/* $Id: sbus.c,v 1.6 1999/12/20 14:08:17 jj Exp $ * sbus.c: UltraSparc SBUS controller support. * * Copyright (C) 1999 David S. Miller (davem@redhat.com) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "iommu_common.h" /* These should be allocated on an SMP_CACHE_BYTES * aligned boundry for optimal performance. * * On SYSIO, using an 8K page size we have 1GB of SBUS * DMA space mapped. We divide this space into equally * sized clusters. Currently we allow clusters up to a * size of 1MB. If anything begins to generate DMA * mapping requests larger than this we will need to * increase things a bit. */ #define NCLUSTERS 8UL #define ONE_GIG (1UL * 1024UL * 1024UL * 1024UL) #define CLUSTER_SIZE (ONE_GIG / NCLUSTERS) #define CLUSTER_MASK (CLUSTER_SIZE - 1) #define CLUSTER_NPAGES (CLUSTER_SIZE >> PAGE_SHIFT) #define MAP_BASE ((u32)0xc0000000) struct sbus_iommu { /*0x00*/spinlock_t lock; /*0x08*/iopte_t *page_table; /*0x10*/unsigned long strbuf_regs; /*0x18*/unsigned long iommu_regs; /*0x20*/unsigned long sbus_control_reg; /*0x28*/volatile unsigned long strbuf_flushflag; /* If NCLUSTERS is ever decresed to 4 or lower, * you must increase the size of the type of * these counters. You have been duly warned. -DaveM */ /*0x30*/u16 lowest_free[NCLUSTERS]; }; /* Flushing heuristics */ #define IOMMU_DIAG_LIM 16 #define STRBUF_DIAG_LIM 32 /* Offsets from iommu_regs */ #define SYSIO_IOMMUREG_BASE 0x2400UL #define IOMMU_CONTROL (0x2400UL - 0x2400UL) /* IOMMU control register */ #define IOMMU_TSBBASE (0x2408UL - 0x2400UL) /* TSB base address register */ #define IOMMU_FLUSH (0x2410UL - 0x2400UL) /* IOMMU flush register */ #define IOMMU_VADIAG (0x4400UL - 0x2400UL) /* SBUS virtual address diagnostic */ #define IOMMU_TAGCMP (0x4408UL - 0x2400UL) /* TLB tag compare diagnostics */ #define IOMMU_LRUDIAG (0x4500UL - 0x2400UL) /* IOMMU LRU queue diagnostics */ #define IOMMU_TAGDIAG (0x4580UL - 0x2400UL) /* TLB tag diagnostics */ #define IOMMU_DRAMDIAG (0x4600UL - 0x2400UL) /* TLB data RAM diagnostics */ #define IOMMU_DRAM_VALID (1UL << 30UL) static void __iommu_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages) { int hit = 0; if (npages <= IOMMU_DIAG_LIM) { while (npages--) upa_writeq(base + (npages << PAGE_SHIFT), iommu->iommu_regs + IOMMU_FLUSH); hit = 1; } else { u32 limit = base + ((npages << PAGE_SHIFT) - 1UL); unsigned long dram = iommu->iommu_regs + IOMMU_DRAMDIAG; unsigned long tag = iommu->iommu_regs + IOMMU_TAGDIAG; int entry; for (entry = 0; entry < 16; entry++, dram += 8, tag += 8) { u32 addr = ((u32)upa_readq(tag) << PAGE_SHIFT); if (addr >= base && addr <= limit) { u64 val = upa_readq(dram); if (val & IOMMU_DRAM_VALID) { upa_writeq(addr, iommu->iommu_regs + IOMMU_FLUSH); hit = 1; } } } } if (hit != 0) upa_readq(iommu->sbus_control_reg); } /* In an effort to keep latency under control, we special * case single page IOMMU flushes. */ static __inline__ void iommu_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages) { if (npages == 1) { upa_writeq(base, iommu->iommu_regs + IOMMU_FLUSH); upa_readq(iommu->sbus_control_reg); } else __iommu_flush(iommu, base, npages); } /* Offsets from strbuf_regs */ #define SYSIO_STRBUFREG_BASE 0x2800UL #define STRBUF_CONTROL (0x2800UL - 0x2800UL) /* Control */ #define STRBUF_PFLUSH (0x2808UL - 0x2800UL) /* Page flush/invalidate */ #define STRBUF_FSYNC (0x2810UL - 0x2800UL) /* Flush synchronization */ #define STRBUF_DRAMDIAG (0x5000UL - 0x2800UL) /* data RAM diagnostic */ #define STRBUF_ERRDIAG (0x5400UL - 0x2800UL) /* error status diagnostics */ #define STRBUF_PTAGDIAG (0x5800UL - 0x2800UL) /* Page tag diagnostics */ #define STRBUF_LTAGDIAG (0x5900UL - 0x2800UL) /* Line tag diagnostics */ #define STRBUF_TAG_VALID 0x02UL static void