_PPN) << PAGE_SHIFT)); } } spin_unlock_irqrestore(&p->iommu.lock, flags); } static void sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs) { struct pci_controller_info *p = dev_id; unsigned long afsr_reg = p->controller_regs + SABRE_UE_AFSR; unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR; unsigned long afsr, afar, error_bits; int reported; /* Latch uncorrectable error status. */ afar = sabre_read(afar_reg); afsr = sabre_read(afsr_reg); /* Clear the primary/secondary error status bits. */ error_bits = afsr & (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); sabre_write(afsr_reg, error_bits); /* Log the error. */ printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n", p->index, ((error_bits & SABRE_UEAFSR_PDRD) ? "DMA Read" : ((error_bits & SABRE_UEAFSR_PDWR) ? "DMA Write" : "???")), ((error_bits & SABRE_UEAFSR_PDTE) ? ":Translation Error" : "")); printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", p->index, (afsr & SABRE_UEAFSR_BMSK) >> 32UL, (afsr & SABRE_UEAFSR_OFF) >> 29UL, ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar); printk("SABRE%d: UE Secondary errors [", p->index); reported = 0; if (afsr & SABRE_UEAFSR_SDRD) { reported++; printk("(DMA Read)"); } if (afsr & SABRE_UEAFSR_SDWR) { reported++; printk("(DMA Write)"); } if (afsr & SABRE_UEAFSR_SDTE) { reported++; printk("(Translation Error)"); } if (!reported) printk("(none)"); printk("]\n"); /* Interrogate IOMMU for error status. */ sabre_check_iommu_error(p, afsr, afar); } static void sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs) { struct pci_controller_info *p = dev_id; unsigned long afsr_reg = p->controller_regs + SABRE_CE_AFSR; unsigned long afar_reg = p->controller_regs + SABRE_UECE_AFAR; unsigned long afsr, afar, error_bits; int reported; /* Latch error status. */ afar = sabre_read(afar_reg); afsr = sabre_read(afsr_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); sabre_write(afsr_reg, error_bits); /* Log the error. */ printk("SABRE%d: Correctable Error, primary error type[%s]\n", p->index, ((error_bits & SABRE_CEAFSR_PDRD) ? "DMA Read" : ((error_bits & SABRE_CEAFSR_PDWR) ? "DMA Write" : "???"))); /* XXX Use syndrome and afar to print out module string just like * XXX UDB CE trap handler does... -DaveM */ printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " "was_block(%d)\n", p->index, (afsr & SABRE_CEAFSR_ESYND) >> 48UL, (afsr & SABRE_CEAFSR_BMSK) >> 32UL, (afsr & SABRE_CEAFSR_OFF) >> 29UL, ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar); printk("SABRE%d: CE Secondary errors [", p->index); reported = 0; if (afsr & SABRE_CEAFSR_SDRD) { reported++; printk("(DMA Read)"); } if (afsr & SABRE_CEAFSR_SDWR) { reported++; printk("(DMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); } static void sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs) { struct pci_controller_info *p = dev_id; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = p->controller_regs + SABRE_PIOAFSR; afar_reg = p->controller_regs + SABRE_PIOAFAR; /* Latch error status. */ afar = sabre_read(afar_reg); afsr = sabre_read(afsr_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA | SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR); sabre_write(afsr_reg, error_bits); /* Log the error. */ printk("SABRE%d: PCI Error, primary error type[%s]\n", p->index, (((error_bits & SABRE_PIOAFSR_PMA) ? "Master Abort" : ((error_bits & SABRE_PIOAFSR_PTA) ? "Target Abort" : ((error_bits & SABRE_PIOAFSR_PRTRY) ? "Excessive Retries" : ((error_bits & SABRE_PIOAFSR_PPERR) ? "Parity Error" : "???")))))); printk("SABRE%d: bytemask[%04lx] was_block(%d)\n", p->index, (afsr & SABRE_PIOAFSR_BMSK) >> 32UL, (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0); printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar); printk("SABRE%d: