/* * linux/drivers/block/ide.c Version 6.12 January 2, 1998 * * Copyright (C) 1994-1998 Linus Torvalds & authors (see below) */ #define _IDE_C /* needed by */ /* * Maintained by Mark Lord * and Gadi Oxman * * This is the multiple IDE interface driver, as evolved from hd.c. * It supports up to four IDE interfaces, on one or more IRQs (usually 14 & 15). * There can be up to two drives per interface, as per the ATA-2 spec. * * Primary: ide0, port 0x1f0; major=3; hda is minor=0; hdb is minor=64 * Secondary: ide1, port 0x170; major=22; hdc is minor=0; hdd is minor=64 * Tertiary: ide2, port 0x???; major=33; hde is minor=0; hdf is minor=64 * Quaternary: ide3, port 0x???; major=34; hdg is minor=0; hdh is minor=64 * * It is easy to extend ide.c to handle more than four interfaces: * * Change the MAX_HWIFS constant in ide.h. * * Define some new major numbers (in major.h), and insert them into * the ide_hwif_to_major table in ide.c. * * Fill in the extra values for the new interfaces into the two tables * inside ide.c: default_io_base[] and default_irqs[]. * * Create the new request handlers by cloning "do_ide3_request()" * for each new interface, and add them to the switch statement * in the ide_init() function in ide.c. * * Recompile, create the new /dev/ entries, and it will probably work. * * From hd.c: * | * | It traverses the request-list, using interrupts to jump between functions. * | As nearly all functions can be called within interrupts, we may not sleep. * | Special care is recommended. Have Fun! * | * | modified by Drew Eckhardt to check nr of hd's from the CMOS. * | * | Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug * | in the early extended-partition checks and added DM partitions. * | * | Early work on error handling by Mika Liljeberg (liljeber@cs.Helsinki.FI). * | * | IRQ-unmask, drive-id, multiple-mode, support for ">16 heads", * | and general streamlining by Mark Lord (mlord@pobox.com). * * October, 1994 -- Complete line-by-line overhaul for linux 1.1.x, by: * * Mark Lord (mlord@pobox.com) (IDE Perf.Pkg) * Delman Lee (delman@mipg.upenn.edu) ("Mr. atdisk2") * Scott Snyder (snyder@fnald0.fnal.gov) (ATAPI IDE cd-rom) * * This was a rewrite of just about everything from hd.c, though some original * code is still sprinkled about. Think of it as a major evolution, with * inspiration from lots of linux users, esp. hamish@zot.apana.org.au * * Version 1.0 ALPHA initial code, primary i/f working okay * Version 1.3 BETA dual i/f on shared irq tested & working! * Version 1.4 BETA added auto probing for irq(s) * Version 1.5 BETA added ALPHA (untested) support for IDE cd-roms, * ... * Version 5.50 allow values as small as 20 for idebus= * Version 5.51 force non io_32bit in drive_cmd_intr() * change delay_10ms() to delay_50ms() to fix problems * Version 5.52 fix incorrect invalidation of removable devices * add "hdx=slow" command line option * Version 5.60 start to modularize the driver; the disk and ATAPI * drivers can be compiled as loadable modules. * move IDE probe code to ide-probe.c * move IDE disk code to ide-disk.c * add support for generic IDE device subdrivers * add m68k code from Geert Uytterhoeven * probe all interfaces by default * add ioctl to (re)probe an interface * Version 6.00 use per device request queues * attempt to optimize shared hwgroup performance * add ioctl to manually adjust bandwidth algorithms * add kerneld support for the probe module * fix bug in ide_error() * fix bug in the first ide_get_lock() call for Atari * don't flush leftover data for ATAPI devices * Version 6.01 clear hwgroup->active while the hwgroup sleeps * support HDIO_GETGEO for floppies * Version 6.02 fix ide_ack_intr() call * check partition table on floppies * Version 6.03 handle bad status bit sequencing in ide_wait_stat() * Version 6.10 deleted old entries from this list of updates * replaced triton.c with ide-dma.c generic PCI DMA * added support for BIOS-enabled UltraDMA * rename all "promise" things to "pdc4030" * fix EZ-DRIVE handling on small disks * Version 6.11 fix probe error in ide_scan_devices() * fix ancient "jiffies" polling bugs * mask all hwgroup interrupts on each irq entry * Version 6.12 integrate ioctl and proc interfaces * fix parsing of "idex=" command line parameter * * Some additional driver compile-time options are in ide.h * * To do, in likely order of completion: * - modify kernel to obtain BIOS geometry for drives on 2nd/3rd/4th i/f */ #undef REALLY_SLOW_IO /* most systems can safely undef this */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ide.h" #include "ide_modes.h" #ifdef CONFIG_KERNELD #include #endif /* CONFIG_KERNELD */ static const byte