strbuf_flush(struct sbus_iommu *iommu, u32 base, unsigned long npages) { int hit = 0; iommu->strbuf_flushflag = 0UL; if (npages <= STRBUF_DIAG_LIM) { while (npages--) upa_writeq(base + (npages << PAGE_SHIFT), iommu->strbuf_regs + STRBUF_PFLUSH); hit = 1; } else { u32 limit = base + ((npages << PAGE_SHIFT) - 1UL); unsigned long tag = iommu->strbuf_regs + STRBUF_PTAGDIAG; int entry; for (entry = 0; entry < 16; entry++, tag += 8) { u64 val = upa_readq(tag); if (val & STRBUF_TAG_VALID) { u32 addr = ((u32)(val & ~3UL)) << (PAGE_SHIFT - 2UL); if (addr >= base && addr <= limit) { upa_writeq(addr, iommu->strbuf_regs + STRBUF_PFLUSH); hit = 1; } } } } if (hit != 0) { /* Whoopee cushion! */ upa_writeq(__pa(&iommu->strbuf_flushflag), iommu->strbuf_regs + STRBUF_FSYNC); upa_readq(iommu->sbus_control_reg); while (iommu->strbuf_flushflag == 0UL) membar("#LoadLoad"); } } static iopte_t *alloc_streaming_cluster(struct sbus_iommu *iommu, unsigned long npages) { iopte_t *iopte; unsigned long cnum, ent; cnum = 0; while ((1UL << cnum) < npages) cnum++; iopte = iommu->page_table + (cnum * CLUSTER_NPAGES); iopte += ((ent = iommu->lowest_free[cnum]) << cnum); if (iopte_val(iopte[(1UL << cnum)]) == 0UL) { /* Fast path. */ iommu->lowest_free[cnum] = ent + 1; } else { unsigned long pte_off = 1; ent += 1; do { pte_off++; ent++; } while (iopte_val(iopte[(pte_off << cnum)]) != 0UL); iommu->lowest_free[cnum] = ent; } /* I've got your streaming cluster right here buddy boy... */ return iopte; } static void free_streaming_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages) { unsigned long cnum, ent; iopte_t *iopte; cnum = 0; while ((1UL << cnum) < npages) cnum++; ent = (base & CLUSTER_MASK) >> (PAGE_SHIFT + cnum); iopte = iommu->page_table + ((base - MAP_BASE) >> PAGE_SHIFT); iopte_val(*iopte) = 0UL; if (ent < iommu->lowest_free[cnum]) iommu->lowest_free[cnum] = ent; } /* We allocate consistant mappings from the end of cluster zero. */ static iopte_t *alloc_consistant_cluster(struct sbus_iommu *iommu, unsigned long npages) { iopte_t *iopte; iopte = iommu->page_table + (1 * CLUSTER_NPAGES); while (iopte > iommu->page_table) { iopte--; if (!(iopte_val(*iopte) & IOPTE_VALID)) { unsigned long tmp = npages; while (--tmp) { iopte--; if (iopte_val(*iopte) & IOPTE_VALID) break; } if (tmp == 0) return iopte; } } return NULL; } static void free_consistant_cluster(struct sbus_iommu *iommu, u32 base, unsigned long npages) { iopte_t *iopte = iommu->page_table + ((base - MAP_BASE) >> PAGE_SHIFT); while (npages--) *iopte++ = __iopte(0UL); } void *sbus_alloc_consistant(struct sbus_dev *sdev, long size, u32 *dvma_addr) { unsigned long order, first_page, flags; struct sbus_iommu *iommu; iopte_t *iopte; void *ret; int npages; if (size <= 0 || sdev == NULL || dvma_addr == NULL) return NULL; size = PAGE_ALIGN(size); for (order = 0; order < 10; order++) { if ((PAGE_SIZE << order) >= size) break; } if (order == 10) return NULL; first_page = __get_free_pages(GFP_KERNEL, order); if (first_page == 0UL) return NULL; memset((char *)first_page, 0, PAGE_SIZE << order); iommu = sdev->bus->iommu; spin_lock_irqsave(&iommu->lock, flags); iopte = alloc_consistant_cluster(iommu, size >> PAGE_SHIFT); if (iopte == NULL) { spin_unlock_irqrestore(&iommu->lock, flags); free_pages(first_page, order); return NULL; } /* Ok, we're committed at this point. */ *dvma_addr = MAP_BASE + ((iopte - iommu->page_table) << PAGE_SHIFT); ret = (void *) first_page; npages = size >> PAGE_SHIFT; while (npages--) { *iopte++ = __iopte(IOPTE_VALID | IOPTE_CACHE | IOPTE_WRITE | (__pa(first_page) & IOPTE_PAGE)); first_page += PAGE_SIZE; } iommu_flush(iommu, *dvma_addr, size >> PAGE_SHIFT); spin_unlock_irqrestore(&iommu->lock, flags); return ret; } void