PCI Secondary errors [", p->index); reported = 0; if (afsr & SABRE_PIOAFSR_SMA) { reported++; printk("(Master Abort)"); } if (afsr & SABRE_PIOAFSR_STA) { reported++; printk("(Target Abort)"); } if (afsr & SABRE_PIOAFSR_SRTRY) { reported++; printk("(Excessive Retries)"); } if (afsr & SABRE_PIOAFSR_SPERR) { reported++; printk("(Parity Error)"); } if (!reported) printk("(none)"); printk("]\n"); /* For the error types shown, scan both PCI buses for devices * which have logged that error type. */ /* If we see a Target Abort, this could be the result of an * IOMMU translation error of some sort. It is extremely * useful to log this information as usually it indicates * a bug in the IOMMU support code or a PCI device driver. */ if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) { sabre_check_iommu_error(p, afsr, afar); pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus); pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus); } if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) { pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus); pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus); } /* For excessive retries, SABRE/PBM will abort the device * and there is no way to specifically check for excessive * retries in the config space status registers. So what * we hope is that we'll catch it via the master/target * abort events. */ if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) { pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus); pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus); } } /* XXX What about PowerFail/PowerManagement??? -DaveM */ #define SABRE_UE_INO 0x2e #define SABRE_CE_INO 0x2f #define SABRE_PCIERR_INO 0x30 static void __init sabre_register_error_handlers(struct pci_controller_info *p) { unsigned long base = p->controller_regs; unsigned long irq, portid = p->portid; u64 tmp; /* We clear the error bits in the appropriate AFSR before * registering the handler so that we don't get spurious * interrupts. */ sabre_write(base + SABRE_UE_AFSR, (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE)); irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_UE_INO); if (request_irq(irq, sabre_ue_intr, SA_SHIRQ, "SABRE UE", p) < 0) { prom_printf("SABRE%d: Cannot register UE interrupt.\n", p->index); prom_halt(); } sabre_write(base + SABRE_CE_AFSR, (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR)); irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_CE_INO); if (request_irq(irq, sabre_ce_intr, SA_SHIRQ, "SABRE CE", p) < 0) { prom_printf("SABRE%d: Cannot register CE interrupt.\n", p->index); prom_halt(); } irq = sabre_irq_build(p, NULL, (portid << 6) | SABRE_PCIERR_INO); if (request_irq(irq, sabre_pcierr_intr, SA_SHIRQ, "SABRE PCIERR", p) < 0) { prom_printf("SABRE%d: Cannot register PciERR interrupt.\n", p->index); prom_halt(); } tmp = sabre_read(base + SABRE_PCICTRL); tmp |= SABRE_PCICTRL_ERREN; sabre_write(base + SABRE_PCICTRL, tmp); } static void __init sabre_resource_adjust(struct pci_dev *pdev, struct resource *res, struct resource *root) { struct pcidev_cookie *pcp = pdev->sysdata; struct pci_controller_info *p = pcp->pbm->parent; unsigned long base; if (res->flags & IORESOURCE_IO) base = p->controller_regs + SABRE_IOSPACE; else base = p->controller_regs + SABRE_MEMSPACE; res->start += base; res->end += base; } static void __init sabre_base_address_update(struct pci_dev *pdev, int resource) { struct pcidev_cookie *pcp = pdev->sysdata; struct pci_pbm_info *pbm = pcp->pbm; struct pci_controller_info *p = pbm->parent; struct resource *res; unsigned long base; u32 reg; int where, size, is_64bit; res = &pdev->resource[resource]; where = PCI_BASE_ADDRESS_0 + (resource * 4); is_64bit = 0; if (res->flags & IORESOURCE_IO) base = p->controller_regs + SABRE_IOSPACE; else { base = p->controller_regs + SABRE_MEMSPACE; if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) == PCI_BASE_ADDRESS_MEM_TYPE_64) is_64bit = 1; } size = res->end - res->start; pci_read_config_dword(pdev, where, ®); reg = ((reg & size) | (((u32)(res->start - base)) & ~size)); pci_write_config_dword(pdev, where, reg); /* This knows that the upper 32-bits of the address * must be zero. Our PCI common layer enforces this. */ if (is_64bit) pci_write_config_dword(pdev, where + 4, 0); } static void __init apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus) { struct list_head *walk = &sabre_bus->devices; for (walk = walk->next; walk != &sabre_bus->devices; walk = walk->next) { struct pci_dev *pdev = pci_dev_b(walk); if (pdev->vendor == PCI_VENDOR_ID_SUN && pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { u16 word; sabre_read_word(pdev, PCI_COMMAND, &word); word |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO; sabre_write_word(pdev, PCI_COMMAND, word); /* Status register bits are "write 1 to clear". */ sabre_write_word(pdev, PCI_STATUS, 0xffff); sabre_write_word(pdev, PCI_SEC_STATUS, 0xffff); /* Use a primary/seconday latency timer value * of 64. */ sabre_write_byte(pdev, PCI_LATENCY_TIMER, 64); sabre_write_byte(pdev, PCI_SEC_LATENCY_TIMER, 64); /* Enable reporting/forwarding of master aborts, * parity, and SERR. */ sabre_write_byte(pdev, PCI_BRIDGE_CONTROL, (PCI_BRIDGE_CTL_PARITY | PCI_BRIDGE_CTL_SERR | PCI_BRIDGE_CTL_MASTER_ABORT)); } } } static void __init sabre_scan_bus(struct pci_controller_info *p) { static int once = 0; struct pci_bus *sabre_bus; struct list_head *walk; /* The APB bridge speaks to the Sabre host PCI bridge * at 66Mhz, but the front side of APB runs at 33Mhz * for both segments. */ p->pbm_A.is_66mhz_capable = 0; p->pbm_B.is_66mhz_capable = 0; /* Unlike for PSYCHO, we can only have one SABRE * in a system. Having multiple SABREs is thus * and error, and as a consequence we do not need * to do any bus renumbering but we do have to have * the pci_bus2pbm array setup properly. * * Also note that the SABRE host bridge is hardwired * to live at bus 0. */ if (once != 0) { prom_printf("SABRE: Multiple controllers unsupported.\n"); prom_halt(); } once++; /* The pci_bus2pbm table has already been setup in sabre_init. */ sabre_bus = pci_scan_bus(p->pci_first_busno, p->pci_ops, &p->pbm_A); apb_init(p, sabre_bus); walk = &sabre_bus->children; for (walk = walk->next; walk != &sabre_bus->children; walk = walk->next) { struct pci_bus *pbus = pci_bus_b(walk); struct pci_pbm_info *pbm; if (pbus->number == p->pbm_A.pci_first_busno) { pbm = &p->pbm_A; } else if (pbus->number == p->pbm_B.pci_first_busno) { pbm = &p->pbm_B; } else continue; pbus->sysdata = pbm; pbm->pci_bus = pbus; pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node); pci_record_assignments(pbm, pbus); pci_assign_unassigned(pbm, pbus); pci_fixup_irq(pbm, pbus); pci_determine_66mhz_disposition(pbm, pbus); pci_setup_busmastering(pbm, pbus); } sabre_register_error_handlers(p); } static void __init sabre_iommu_init(struct pci_controller_info *p, int tsbsize, unsigned long dvma_offset, u32 dma_mask) { unsigned long tsbbase, i, order; u64 control; /* Setup initial software IOMMU state. */ spin_lock_init(&p->iommu.lock); p->iommu.iommu_cur_ctx = 0; /* Register addresses. */ p->iommu.iommu_control = p->controller_regs + SABRE_IOMMU_CONTROL; p->iommu.iommu_tsbbase = p->controller_regs + SABRE_IOMMU_TSBBASE; p->iommu.iommu_flush = p->controller_regs + SABRE_IOMMU_FLUSH; p->iommu.write_complete_reg = p->controller_regs + SABRE_WRSYNC; /* Sabre's IOMMU lacks ctx flushing. */ p->iommu.iommu_ctxflush = 0; /* Invalidate TLB Entries. */ control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL); control |= SABRE_IOMMUCTRL_DENAB; sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control); for(i = 0; i < 16; i++) { sabre_write(p->controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0); sabre_write(p->controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0); } /* Leave diag mode enabled for full-flushing done * in pci_iommu.c */ tsbbase = __get_free_pages(GFP_KERNEL, order = get_order(tsbsize * 1024 * 8)); if (!tsbbase) { prom_printf("SABRE_IOMMU: Error, gfp(tsb) failed.