ide_hwif_to_major[] = {IDE0_MAJOR, IDE1_MAJOR, IDE2_MAJOR, IDE3_MAJOR}; static int idebus_parameter; /* holds the "idebus=" parameter */ static int system_bus_speed; /* holds what we think is VESA/PCI bus speed */ static int initializing; /* set while initializing built-in drivers */ /* * ide_lock is used by the Atari code to obtain access to the IDE interrupt, * which is shared between several drivers. */ static int ide_lock = 0; /* * ide_modules keeps track of the available IDE chipset/probe/driver modules. */ ide_module_t *ide_modules = NULL; /* * This is declared extern in ide.h, for access by other IDE modules: */ ide_hwif_t ide_hwifs[MAX_HWIFS]; /* master data repository */ #if (DISK_RECOVERY_TIME > 0) /* * For really screwy hardware (hey, at least it *can* be used with Linux) * we can enforce a minimum delay time between successive operations. */ static unsigned long read_timer(void) { unsigned long t, flags; int i; __save_flags(flags); __cli(); t = jiffies * 11932; outb_p(0, 0x43); i = inb_p(0x40); i |= inb(0x40) << 8; __restore_flags(flags); return (t - i); } #endif /* DISK_RECOVERY_TIME */ static inline void set_recovery_timer (ide_hwif_t *hwif) { #if (DISK_RECOVERY_TIME > 0) hwif->last_time = read_timer(); #endif /* DISK_RECOVERY_TIME */ } /* * Do not even *think* about calling this! */ static void init_hwif_data (unsigned int index) { byte *p; unsigned int unit; ide_hwif_t *hwif = &ide_hwifs[index]; /* bulk initialize hwif & drive info with zeros */ p = ((byte *) hwif) + sizeof(ide_hwif_t); do { *--p = 0; } while (p > (byte *) hwif); /* fill in any non-zero initial values */ hwif->index = index; ide_init_hwif_ports(hwif->io_ports, ide_default_io_base(index), &hwif->irq); hwif->noprobe = !hwif->io_ports[IDE_DATA_OFFSET]; #ifdef CONFIG_BLK_DEV_HD if (hwif->io_ports[IDE_DATA_OFFSET] == HD_DATA) hwif->noprobe = 1; /* may be overridden by ide_setup() */ #endif /* CONFIG_BLK_DEV_HD */ hwif->major = ide_hwif_to_major[index]; hwif->name[0] = 'i'; hwif->name[1] = 'd'; hwif->name[2] = 'e'; hwif->name[3] = '0' + index; for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; drive->media = ide_disk; drive->select.all = (unit<<4)|0xa0; drive->hwif = hwif; drive->ctl = 0x08; drive->ready_stat = READY_STAT; drive->bad_wstat = BAD_W_STAT; drive->special.b.recalibrate = 1; drive->special.b.set_geometry = 1; drive->name[0] = 'h'; drive->name[1] = 'd'; drive->name[2] = 'a' + (index * MAX_DRIVES) + unit; } } /* * init_ide_data() sets reasonable default values into all fields * of all instances of the hwifs and drives, but only on the first call. * Subsequent calls have no effect (they don't wipe out anything). * * This routine is normally called at driver initialization time, * but may also be called MUCH earlier during kernel "command-line" * parameter processing. As such, we cannot depend on any other parts * of the kernel (such as memory allocation) to be functioning yet. * * This is too bad, as otherwise we could dynamically allocate the * ide_drive_t structs as needed, rather than always consuming memory * for the max possible number (MAX_HWIFS * MAX_DRIVES) of them. */ #define MAGIC_COOKIE 0x12345678 static void init_ide_data (void) { unsigned int index; static unsigned long magic_cookie = MAGIC_COOKIE; if (magic_cookie != MAGIC_COOKIE) return; /* already initialized */ magic_cookie = 0; for (index = 0; index < MAX_HWIFS; ++index) init_hwif_data(index); idebus_parameter = 0; system_bus_speed = 0; } /* * ide_system_bus_speed() returns what we think is the system VESA/PCI * bus speed (in MHz). This is used for calculating interface PIO timings. * The default is 40 for known PCI systems, 50 otherwise. * The "idebus=xx" parameter can be used to override this value. * The actual value to be used is computed/displayed the first time through. */ int ide_system_bus_speed (void) { if (!system_bus_speed) { if (idebus_parameter) system_bus_speed = idebus_parameter; /* user supplied value */ #ifdef CONFIG_PCI else if (pcibios_present()) system_bus_speed = 40; /* safe default value for PCI */ #endif /* CONFIG_PCI */ else system_bus_speed = 50; /* safe default value for VESA and PCI */ printk("ide: Assuming %dMHz system bus speed for PIO modes%s\n", system_bus_speed, idebus_parameter ? "" : "; override with idebus=xx"); } return system_bus_speed; } #if SUPPORT_VLB_SYNC /* * Some localbus EIDE interfaces require a special access sequence * when using 32-bit I/O instructions to transfer data. We call this * the "vlb_sync" sequence, which consists of three successive reads * of the sector count register location, with interrupts disabled * to ensure that the reads all happen together. */ static inline void do_vlb_sync (ide_ioreg_t port) { (void) inb (port); (void) inb (port); (void) inb (port); } #endif /* SUPPORT_VLB_SYNC */ /* * This is used for most PIO data transfers *from* the IDE interface */ void ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount) { byte io_32bit = drive->io_32bit; if (io_32bit) { #if SUPPORT_VLB_SYNC if (io_32bit & 2) { unsigned long flags; __save_flags(flags); __cli(); do_vlb_sync(IDE_NSECTOR_REG); insl(IDE_DATA_REG, buffer, wcount); __restore_flags(flags); } else #endif /* SUPPORT_VLB_SYNC */ insl(IDE_DATA_REG, buffer, wcount); } else { #if SUPPORT_SLOW_DATA_PORTS if (drive->slow) { unsigned short *ptr = (unsigned short *) buffer; while (wcount--) { *ptr++ = inw_p(IDE_DATA_REG); *ptr++ = inw_p(IDE_DATA_REG); } } else #endif /* SUPPORT_SLOW_DATA_PORTS */ insw(IDE_DATA_REG, buffer, wcount<<1); } } /* * This is used for most PIO data transfers *to* the IDE interface */ void ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount) { byte io_32bit = drive->io_32bit; if (io_32bit) { #if SUPPORT_VLB_SYNC if (io_32bit & 2) { unsigned long flags; __save_flags(flags); __cli(); do_vlb_sync(IDE_NSECTOR_REG); outsl(IDE_DATA_REG, buffer, wcount); __restore_flags(flags); } else #endif /* SUPPORT_VLB_SYNC */ outsl(IDE_DATA_REG, buffer, wcount); } else { #if SUPPORT_SLOW_DATA_PORTS if (drive->slow) { unsigned short *ptr = (unsigned short *) buffer; while (wcount--) { outw_p(*ptr++, IDE_DATA_REG); outw_p(*ptr++, IDE_DATA_REG); } } else #endif /* SUPPORT_SLOW_DATA_PORTS */ outsw(IDE_DATA_REG, buffer, wcount<<1); } } /* * The following routines are mainly used by the ATAPI drivers. * * These routines will round up any request for an odd number of bytes, * so if an odd bytecount is specified, be sure that there's at least one * extra byte allocated for the buffer. */ void atapi_input_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) { ++bytecount; #ifdef CONFIG_ATARI if (MACH_IS_ATARI) { /* Atari has a byte-swapped IDE interface */ insw_swapw(IDE_DATA_REG, buffer, bytecount / 2); return; } #endif /* CONFIG_ATARI */ ide_input_data (drive, buffer, bytecount / 4); if ((bytecount & 0x03) >= 2) insw (IDE_DATA_REG, ((byte *)buffer) + (bytecount & ~0x03), 1); } void atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount) { ++bytecount; #ifdef CONFIG_ATARI if (MACH_IS_ATARI) { /* Atari has a byte-swapped IDE interface */ outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2); return; } #endif /* CONFIG_ATARI */ ide_output_data (drive, buffer, bytecount / 4); if ((bytecount & 0x03) >= 2) outsw (IDE_DATA_REG, ((byte *)buffer) + (bytecount & ~0x03), 1); } /* * This should get invoked any time we exit the driver to * wait for an interrupt response from a drive. handler() points * at the appropriate code to handle the next interrupt, and a * timer is started to prevent us from waiting forever in case * something goes wrong (see the ide_timer_expiry() handler later on). */ void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, unsigned int timeout) { ide_hwgroup_t *hwgroup = HWGROUP(drive); #ifdef DEBUG if (hwgroup->handler != NULL) { printk("%s: ide_set_handler: handler not null; old=%p, new=%p\n", drive->name, hwgroup->handler, handler); } #endif hwgroup->handler = handler; hwgroup->timer.expires = jiffies + timeout; add_timer(&(hwgroup->timer)); } /* * current_capacity() returns the capacity (in sectors) of a drive * according to its current geometry/LBA settings. */ static unsigned long current_capacity (ide_drive_t *drive) { if (!drive->present) return 0; if (drive->driver != NULL) return DRIVER(drive)->capacity(drive); return 0; } /* * ide_geninit() is called exactly *once* for each major, from genhd.c, * at the beginning of the initial partition check for the drives. */ void ide_geninit (struct gendisk *gd) { unsigned int unit; ide_hwif_t *hwif = gd->real_devices; for (unit = 0; unit < gd->nr_real; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; drive->part[0].nr_sects = current_capacity(drive); if (!drive->present || (drive->media != ide_disk && drive->media != ide_floppy) || drive->driver == NULL || !drive->part[0].nr_sects) drive->part[0].start_sect = -1; /* skip partition check */ } } static void do_reset1 (ide_drive_t *, int); /* needed below */ /* * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an atapi drive reset operation. If the drive has not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static void atapi_reset_pollfunc (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); byte stat; SELECT_DRIVE(HWIF(drive),drive); udelay (10); if (OK_STAT(stat=GET_STAT(), 0, BUSY_STAT)) { printk("%s: ATAPI reset complete\n", drive->name); } else { if (0 < (signed