sbus_free_consistant(struct sbus_dev *sdev, long size, void *cpu, u32 dvma) { unsigned long order, npages; struct sbus_iommu *iommu; if (size <= 0 || sdev == NULL || cpu == NULL) return; npages = PAGE_ALIGN(size) >> PAGE_SHIFT; iommu = sdev->bus->iommu; spin_lock_irq(&iommu->lock); free_consistant_cluster(iommu, dvma, npages); spin_unlock_irq(&iommu->lock); for (order = 0; order < 10; order++) { if ((PAGE_SIZE << order) >= size) break; } if (order < 10) free_pages((unsigned long)cpu, order); } u32 sbus_map_single(struct sbus_dev *sdev, void *ptr, long size) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long npages, phys_base, flags; iopte_t *iopte; u32 dma_base, offset; phys_base = (unsigned long) ptr; offset = (u32) (phys_base & ~PAGE_MASK); size = (PAGE_ALIGN(phys_base + size) - (phys_base & PAGE_MASK)); phys_base = (unsigned long) __pa(phys_base & PAGE_MASK); spin_lock_irqsave(&iommu->lock, flags); npages = size >> PAGE_SHIFT; iopte = alloc_streaming_cluster(iommu, npages); dma_base = MAP_BASE + ((iopte - iommu->page_table) << PAGE_SHIFT); npages = size >> PAGE_SHIFT; while (npages--) { *iopte++ = __iopte(IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE | IOPTE_WRITE | (phys_base & IOPTE_PAGE)); phys_base += PAGE_SIZE; } npages = size >> PAGE_SHIFT; iommu_flush(iommu, dma_base, npages); spin_unlock_irqrestore(&iommu->lock, flags); return (dma_base | offset); } void sbus_unmap_single(struct sbus_dev *sdev, u32 dma_addr, long size) { struct sbus_iommu *iommu = sdev->bus->iommu; u32 dma_base = dma_addr & PAGE_MASK; unsigned long flags; size = (PAGE_ALIGN(dma_addr + size) - dma_base); spin_lock_irqsave(&iommu->lock, flags); free_streaming_cluster(iommu, dma_base, size >> PAGE_SHIFT); strbuf_flush(iommu, dma_base, size >> PAGE_SHIFT); spin_unlock_irqrestore(&iommu->lock, flags); } static inline void fill_sg(iopte_t *iopte, struct scatterlist *sg, int nents) { struct scatterlist *dma_sg = sg; do { unsigned long pteval = ~0UL; u32 dma_npages; dma_npages = ((dma_sg->dvma_address & (PAGE_SIZE - 1UL)) + dma_sg->dvma_length + ((u32)(PAGE_SIZE - 1UL))) >> PAGE_SHIFT; do { unsigned long offset; signed int len; /* If we are here, we know we have at least one * more page to map. So walk forward until we * hit a page crossing, and begin creating new * mappings from that spot. */ for (;;) { unsigned long tmp; tmp = (unsigned long) __pa(sg->address); len = sg->length; if (((tmp ^ pteval) >> PAGE_SHIFT) != 0UL) { pteval = tmp & PAGE_MASK; offset = tmp & (PAGE_SIZE - 1UL); break; } if (((tmp ^ (tmp + len - 1UL)) >> PAGE_SHIFT) != 0UL) { pteval = (tmp + PAGE_SIZE) & PAGE_MASK; offset = 0UL; len -= (PAGE_SIZE - (tmp & (PAGE_SIZE - 1UL))); break; } sg++; } pteval = ((pteval & IOPTE_PAGE) | IOPTE_VALID | IOPTE_STBUF | IOPTE_CACHE | IOPTE_WRITE); while (len > 0) { *iopte++ = __iopte(pteval); pteval += PAGE_SIZE; len -= (PAGE_SIZE - offset); offset = 0; dma_npages--; } pteval = (pteval & IOPTE_PAGE) + len; sg++; /* Skip over any tail mappings we've fully mapped, * adjusting pteval along the way. Stop when we * detect a page crossing event. */ while ((pteval << (64 - PAGE_SHIFT)) != 0UL && pteval == __pa(sg->address) && ((pteval ^ (__pa(sg->address) + sg->length - 1UL)) >> PAGE_SHIFT) == 0UL) { pteval += sg->length; sg++; } if ((pteval << (64 - PAGE_SHIFT)) == 0UL) pteval = ~0UL; } while (dma_npages != 0); dma_sg++; } while (dma_sg->dvma_length != 0); } int sbus_map_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long flags, npages; iopte_t *iopte; u32 dma_base; struct scatterlist *sgtmp; int unused; /* Fast path single entry scatterlists. */ if (nents == 1) { sg->dvma_address = sbus_map_single(sdev, sg->address, sg->length); sg->dvma_length = sg->length; return 1; } npages = prepare_sg(sg, nents); spin_lock_irqsave(&iommu->lock, flags); iopte = alloc_streaming_cluster(iommu, npages); dma_base = MAP_BASE + ((iopte - iommu->page_table) << PAGE_SHIFT); /* Normalize DVMA addresses. */ sgtmp = sg; unused = nents; while (unused && sgtmp->dvma_length) { sgtmp->dvma_address += dma_base; sgtmp++; unused--; } fill_sg(iopte, sg, nents); #ifdef VERIFY_SG verify_sglist(sg, nents, iopte, npages); #endif iommu_flush(iommu, dma_base, npages); spin_unlock_irqrestore(&iommu->lock, flags); return nents - unused; } void sbus_unmap_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents) { unsigned long size, flags; struct sbus_iommu *iommu; u32 dvma_base; int i; /* Fast path single entry scatterlists. */ if (nents == 1) { sbus_unmap_single(sdev, sg->dvma_address, sg->dvma_length); return; } dvma_base = sg[0].dvma_address & PAGE_MASK; for (i = 0; i < nents; i++) { if (sg[i].dvma_length == 0) break; } i--; size = PAGE_ALIGN(sg[i].dvma_address + sg[i].dvma_length) - dvma_base; iommu = sdev->bus->iommu; spin_lock_irqsave(&iommu->lock, flags); free_streaming_cluster(iommu, dvma_base, size >> PAGE_SHIFT); strbuf_flush(iommu, dvma_base, size >> PAGE_SHIFT); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_single(struct sbus_dev *sdev, u32 base, long size) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long flags; size = (PAGE_ALIGN(base + size) - (base & PAGE_MASK)); spin_lock_irqsave(&iommu->lock, flags); strbuf_flush(iommu, base & PAGE_MASK, size >> PAGE_SHIFT); spin_unlock_irqrestore(&iommu->lock, flags); } void sbus_dma_sync_sg(struct sbus_dev *sdev, struct scatterlist *sg, int nents) { struct sbus_iommu *iommu = sdev->bus->iommu; unsigned long flags, size; u32 base; int i; base = sg[0].dvma_address & PAGE_MASK; for (i = 0; i < nents; i++) { if (sg[i].dvma_length == 0) break; } i--; size = PAGE_ALIGN(sg[i].dvma_address + sg[i].dvma_length) - base; spin_lock_irqsave(&iommu->lock, flags); strbuf_flush(iommu, base, size >> PAGE_SHIFT); spin_unlock_irqrestore(&iommu->lock, flags); } /* Enable 64-bit DVMA mode for the given device. */ void sbus_set_sbus64(struct sbus_dev *sdev, int bursts) { struct sbus_iommu *iommu = sdev->bus->iommu; int slot = sdev->slot; unsigned long cfg_reg; u64 val; cfg_reg = iommu->sbus_control_reg; switch (slot) { case 0: cfg_reg += 0x20UL; break; case 1: cfg_reg += 0x28UL; break; case 2: cfg_reg += 0x30UL; break; case 3: cfg_reg += 0x38UL; break; case 13: cfg_reg += 0x40UL; break; case 14: cfg_reg += 0x48UL; break; case 15: cfg_reg += 0x50UL; break; default: return; }; val = upa_readq(cfg_reg); if (val & (1UL << 14UL)) { /* Extended transfer mode already enabled. */ return; } val |= (1UL << 14UL); if (bursts & DMA_BURST8) val |= (1UL << 1UL); if (bursts & DMA_BURST16) val |= (1UL << 2UL); if (bursts & DMA_BURST32) val |= (1UL << 3UL); if (bursts & DMA_BURST64) val |= (1UL << 4UL); upa_writeq(val, cfg_reg); } /* SBUS SYSIO INO number to Sparc PIL level. */ static unsigned char sysio_ino_to_pil[] = { 0, 1, 2, 7, 5, 7, 8, 9, /* SBUS slot 0 */ 0, 1, 2, 7, 5, 7, 8, 9, /* SBUS slot 1 */ 0, 1, 2, 7, 5, 7, 8, 9, /* SBUS slot 2 */ 0, 1, 2, 7, 5, 7, 8, 9, /* SBUS slot 3 */ 3, /* Onboard SCSI */ 5, /* Onboard Ethernet */ /*XXX*/ 8, /* Onboard BPP */ 0, /* Bogon */ 13, /* Audio */ /*XXX*/15, /* PowerFail */ 0, /* Bogon */ 0, /* Bogon */ 12, /* Zilog Serial Channels (incl. Keyboard/Mouse lines) */ 11, /* Floppy */ 0, /* Spare Hardware (bogon for now) */ 0, /* Keyboard (bogon for now) */ 0, /* Mouse (bogon for now) */ 0, /* Serial (bogon for now) */ 0, 0, /* Bogon, Bogon */ 10, /* Timer 0 */ 11, /* Timer 1 */ 0, 0, /* Bogon, Bogon */ 15, /* Uncorrectable SBUS Error */ 15, /* Correctable SBUS Error */ 15, /* SBUS Error */ /*XXX*/ 0, /* Power