\n"); prom_halt(); } p->iommu.page_table = (iopte_t *)tsbbase; p->iommu.page_table_map_base = dvma_offset; p->iommu.dma_addr_mask = dma_mask; memset((char *)tsbbase, 0, PAGE_SIZE << order); sabre_write(p->controller_regs + SABRE_IOMMU_TSBBASE, __pa(tsbbase)); control = sabre_read(p->controller_regs + SABRE_IOMMU_CONTROL); control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ); control |= SABRE_IOMMUCTRL_ENAB; switch(tsbsize) { case 64: control |= SABRE_IOMMU_TSBSZ_64K; p->iommu.page_table_sz_bits = 16; break; case 128: control |= SABRE_IOMMU_TSBSZ_128K; p->iommu.page_table_sz_bits = 17; break; default: prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize); prom_halt(); break; } sabre_write(p->controller_regs + SABRE_IOMMU_CONTROL, control); /* We start with no consistent mappings. */ p->iommu.lowest_consistent_map = 1 << (p->iommu.page_table_sz_bits - PBM_LOGCLUSTERS); for (i = 0; i < PBM_NCLUSTERS; i++) { p->iommu.alloc_info[i].flush = 0; p->iommu.alloc_info[i].next = 0; } } static void __init pbm_register_toplevel_resources(struct pci_controller_info *p, struct pci_pbm_info *pbm) { char *name = pbm->name; unsigned long ibase = p->controller_regs + SABRE_IOSPACE; unsigned long mbase = p->controller_regs + SABRE_MEMSPACE; unsigned int devfn; unsigned long first, last, i; u8 *addr, map; sprintf(name, "SABRE%d PBM%c", p->index, (pbm == &p->pbm_A ? 'A' : 'B')); pbm->io_space.name = pbm->mem_space.name = name; devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1); addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP); map = 0; pci_config_read8(addr, &map); first = 8; last = 0; for (i = 0; i < 8; i++) { if ((map & (1 << i)) != 0) { if (first > i) first = i; if (last < i) last = i; } } pbm->io_space.start = ibase + (first << 21UL); pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1); pbm->io_space.flags = IORESOURCE_IO; addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP); map = 0; pci_config_read8(addr, &map); first = 8; last = 0; for (i = 0; i < 8; i++) { if ((map & (1 << i)) != 0) { if (first > i) first = i; if (last < i) last = i; } } pbm->mem_space.start = mbase + (first << 29UL); pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1); pbm->mem_space.flags = IORESOURCE_MEM; if (request_resource(&ioport_resource, &pbm->io_space) < 0) { prom_printf("Cannot register PBM-%c's IO space.\n", (pbm == &p->pbm_A ? 'A' : 'B')); prom_halt(); } if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { prom_printf("Cannot register PBM-%c's MEM space.\n", (pbm == &p->pbm_A ? 'A' : 'B')); prom_halt(); } } static void __init sabre_pbm_init(struct pci_controller_info *p, int sabre_node) { char namebuf[128]; u32 busrange[2]; int node; node = prom_getchild(sabre_node); while ((node = prom_searchsiblings(node, "pci")) != 0) { struct pci_pbm_info *pbm; int err; err = prom_getproperty(node, "model", namebuf, sizeof(namebuf)); if ((err <= 0) || strncmp(namebuf, "SUNW,simba", err)) goto next_pci; err = prom_getproperty(node, "bus-range", (char *)&busrange[0], sizeof(busrange)); if (err == 0 || err == -1) { prom_printf("APB: Error, cannot get PCI bus-range.