long)(hwgroup->poll_timeout - jiffies)) { ide_set_handler (drive, &atapi_reset_pollfunc, HZ/20); return; /* continue polling */ } hwgroup->poll_timeout = 0; /* end of polling */ printk("%s: ATAPI reset timed-out, status=0x%02x\n", drive->name, stat); do_reset1 (drive, 1); /* do it the old fashioned way */ return; } hwgroup->poll_timeout = 0; /* done polling */ } /* * reset_pollfunc() gets invoked to poll the interface for completion every 50ms * during an ide reset operation. If the drives have not yet responded, * and we have not yet hit our maximum waiting time, then the timer is restarted * for another 50ms. */ static void reset_pollfunc (ide_drive_t *drive) { ide_hwgroup_t *hwgroup = HWGROUP(drive); ide_hwif_t *hwif = HWIF(drive); byte tmp; if (!OK_STAT(tmp=GET_STAT(), 0, BUSY_STAT)) { if (0 < (signed long)(hwgroup->poll_timeout - jiffies)) { ide_set_handler (drive, &reset_pollfunc, HZ/20); return; /* continue polling */ } printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); } else { printk("%s: reset: ", hwif->name); if ((tmp = GET_ERR()) == 1) printk("success\n"); else { #if FANCY_STATUS_DUMPS printk("master: "); switch (tmp & 0x7f) { case 1: printk("passed"); break; case 2: printk("formatter device error"); break; case 3: printk("sector buffer error"); break; case 4: printk("ECC circuitry error"); break; case 5: printk("controlling MPU error"); break; default:printk("error (0x%02x?)", tmp); } if (tmp & 0x80) printk("; slave: failed"); printk("\n"); #else printk("failed\n"); #endif /* FANCY_STATUS_DUMPS */ } } hwgroup->poll_timeout = 0; /* done polling */ } static void pre_reset (ide_drive_t *drive) { if (!drive->keep_settings) { drive->unmask = 0; drive->io_32bit = 0; if (drive->using_dma) (void) HWIF(drive)->dmaproc(ide_dma_off, drive); } if (drive->driver != NULL) DRIVER(drive)->pre_reset(drive); } /* * do_reset1() attempts to recover a confused drive by resetting it. * Unfortunately, resetting a disk drive actually resets all devices on * the same interface, so it can really be thought of as resetting the * interface rather than resetting the drive. * * ATAPI devices have their own reset mechanism which allows them to be * individually reset without clobbering other devices on the same interface. * * Unfortunately, the IDE interface does not generate an interrupt to let * us know when the reset operation has finished, so we must poll for this. * Equally poor, though, is the fact that this may a very long time to complete, * (up to 30 seconds worstcase). So, instead of busy-waiting here for it, * we set a timer to poll at 50ms intervals. */ static void do_reset1 (ide_drive_t *drive, int do_not_try_atapi) { unsigned int unit; unsigned long flags; ide_hwif_t *hwif = HWIF(drive); ide_hwgroup_t *hwgroup = HWGROUP(drive); __save_flags(flags); __cli(); /* Why ? */ /* For an ATAPI device, first try an ATAPI SRST. */ if (drive->media != ide_disk && !do_not_try_atapi) { pre_reset(drive); SELECT_DRIVE(hwif,drive); udelay (20); OUT_BYTE (WIN_SRST, IDE_COMMAND_REG); hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; ide_set_handler (drive, &atapi_reset_pollfunc, HZ/20); __restore_flags (flags); return; } /* * First, reset any device state data we were maintaining * for any of the drives on this interface. */ for (unit = 0; unit < MAX_DRIVES; ++unit) pre_reset(&hwif->drives[unit]); #if OK_TO_RESET_CONTROLLER /* * Note that we also set nIEN while resetting the device, * to mask unwanted interrupts from the interface during the reset. * However, due to the design of PC hardware, this will cause an * immediate interrupt due to the edge transition it produces. * This single interrupt gives us a "fast poll" for drives that * recover from reset very quickly, saving us the first 50ms wait time. */ OUT_BYTE(drive->ctl|6,IDE_CONTROL_REG); /* set SRST and nIEN */ udelay(10); /* more than enough time */ OUT_BYTE(drive->ctl|2,IDE_CONTROL_REG); /* clear SRST, leave nIEN */ udelay(10); /* more than enough time */ hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; ide_set_handler (drive, &reset_pollfunc, HZ/20); #endif /* OK_TO_RESET_CONTROLLER */ __restore_flags (flags); } /* * ide_do_reset() is the entry point to the drive/interface reset code. */ void ide_do_reset (ide_drive_t *drive) { do_reset1 (drive, 0); } /* * Clean up after success/failure of an explicit drive cmd */ void ide_end_drive_cmd (ide_drive_t *drive, byte stat, byte err) { unsigned long flags; struct request *rq = HWGROUP(drive)->rq; if (rq->cmd == IDE_DRIVE_CMD) { byte *args = (byte *) rq->buffer; rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); if (args) { args[0] = stat; args[1] = err; args[2] = IN_BYTE(IDE_NSECTOR_REG); } } __save_flags(flags); __cli(); drive->queue = rq->next; blk_dev[MAJOR(rq->rq_dev)].current_request = NULL; HWGROUP(drive)->rq = NULL; rq->rq_status = RQ_INACTIVE; if (rq->sem != NULL) up(rq->sem); __restore_flags(flags); } /* * Error reporting, in human readable form (luxurious, but a memory hog). */ byte ide_dump_status (ide_drive_t *drive, const char *msg, byte stat) { unsigned long flags; byte err = 0; __save_flags (flags); /* ide_sti(); HACK */ printk("%s: %s: status=0x%02x", drive->name, msg, stat); #if FANCY_STATUS_DUMPS printk(" { "); if (stat & BUSY_STAT) printk("Busy "); else { if (stat & READY_STAT) printk("DriveReady "); if (stat & WRERR_STAT) printk("DeviceFault "); if (stat & SEEK_STAT) printk("SeekComplete "); if (stat & DRQ_STAT) printk("DataRequest "); if (stat & ECC_STAT) printk("CorrectedError "); if (stat & INDEX_STAT) printk("Index "); if (stat & ERR_STAT) printk("Error "); } printk("}"); #endif /* FANCY_STATUS_DUMPS */ printk("\n"); if ((stat & (BUSY_STAT|ERR_STAT)) == ERR_STAT) { err = GET_ERR(); printk("%s: %s: error=0x%02x", drive->name, msg, err); #if FANCY_STATUS_DUMPS if (drive->media == ide_disk) { printk(" { "); if (err & ABRT_ERR) printk("DriveStatusError "); if (err & ICRC_ERR) printk((err & ABRT_ERR) ? "BadCRC " : "BadSector "); if (err & ECC_ERR) printk("UncorrectableError "); if (err & ID_ERR) printk("SectorIdNotFound "); if (err & TRK0_ERR) printk("TrackZeroNotFound "); if (err & MARK_ERR) printk("AddrMarkNotFound "); printk("}"); if ((err & (BBD_ERR | ABRT_ERR)) == BBD_ERR || (err & (ECC_ERR|ID_ERR|MARK_ERR))) { byte cur = IN_BYTE(IDE_SELECT_REG); if (cur & 0x40) { /* using LBA? */ printk(", LBAsect=%ld", (unsigned long) ((cur&0xf)<<24) |(IN_BYTE(IDE_HCYL_REG)<<16) |(IN_BYTE(IDE_LCYL_REG)<<8) | IN_BYTE(IDE_SECTOR_REG)); } else { printk(", CHS=%d/%d/%d", (IN_BYTE(IDE_HCYL_REG)<<8) + IN_BYTE(IDE_LCYL_REG), cur & 0xf, IN_BYTE(IDE_SECTOR_REG)); } if (HWGROUP(drive)->rq) printk(", sector=%ld", HWGROUP(drive)->rq->sector); } } #endif /* FANCY_STATUS_DUMPS */ printk("\n"); } __restore_flags (flags); return err; } /* * try_to_flush_leftover_data() is invoked in response to a drive * unexpectedly having its DRQ_STAT bit set. As an alternative to * resetting the drive, this routine tries to clear the condition * by read a sector's worth of data from the drive. Of course, * this may not help if the drive is *waiting* for data from *us*. */ static void try_to_flush_leftover_data (ide_drive_t *drive) { int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; if (drive->media != ide_disk) return; while (i > 0) { unsigned long buffer[16]; unsigned int wcount = (i > 16) ? 16 : i; i -= wcount; ide_input_data (drive, buffer, wcount); } } /* * ide_error() takes action based on the error returned by the drive. */ void ide_error (ide_drive_t *drive, const char *msg, byte stat) { struct request *rq; byte err; err = ide_dump_status(drive, msg, stat); if ((rq = HWGROUP(drive)->rq) == NULL || drive == NULL) return; /* retry only "normal" I/O: */ if (rq->cmd == IDE_DRIVE_CMD) { rq->errors = 1; ide_end_drive_cmd(drive, stat, err); return; } if (stat & BUSY_STAT) { /* other bits are useless when BUSY */ rq->errors |= ERROR_RESET; } else { if (drive->media == ide_disk && (stat & ERR_STAT)) { /* err has different meaning on cdrom and tape */ if (err == ABRT_ERR) { if (drive->select.b.lba && IN_BYTE(IDE_COMMAND_REG) == WIN_SPECIFY) return; /* some newer drives don't support WIN_SPECIFY */ } else if ((err & (ABRT_ERR | ICRC_ERR)) == (ABRT_ERR | ICRC_ERR)) ; /* UDMA crc error -- just retry the operation */ else if (err & (BBD_ERR | ECC_ERR)) /* retries won't help these */ rq->errors = ERROR_MAX; else if (err & TRK0_ERR) /* help it find track zero */ rq->errors |= ERROR_RECAL; } if ((stat & DRQ_STAT) && rq->cmd != WRITE) try_to_flush_leftover_data(drive); } if (GET_STAT() & (BUSY_STAT|DRQ_STAT)) rq->errors |= ERROR_RESET; /* Mmmm.. timing problem */ if (rq->errors >= ERROR_MAX) { if (drive->driver != NULL) DRIVER(drive)->end_request(0, HWGROUP(drive)); else ide_end_request(0, HWGROUP(drive)); } else { if ((rq->errors & ERROR_RESET) == ERROR_RESET) { ++rq->errors; ide_do_reset(drive); return; } else if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) drive->special.b.recalibrate = 1; ++rq->errors; } } /* * Issue a simple drive command * The drive must be selected beforehand. */ void ide_cmd(ide_drive_t *drive, byte cmd, byte nsect, ide_handler_t *handler) { ide_set_handler (drive, handler, WAIT_CMD); OUT_BYTE(drive->ctl,IDE_CONTROL_REG); OUT_BYTE(nsect,IDE_NSECTOR_REG); OUT_BYTE(cmd,IDE_COMMAND_REG); } /* * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. */ static