Management (bogon for now) */ }; /* INO number to IMAP register offset for SYSIO external IRQ's. * This should conform to both Sunfire/Wildfire server and Fusion * desktop designs. */ #define SYSIO_IMAP_SLOT0 0x2c04UL #define SYSIO_IMAP_SLOT1 0x2c0cUL #define SYSIO_IMAP_SLOT2 0x2c14UL #define SYSIO_IMAP_SLOT3 0x2c1cUL #define SYSIO_IMAP_SCSI 0x3004UL #define SYSIO_IMAP_ETH 0x300cUL #define SYSIO_IMAP_BPP 0x3014UL #define SYSIO_IMAP_AUDIO 0x301cUL #define SYSIO_IMAP_PFAIL 0x3024UL #define SYSIO_IMAP_KMS 0x302cUL #define SYSIO_IMAP_FLPY 0x3034UL #define SYSIO_IMAP_SHW 0x303cUL #define SYSIO_IMAP_KBD 0x3044UL #define SYSIO_IMAP_MS 0x304cUL #define SYSIO_IMAP_SER 0x3054UL #define SYSIO_IMAP_TIM0 0x3064UL #define SYSIO_IMAP_TIM1 0x306cUL #define SYSIO_IMAP_UE 0x3074UL #define SYSIO_IMAP_CE 0x307cUL #define SYSIO_IMAP_SBERR 0x3084UL #define SYSIO_IMAP_PMGMT 0x308cUL #define SYSIO_IMAP_GFX 0x3094UL #define SYSIO_IMAP_EUPA 0x309cUL #define bogon ((unsigned long) -1) static unsigned long sysio_irq_offsets[] = { /* SBUS Slot 0 --> 3, level 1 --> 7 */ SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT0, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT1, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT2, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, SYSIO_IMAP_SLOT3, /* Onboard devices (not relevant/used on SunFire). */ SYSIO_IMAP_SCSI, SYSIO_IMAP_ETH, SYSIO_IMAP_BPP, bogon, SYSIO_IMAP_AUDIO, SYSIO_IMAP_PFAIL, bogon, bogon, SYSIO_IMAP_KMS, SYSIO_IMAP_FLPY, SYSIO_IMAP_SHW, SYSIO_IMAP_KBD, SYSIO_IMAP_MS, SYSIO_IMAP_SER, bogon, bogon, SYSIO_IMAP_TIM0, SYSIO_IMAP_TIM1, bogon, bogon, SYSIO_IMAP_UE, SYSIO_IMAP_CE, SYSIO_IMAP_SBERR, SYSIO_IMAP_PMGMT, }; #undef bogon #define NUM_SYSIO_OFFSETS (sizeof(sysio_irq_offsets) / sizeof(sysio_irq_offsets[0])) /* Convert Interrupt Mapping register pointer to assosciated * Interrupt Clear register pointer, SYSIO specific version. */ #define SYSIO_ICLR_UNUSED0 0x3400UL #define SYSIO_ICLR_SLOT0 0x340cUL #define SYSIO_ICLR_SLOT1 0x344cUL #define SYSIO_ICLR_SLOT2 0x348cUL #define SYSIO_ICLR_SLOT3 0x34ccUL static unsigned long sysio_imap_to_iclr(unsigned long imap) { unsigned long diff = SYSIO_ICLR_UNUSED0 - SYSIO_IMAP_SLOT0; return imap + diff; } unsigned int sbus_build_irq(void *buscookie, unsigned int ino) { struct sbus_bus *sbus = (struct sbus_bus *)buscookie; struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned long imap, iclr; int pil, sbus_level = 0; pil = sysio_ino_to_pil[ino]; if (!pil) { printk("sbus_irq_build: Bad SYSIO INO[%x]\n", ino); panic("Bad SYSIO IRQ translations..."); } imap = sysio_irq_offsets[ino]; if (imap == ((unsigned long)-1)) { prom_printf("get_irq_translations: Bad SYSIO INO[%x] cpu[%d]\n", ino, pil); prom_halt(); } imap += reg_base; /* SYSIO inconsistancy. For external SLOTS, we have to select * the right ICLR register based upon the lower SBUS irq level * bits. */ if (ino >= 0x20) { iclr = sysio_imap_to_iclr(imap); } else { int sbus_slot = (ino & 0x18)>>3; sbus_level = ino & 0x7; switch(sbus_slot) { case 0: iclr = reg_base + SYSIO_ICLR_SLOT0; break; case 1: iclr = reg_base + SYSIO_ICLR_SLOT1; break; case 2: iclr = reg_base + SYSIO_ICLR_SLOT2; break; default: case 3: iclr = reg_base + SYSIO_ICLR_SLOT3; break; }; iclr += ((unsigned long)sbus_level - 1UL) * 8UL; } return build_irq(pil, sbus_level, iclr, imap); } /* Error interrupt handling. */ #define SYSIO_UE_AFSR 0x0030UL #define SYSIO_UE_AFAR 0x0038UL #define SYSIO_UEAFSR_PPIO 0x8000000000000000 /* Primary PIO is cause */ #define SYSIO_UEAFSR_PDRD 0x4000000000000000 /* Primary DVMA read is cause */ #define SYSIO_UEAFSR_PDWR 0x2000000000000000 /* Primary DVMA write is cause */ #define SYSIO_UEAFSR_SPIO 0x1000000000000000 /* Secondary PIO