\n"); prom_halt(); } if (busrange[0] == 1) pbm = &p->pbm_B; else pbm = &p->pbm_A; pbm->parent = p; pbm->prom_node = node; pbm->pci_first_busno = busrange[0]; pbm->pci_last_busno = busrange[1]; for (err = pbm->pci_first_busno; err <= pbm->pci_last_busno; err++) pci_bus2pbm[err] = pbm; prom_getstring(node, "name", pbm->prom_name, sizeof(pbm->prom_name)); err = prom_getproperty(node, "ranges", (char *)pbm->pbm_ranges, sizeof(pbm->pbm_ranges)); if (err != -1) pbm->num_pbm_ranges = (err / sizeof(struct linux_prom_pci_ranges)); else pbm->num_pbm_ranges = 0; err = prom_getproperty(node, "interrupt-map", (char *)pbm->pbm_intmap, sizeof(pbm->pbm_intmap)); if (err != -1) { pbm->num_pbm_intmap = (err / sizeof(struct linux_prom_pci_intmap)); err = prom_getproperty(node, "interrupt-map-mask", (char *)&pbm->pbm_intmask, sizeof(pbm->pbm_intmask)); if (err == -1) { prom_printf("APB: Fatal error, no interrupt-map-mask.\n"); prom_halt(); } } else { pbm->num_pbm_intmap = 0; memset(&pbm->pbm_intmask, 0, sizeof(pbm->pbm_intmask)); } pbm_register_toplevel_resources(p, pbm); next_pci: node = prom_getsibling(node); if (!node) break; } } void __init sabre_init(int pnode) { struct linux_prom64_registers pr_regs[2]; struct pci_controller_info *p; unsigned long flags; int tsbsize, err; u32 busrange[2]; u32 vdma[2]; u32 upa_portid, dma_mask; int bus; p = kmalloc(sizeof(*p), GFP_ATOMIC); if (!p) { prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n"); prom_halt(); } upa_portid = prom_getintdefault(pnode, "upa-portid", 0xff); memset(p, 0, sizeof(*p)); spin_lock_irqsave(&pci_controller_lock, flags); p->next = pci_controller_root; pci_controller_root = p; spin_unlock_irqrestore(&pci_controller_lock, flags); p->portid = upa_portid; p->index = pci_num_controllers++; p->scan_bus = sabre_scan_bus; p->irq_build = sabre_irq_build; p->base_address_update = sabre_base_address_update; p->resource_adjust = sabre_resource_adjust; p->pci_ops = &sabre_ops; /* * Map in SABRE register set and report the presence of this SABRE. */ err = prom_getproperty(pnode, "reg", (char *)&pr_regs[0], sizeof(pr_regs)); if(err == 0 || err == -1) { prom_printf("SABRE: Error, cannot get U2P registers " "from PROM.\n"); prom_halt(); } /* * First REG in property is base of entire SABRE register space. */ p->controller_regs = pr_regs[0].phys_addr; pci_dma_wsync = p->controller_regs + SABRE_WRSYNC; printk("PCI: Found SABRE, main regs at %016lx, wsync at %016lx\n", p->controller_regs, pci_dma_wsync); /* Error interrupts are enabled later after the bus scan. */ sabre_write(p->controller_regs + SABRE_PCICTRL, (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR | SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN)); /* Now map in PCI config space for entire SABRE. */ p->config_space = p->controller_regs + SABRE_CONFIGSPACE; printk("SABRE: PCI config space at %016lx\n", p->config_space); err = prom_getproperty(pnode, "virtual-dma", (char *)&vdma[0], sizeof(vdma)); if(err == 0 || err == -1) { prom_printf("SABRE: Error, cannot get virtual-dma property " "from PROM.\n"); prom_halt(); } dma_mask = vdma[0]; switch(vdma[1]) { case 0x20000000: dma_mask |= 0x1fffffff; tsbsize = 64; break; case 0x40000000: dma_mask |= 0x3fffffff; tsbsize = 128; break; case 0x80000000: dma_mask |= 0x7fffffff; tsbsize = 128; break; default: prom_printf("SABRE: strange virtual-dma size.\n"); prom_halt(); } sabre_iommu_init(p, tsbsize, vdma[0], dma_mask); printk("SABRE: DVMA at %08x [%08x]\n", vdma[0], vdma[1]); err = prom_getproperty(pnode, "bus-range", (char *)&busrange[0], sizeof(busrange)); if(err == 0 || err == -1) { prom_printf("SABRE: Error, cannot get PCI bus-range " " from PROM.\n"); prom_halt(); } p->pci_first_busno = busrange[0]; p->pci_last_busno = busrange[1]; /* * Handle config space reads through any Simba on APB. */ for (bus = p->pci_first_busno; bus <= p->pci_last_busno; bus++) pci_bus2pbm[bus] = &p->pbm_A; /* * Look for APB underneath. */ sabre_pbm_init(p, pnode); }