is cause */ #define SYSIO_UEAFSR_SDRD 0x0800000000000000 /* Secondary DVMA read is cause */ #define SYSIO_UEAFSR_SDWR 0x0400000000000000 /* Secondary DVMA write is cause*/ #define SYSIO_UEAFSR_RESV1 0x03ff000000000000 /* Reserved */ #define SYSIO_UEAFSR_DOFF 0x0000e00000000000 /* Doubleword Offset */ #define SYSIO_UEAFSR_SIZE 0x00001c0000000000 /* Bad transfer size is 2**SIZE */ #define SYSIO_UEAFSR_MID 0x000003e000000000 /* UPA MID causing the fault */ #define SYSIO_UEAFSR_RESV2 0x0000001fffffffff /* Reserved */ static void sysio_ue_handler(int irq, void *dev_id, struct pt_regs *regs) { struct sbus_bus *sbus = dev_id; struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = reg_base + SYSIO_UE_AFSR; afar_reg = reg_base + SYSIO_UE_AFAR; /* Latch error status. */ afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_UEAFSR_PPIO | SYSIO_UEAFSR_PDRD | SYSIO_UEAFSR_PDWR | SYSIO_UEAFSR_SPIO | SYSIO_UEAFSR_SDRD | SYSIO_UEAFSR_SDWR); upa_writeq(error_bits, afsr_reg); /* Log the error. */ printk("SYSIO[%x]: Uncorrectable ECC Error, primary error type[%s]\n", sbus->portid, (((error_bits & SYSIO_UEAFSR_PPIO) ? "PIO" : ((error_bits & SYSIO_UEAFSR_PDRD) ? "DVMA Read" : ((error_bits & SYSIO_UEAFSR_PDWR) ? "DVMA Write" : "???"))))); printk("SYSIO[%x]: DOFF[%lx] SIZE[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_UEAFSR_DOFF) >> 45UL, (afsr & SYSIO_UEAFSR_SIZE) >> 42UL, (afsr & SYSIO_UEAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary UE errors [", sbus->portid); reported = 0; if (afsr & SYSIO_UEAFSR_SPIO) { reported++; printk("(PIO)"); } if (afsr & SYSIO_UEAFSR_SDRD) { reported++; printk("(DVMA Read)"); } if (afsr & SYSIO_UEAFSR_SDWR) { reported++; printk("(DVMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); } #define SYSIO_CE_AFSR 0x0040UL #define SYSIO_CE_AFAR 0x0048UL #define SYSIO_CEAFSR_PPIO 0x8000000000000000 /* Primary PIO is cause */ #define SYSIO_CEAFSR_PDRD 0x4000000000000000 /* Primary DVMA read is cause */ #define SYSIO_CEAFSR_PDWR 0x2000000000000000 /* Primary DVMA write is cause */ #define SYSIO_CEAFSR_SPIO 0x1000000000000000 /* Secondary PIO is cause */ #define SYSIO_CEAFSR_SDRD 0x0800000000000000 /* Secondary DVMA read is cause */ #define SYSIO_CEAFSR_SDWR 0x0400000000000000 /* Secondary DVMA write is cause*/ #define SYSIO_CEAFSR_RESV1 0x0300000000000000 /* Reserved */ #define SYSIO_CEAFSR_ESYND 0x00ff000000000000 /* Syndrome Bits */ #define SYSIO_CEAFSR_DOFF 0x0000e00000000000 /* Double Offset */ #define SYSIO_CEAFSR_SIZE 0x00001c0000000000 /* Bad transfer size is 2**SIZE */ #define SYSIO_CEAFSR_MID 0x000003e000000000 /* UPA MID causing the fault */ #define SYSIO_CEAFSR_RESV2 0x0000001fffffffff /* Reserved */ static void sysio_ce_handler(int irq, void *dev_id, struct pt_regs *regs) { struct sbus_bus *sbus = dev_id; struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned long afsr_reg, afar_reg; unsigned long afsr, afar, error_bits; int reported; afsr_reg = reg_base + SYSIO_CE_AFSR; afar_reg = reg_base + SYSIO_CE_AFAR; /* Latch error status. */ afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_CEAFSR_PPIO | SYSIO_CEAFSR_PDRD | SYSIO_CEAFSR_PDWR | SYSIO_CEAFSR_SPIO | SYSIO_CEAFSR_SDRD | SYSIO_CEAFSR_SDWR); upa_writeq(error_bits, afsr_reg); printk("SYSIO[%x]: Correctable ECC Error, primary error type[%s]\n", sbus->portid, (((error_bits & SYSIO_CEAFSR_PPIO) ? "PIO" : ((error_bits & SYSIO_CEAFSR_PDRD) ? "DVMA Read" : ((error_bits & SYSIO_CEAFSR_PDWR) ? "DVMA Write" : "???"))))); /* XXX Use syndrome and afar to print out module string just like * XXX UDB CE trap handler does... -DaveM */ printk("SYSIO[%x]: DOFF[%lx] ECC Syndrome[%lx] Size[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_CEAFSR_DOFF) >> 45UL, (afsr & SYSIO_CEAFSR_ESYND) >> 48UL, (afsr & SYSIO_CEAFSR_SIZE) >> 42UL, (afsr & SYSIO_CEAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary CE errors [", sbus->portid); reported = 0; if (afsr & SYSIO_CEAFSR_SPIO) { reported++; printk("(PIO)"); } if (afsr & SYSIO_CEAFSR_SDRD) { reported++; printk("(DVMA Read)"); } if (afsr & SYSIO_CEAFSR_SDWR) { reported++; printk("(DVMA Write)"); } if (!reported) printk("(none)"); printk("]\n"); } #define SYSIO_SBUS_AFSR 0x2010UL #define SYSIO_SBUS_AFAR 0x2018UL #define SYSIO_SBAFSR_PLE 0x8000000000000000 /* Primary Late PIO Error */ #define SYSIO_SBAFSR_PTO 0x4000000000000000 /* Primary SBUS Timeout */ #define SYSIO_SBAFSR_PBERR 0x2000000000000000 /* Primary SBUS Error ACK */ #define SYSIO_SBAFSR_SLE 0x1000000000000000 /* Secondary Late PIO Error */ #define SYSIO_SBAFSR_STO 0x0800000000000000 /* Secondary SBUS Timeout */ #define SYSIO_SBAFSR_SBERR 0x0400000000000000 /* Secondary SBUS Error ACK */ #define SYSIO_SBAFSR_RESV1 0x03ff000000000000 /* Reserved */ #define SYSIO_SBAFSR_RD 0x0000800000000000 /* Primary was late PIO read */ #define SYSIO_SBAFSR_RESV2 0x0000600000000000 /* Reserved */ #define SYSIO_SBAFSR_SIZE 0x00001c0000000000 /* Size of transfer */ #define SYSIO_SBAFSR_MID 0x000003e000000000 /* MID causing the error */ #define SYSIO_SBAFSR_RESV3 0x0000001fffffffff /* Reserved */ static void sysio_sbus_error_handler(int irq, void *dev_id, struct pt_regs *regs) { struct sbus_bus *sbus = dev_id; struct sbus_iommu *iommu = sbus->iommu; unsigned long afsr_reg, afar_reg, reg_base; unsigned long afsr, afar, error_bits; int reported; reg_base = iommu->sbus_control_reg - 0x2000UL; afsr_reg = reg_base + SYSIO_SBUS_AFSR; afar_reg = reg_base + SYSIO_SBUS_AFAR; afsr = upa_readq(afsr_reg); afar = upa_readq(afar_reg); /* Clear primary/secondary error status bits. */ error_bits = afsr & (SYSIO_SBAFSR_PLE | SYSIO_SBAFSR_PTO | SYSIO_SBAFSR_PBERR | SYSIO_SBAFSR_SLE | SYSIO_SBAFSR_STO | SYSIO_SBAFSR_SBERR); upa_writeq(error_bits, afsr_reg); /* Log the error. */ printk("SYSIO[%x]: SBUS Error, primary error type[%s] read(%d)\n", sbus->portid, (((error_bits & SYSIO_SBAFSR_PLE) ? "Late PIO Error" : ((error_bits & SYSIO_SBAFSR_PTO) ? "Time Out" : ((error_bits & SYSIO_SBAFSR_PBERR) ? "Error Ack" : "???")))), (afsr & SYSIO_SBAFSR_RD) ? 1 : 0); printk("SYSIO[%x]: size[%lx] MID[%lx]\n", sbus->portid, (afsr & SYSIO_SBAFSR_SIZE) >> 42UL, (afsr & SYSIO_SBAFSR_MID) >> 37UL); printk("SYSIO[%x]: AFAR[%016lx]\n", sbus->portid, afar); printk("SYSIO[%x]: Secondary SBUS errors [", sbus->portid); reported = 0; if (afsr & SYSIO_SBAFSR_SLE) { reported++; printk("(Late PIO Error)"); } if (afsr & SYSIO_SBAFSR_STO) { reported++; printk("(Time Out)"); } if (afsr & SYSIO_SBAFSR_SBERR) { reported++; printk("(Error Ack)"); } if (!reported) printk("(none)"); printk("]\n"); /* XXX check iommu/strbuf for further error status XXX */ } #define ECC_CONTROL 0x0020UL #define SYSIO_ECNTRL_ECCEN 0x8000000000000000 /* Enable ECC Checking */ #define SYSIO_ECNTRL_UEEN 0x4000000000000000 /* Enable UE Interrupts */ #define SYSIO_ECNTRL_CEEN 0x2000000000000000 /* Enable CE Interrupts */ #define SYSIO_UE_INO 0x34 #define SYSIO_CE_INO 0x35 #define SYSIO_SBUSERR_INO 0x36 static void __init sysio_register_error_handlers(struct sbus_bus *sbus) { struct sbus_iommu *iommu = sbus->iommu; unsigned long reg_base = iommu->sbus_control_reg - 0x2000UL; unsigned int irq; u64 control; irq = sbus_build_irq(sbus, SYSIO_UE_INO); if (request_irq(irq, sysio_ue_handler, SA_SHIRQ, "SYSIO UE", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register UE interrupt.\n", sbus->portid); prom_halt(); } irq = sbus_build_irq(sbus, SYSIO_CE_INO); if (request_irq(irq, sysio_ce_handler, SA_SHIRQ, "SYSIO CE", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register CE interrupt.\n", sbus->portid); prom_halt(); } irq = sbus_build_irq(sbus, SYSIO_SBUSERR_INO); if (request_irq(irq, sysio_sbus_error_handler, SA_SHIRQ, "SYSIO SBUS Error", sbus) < 0) { prom_printf("SYSIO[%x]: Cannot register SBUS Error interrupt.\n", sbus->portid); prom_halt(); } /* Now turn the error interrupts on and also enable ECC checking. */ upa_writeq((SYSIO_ECNTRL_ECCEN | SYSIO_ECNTRL_UEEN | SYSIO_ECNTRL_CEEN), reg_base + ECC_CONTROL); control = upa_readq(iommu->sbus_control_reg); control |= 0x100UL; /* SBUS Error Interrupt Enable */ upa_writeq(control, iommu->sbus_control_reg); } /* Boot time initialization. */ void __init sbus_iommu_init(int prom_node, struct sbus_bus *sbus) { struct linux_prom64_registers rprop; struct sbus_iommu *iommu; unsigned long regs, tsb_base; u64 control; int err, i; sbus->portid = prom_getintdefault(sbus->prom_node, "upa-portid", -1); err = prom_getproperty(prom_node, "reg", (char *)&rprop, sizeof(rprop)); if (err < 0) { prom_printf("sbus_iommu_init: Cannot map SYSIO control registers.\n"); prom_halt(); } regs = rprop.phys_addr; iommu = kmalloc(sizeof(*iommu) + SMP_CACHE_BYTES, GFP_ATOMIC); if (iommu == NULL) { prom_printf("sbus_iommu_init: Fatal error, kmalloc(iommu) failed\n"); prom_halt(); } /* Align on E$ line boundry. */ iommu = (struct sbus_iommu *) (((unsigned long)iommu + (SMP_CACHE_BYTES - 1UL)) & ~(SMP_CACHE_BYTES - 1UL)); memset(iommu, 0, sizeof(*iommu)); /* Setup spinlock. */ spin_lock_init(&iommu->lock); /* Init register offsets. */ iommu->iommu_regs = regs + SYSIO_IOMMUREG_BASE; iommu->strbuf_regs = regs + SYSIO_STRBUFREG_BASE; /* The SYSIO SBUS control register is used for dummy reads * in order to ensure write completion. */ iommu->sbus_control_reg = regs + 0x2000UL; /* Link into SYSIO software state. */ sbus->iommu = iommu; printk("SYSIO: UPA portID %x, at %016lx\n", sbus->portid, regs); /* Setup for TSB_SIZE=7, TBW_SIZE=0, MMU_DE=1, MMU_EN=1 */ control = upa_readq(iommu->iommu_regs + IOMMU_CONTROL); control = ((7UL << 16UL) | (0UL << 2UL) | (1UL << 1UL) | (1UL << 0UL)); /* Using the above configuration we need 1MB iommu page * table (128K ioptes * 8 bytes per iopte). This is * page order 7 on UltraSparc. */ tsb_base = __get_free_pages(GFP_ATOMIC, 7); if (tsb_base == 0UL) { prom_printf("sbus_iommu_init: Fatal error, cannot alloc TSB table.\n"); prom_halt(); } iommu->page_table = (iopte_t *) tsb_base; memset(iommu->page_table, 0, (PAGE_SIZE << 7)); upa_writeq(control, iommu->iommu_regs + IOMMU_CONTROL); /* Clean out any cruft in the IOMMU using * diagnostic accesses. */ for (i = 0; i < 16; i++) { unsigned long dram = iommu->iommu_regs + IOMMU_DRAMDIAG; dram += (unsigned long)i * 8UL; upa_writeq(0, dram); } upa_readq(iommu->sbus_control_reg); /* Give the TSB to SYSIO. */ upa_writeq(__pa(tsb_base), iommu->iommu_regs + IOMMU_TSBBASE); /* Setup streaming buffer, DE=1 SB_EN=1 */ control = (1UL << 1UL) | (1UL << 0UL); upa_writeq(control, iommu->strbuf_regs + STRBUF_CONTROL); /* Clear out the tags using diagnostics. */ for (i = 0; i < 16; i++) { unsigned long ptag, ltag; ptag = iommu->strbuf_regs + STRBUF_PTAGDIAG; ltag = iommu->strbuf_regs + STRBUF_LTAGDIAG; ptag += (unsigned long)i * 8UL; ltag += (unsigned long)i * 8UL; upa_writeq(0UL, ptag); upa_writeq(0UL, ltag); } /* Enable DVMA arbitration for all devices/slots. */ control = upa_readq(iommu->sbus_control_reg); control |= 0x3fUL; upa_writeq(control, iommu->sbus_control_reg); /* Now some Xfire specific grot... */ { extern void *starfire_hookup(int); extern int this_is_starfire; if (this_is_starfire) sbus->starfire_cookie = starfire_hookup(sbus->portid); else sbus->starfire_cookie = NULL; } sysio_register_error_handlers(sbus); }