void drive_cmd_intr (ide_drive_t *drive) { struct request *rq = HWGROUP(drive)->rq; byte *args = (byte *) rq->buffer; byte stat = GET_STAT(); int retries = 10; /* ide_sti(); HACK */ if ((stat & DRQ_STAT) && args && args[3]) { byte io_32bit = drive->io_32bit; drive->io_32bit = 0; ide_input_data(drive, &args[4], args[3] * SECTOR_WORDS); drive->io_32bit = io_32bit; while (((stat = GET_STAT()) & BUSY_STAT) && retries--) udelay(100); } if (OK_STAT(stat, READY_STAT, BAD_STAT)) ide_end_drive_cmd (drive, stat, GET_ERR()); else ide_error(drive, "drive_cmd", stat); /* calls ide_end_drive_cmd */ } /* * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT * commands to a drive. It used to do much more, but has been scaled back. */ static inline void do_special (ide_drive_t *drive) { special_t *s = &drive->special; #ifdef DEBUG printk("%s: do_special: 0x%02x\n", drive->name, s->all); #endif if (s->b.set_tune) { ide_tuneproc_t *tuneproc = HWIF(drive)->tuneproc; s->b.set_tune = 0; if (tuneproc != NULL) tuneproc(drive, drive->tune_req); } else if (drive->driver != NULL) { DRIVER(drive)->special(drive); } else if (s->all) { printk("%s: bad special flag: 0x%02x\n", drive->name, s->all); s->all = 0; } } /* * This routine busy-waits for the drive status to be not "busy". * It then checks the status for all of the "good" bits and none * of the "bad" bits, and if all is okay it returns 0. All other * cases return 1 after invoking ide_error() -- caller should just return. * * This routine should get fixed to not hog the cpu during extra long waits.. * That could be done by busy-waiting for the first jiffy or two, and then * setting a timer to wake up at half second intervals thereafter, * until timeout is achieved, before timing out. */ int ide_wait_stat (ide_drive_t *drive, byte good, byte bad, unsigned long timeout) { byte stat; unsigned long flags; udelay(1); /* spec allows drive 400ns to assert "BUSY" */ if ((stat = GET_STAT()) & BUSY_STAT) { __save_flags(flags); /* ide_sti(); HACK */ timeout += jiffies; while ((stat = GET_STAT()) & BUSY_STAT) { if (0 < (signed long)(jiffies - timeout)) { __restore_flags(flags); ide_error(drive, "status timeout", stat); return 1; } } __restore_flags(flags); } udelay(1); /* allow status to settle, then read it again */ if (OK_STAT((stat = GET_STAT()), good, bad)) return 0; ide_error(drive, "status error", stat); return 1; } /* * execute_drive_cmd() issues a special drive command, * usually initiated by ioctl() from the external hdparm program. */ static void execute_drive_cmd (ide_drive_t *drive, struct request *rq) { byte *args = rq->buffer; if (args) { #ifdef DEBUG printk("%s: DRIVE_CMD cmd=0x%02x sc=0x%02x fr=0x%02x xx=0x%02x\n", drive->name, args[0], args[1], args[2], args[3]); #endif if (args[0] == WIN_SMART) { OUT_BYTE(0x4f, IDE_LCYL_REG); OUT_BYTE(0xc2, IDE_HCYL_REG); } OUT_BYTE(args[2],IDE_FEATURE_REG); ide_cmd(drive, args[0], args[1], &drive_cmd_intr); return; } else { /* * NULL is actually a valid way of waiting for * all current requests to be flushed from the queue. */ #ifdef DEBUG printk("%s: DRIVE_CMD (null)\n", drive->name); #endif ide_end_drive_cmd(drive, GET_STAT(), GET_ERR()); return; } } /* * do_request() initiates handling of a new I/O request */ static inline void do_request (ide_hwgroup_t *hwgroup, ide_hwif_t *hwif, ide_drive_t *drive) { unsigned long block, blockend; struct request *rq = drive->queue; unsigned int minor = MINOR(rq->rq_dev), unit = minor >> PARTN_BITS; /* ide_sti(); HACK */ #ifdef DEBUG printk("%s: do_request: current=0x%08lx\n", hwif->name, (unsigned long) rq); #endif if (unit >= MAX_DRIVES) { printk("%s: bad device number: %s\n", hwif->name, kdevname(rq->rq_dev)); goto kill_rq; } #ifdef DEBUG if (rq->bh && !buffer_locked(rq->bh)) { printk("%s: block not locked\n", drive->name); goto kill_rq; } #endif block = rq->sector; blockend = block + rq->nr_sectors; if ((blockend < block) || (blockend > drive->part[minor&PARTN_MASK].nr_sects)) { printk("%s%c: bad access: block=%ld, count=%ld\n", drive->name, (minor&PARTN_MASK)?'0'+(minor&PARTN_MASK):' ', block, rq->nr_sectors); goto kill_rq; } block += drive->part[minor&PARTN_MASK].start_sect + drive->sect0; #if FAKE_FDISK_FOR_EZDRIVE if (block == 0 && drive->remap_0_to_1) block = 1; /* redirect MBR access to EZ-Drive partn table */ #endif /* FAKE_FDISK_FOR_EZDRIVE */ #if (DISK_RECOVERY_TIME > 0) while ((read_timer() - hwif->last_time) < DISK_RECOVERY_TIME); #endif hwgroup->hwif = hwif; hwgroup->drive = drive; SELECT_DRIVE(hwif, drive); if (ide_wait_stat(drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { printk("%s: drive not ready for command\n", drive->name); return; } if (!drive->special.all) { if (rq->cmd == IDE_DRIVE_CMD) { execute_drive_cmd(drive, rq); return; } if (drive->driver != NULL) { DRIVER(drive)->do_request(drive, rq, block); return; } printk("%s: media type %d not supported\n", drive->name, drive->media); goto kill_rq; } do_special(drive); return; kill_rq: if (drive->driver != NULL) DRIVER(drive)->end_request(0, HWGROUP(drive)); else ide_end_request(0, hwgroup); } /* * ide_stall_queue() can be used by a drive to give excess bandwidth back * to the hwgroup by sleeping for timeout jiffies. */ void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) { if (timeout > WAIT_WORSTCASE) timeout = WAIT_WORSTCASE; drive->sleep = timeout + jiffies; } #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) /* * choose_drive() selects the next drive which will be serviced. */ static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) { ide_drive_t *drive, *best; repeat: best = NULL; drive = hwgroup->drive; do { if (!drive->queue) continue; if (drive->sleep && 0 < (signed long)(drive->sleep - jiffies)) continue; if (!best) { best = drive; continue; } if (drive->sleep && (!best->sleep || drive->sleep < best->sleep)) best = drive; if (!best->sleep && WAKEUP(drive) < WAKEUP(best)) best = drive; } while ((drive = drive->next) != hwgroup->drive); if (best != hwgroup->drive && best && best->service_time > WAIT_MIN_SLEEP && !best->sleep && best->nice1) { long t = (signed) (WAKEUP(best) - jiffies); /* BUGGY? */ if (t >= WAIT_MIN_SLEEP) { /* * We *may* have some time to spare, but first let's see if * someone can potentially benefit from our nice mood today.. */ drive = best->next; do { if (drive->sleep) /* this drive tried to be nice to us */ continue; if (WAKEUP(drive) > (jiffies - best->service_time) && WAKEUP(drive) < (jiffies + t)) { /* BUGGY? */ ide_stall_queue(best, IDE_MIN(t, 10 * WAIT_MIN_SLEEP)); goto repeat; } } while ((drive = drive->next) != best); } } return best; } static inline void ide_leave_hwgroup (ide_hwgroup_t *hwgroup) { ide_drive_t *drive = hwgroup->drive; unsigned long sleep = 0; hwgroup->rq = NULL; do { blk_dev[HWIF(drive)->major].current_request = NULL; if (!drive->sleep) continue; if (!sleep) { sleep = drive->sleep; continue; } if (drive->sleep < sleep) sleep = drive->sleep; } while ((drive = drive->next) != hwgroup->drive); if (sleep) { if (0 < (signed long)(jiffies + WAIT_MIN_SLEEP - sleep)) sleep = jiffies + WAIT_MIN_SLEEP; hwgroup->timer.expires = sleep; add_timer(&hwgroup->timer); } else /* Ugly, but how can we sleep for the lock otherwise? perhaps from tq_scheduler? */ ide_release_lock(&ide_lock); hwgroup->active = 0; } /* * The driver enables interrupts as much as possible. In order to do this, * (a) the device-interrupt is always masked before entry, and * (b) the timeout-interrupt is always disabled before entry. * * If we enter here from, say irq14, and then start a new request for irq15, * (possible with "serialize" option) then we cannot ensure that we exit * before the irq15 hits us. So, we must be careful not to let this bother us. * * Interrupts are still masked (by default) whenever we are exchanging * data/cmds with a drive, because some drives seem to have very poor * tolerance for latency during I/O. For devices which don't suffer from * this problem (most don't), the unmask flag can be set using the "hdparm" * utility, to permit other interrupts during data/cmd transfers. */ void ide_do_request (ide_hwgroup_t *hwgroup) { __cli(); /* paranoia */ if (hwgroup->handler != NULL) { printk("%s: EEeekk!! handler not NULL in ide_do_request()\n", hwgroup->hwif->name); return; } do { ide_drive_t *drive = choose_drive(hwgroup); if (drive != NULL) { ide_hwif_t *hwif = HWIF(drive); if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) OUT_BYTE(hwgroup->drive->ctl|2, hwgroup->hwif->io_ports[IDE_CONTROL_OFFSET]); drive->sleep = 0; blk_dev[hwif->major].current_request = hwgroup->rq = drive->queue; drive->service_start = jiffies; do_request(hwgroup, hwif, drive); __cli(); } else { ide_leave_hwgroup(hwgroup); /* no work left for this hwgroup */ return; } } while (hwgroup->handler == NULL); } /* * ide_get_queue() returns the queue which corresponds to a given device. */ struct request **ide_get_queue (kdev_t dev) { struct blk_dev_struct *bdev = blk_dev + MAJOR(dev); ide_hwif_t *hwif = bdev->data; return &hwif->drives[DEVICE_NR(dev) & 1].queue; } /* * do_hwgroup_request() invokes ide_do_request() after first masking * all possible interrupts for the current hwgroup. This prevents race * conditions in the event that an unexpected interrupt occurs while * we are in the driver. * * Note that when an interrupt is used to reenter the driver, the first level * handler will already have masked the irq that triggered, but any other ones * for the hwgroup will still be unmasked. The driver tries to be careful * about such things. */ static void do_hwgroup_request (ide_hwgroup_t *hwgroup) { if (hwgroup->handler == NULL) { ide_hwif_t *hgif = hwgroup->hwif; ide_hwif_t *hwif = hgif; del_timer(&hwgroup->timer); ide_get_lock(&ide_lock, ide_intr, hwgroup); hwgroup->active = 1; do { disable_irq(hwif->irq); } while ((hwif = hwif->next) != hgif); ide_do_request (hwgroup); do { enable_irq(hwif->irq); } while ((hwif = hwif->next) != hgif); } } void do_ide0_request (void) /* invoked with __cli() */ { do_hwgroup_request (ide_hwifs[0].hwgroup); } #if MAX_HWIFS > 1 void do_ide1_request (void) /* invoked with __cli() */ { do_hwgroup_request (ide_hwifs[1].hwgroup); } #endif /* MAX_HWIFS > 1 */ #if MAX_HWIFS > 2 void do_ide2_request (void) /* invoked with __cli() */ { do_hwgroup_request (ide_hwifs[2].hwgroup); } #endif /* MAX_HWIFS > 2 */ #if MAX_HWIFS > 3 void do_ide3_request (void) /* invoked with __cli() */ { do_hwgroup_request (ide_hwifs[3].hwgroup); } #endif /* MAX_HWIFS > 3 */ void ide_timer_expiry (unsigned long data) { ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; ide_drive_t *drive = hwgroup->drive; ide_handler_t *handler; unsigned long flags; __save_flags(flags); __cli(); if ((handler = hwgroup->handler) != NULL) { hwgroup->handler = NULL; if (hwgroup->poll_timeout != 0) /* polling in progress? */ handler(drive); else { /* abort the operation */ if (hwgroup->hwif->dmaproc) (void) hwgroup->hwif->dmaproc (ide_dma_end, drive); ide_error(drive, "irq timeout", GET_STAT()); } __cli(); if (hwgroup->handler == NULL) { set_recovery_timer(HWIF(drive)); drive->service_time = jiffies - drive->service_start; do_hwgroup_request (hwgroup); } } else do_hwgroup_request (hwgroup); __restore_flags(flags); } /* * There's nothing really useful we can do with an unexpected interrupt, * other than reading the status register (to clear it), and logging it. * There should be no way that an irq can happen before we're ready for it, * so we needn't worry much about losing an "important" interrupt here. * * On laptops (and "green" PCs), an unexpected interrupt occurs whenever the * drive enters "idle", "standby", or "sleep" mode, so if the status looks * "good", we just ignore the interrupt completely. * * This routine assumes __cli() is in effect when called. * * If an unexpected interrupt happens on irq15 while we are handling irq14 * and if the two interfaces are "serialized" (CMD640), then it looks like * we could screw up by interfering with a new request being set up for irq15. * * In reality, this is a non-issue. The new command is not sent unless the * drive is ready to accept one, in which case we know the drive is not * trying to interrupt us. And ide_set_handler() is always invoked before * completing the issuance of any new drive command, so we will not be * accidently invoked as a result of any valid command completion interrupt. * */ static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) { byte stat; ide_hwif_t *hwif = hwgroup->hwif; /* * handle the unexpected interrupt */ do { if (hwif->irq == irq) { stat = IN_BYTE(hwif->io_ports[IDE_STATUS_OFFSET]); if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { /* Try to not flood the console with msgs */ static unsigned long last_msgtime = 0; if (0 < (signed long)(jiffies - (last_msgtime + HZ))) { last_msgtime = jiffies; printk("%s%s: unexpected interrupt, status=0x%02x\n", hwif->name, (hwif->next == hwgroup->hwif) ? "" : "(?)", stat); } } } } while ((hwif = hwif->next) != hwgroup->hwif); } /* * entry point for all interrupts, caller does __cli() for us */ void ide_intr (int irq, void *dev_id, struct pt_regs *regs) { unsigned long flags; ide_hwgroup_t *hwgroup = dev_id; ide_hwif_t *hwif = hwgroup->hwif; ide_handler_t *handler; if (!ide_ack_intr(hwif->io_ports[IDE_STATUS_OFFSET], hwif->io_ports[IDE_IRQ_OFFSET])) return; do { if (hwif->irq != irq) disable_irq(hwif->irq); } while ((hwif = hwif->next) != hwgroup->hwif); if (irq == hwif->irq && (handler = hwgroup->handler) != NULL) { ide_drive_t *drive = hwgroup->drive; #if 1 /* temporary, remove later -- FIXME */ { struct request *rq = hwgroup->rq; if (rq != NULL &&( MAJOR(rq->rq_dev) != HWIF(drive)->major || (MINOR(rq->rq_dev) >> PARTN_BITS) != drive->select.b.unit)) { printk("ide_intr: got IRQ from wrong device: email mlord@pobox.com!!\n"); return; } } #endif /* temporary */ hwgroup->handler = NULL; del_timer(&(hwgroup->timer)); /* if (drive->unmask) ide_sti(); HACK */ handler(drive); /* this is necessary, as next rq may be different irq */ spin_lock_irqsave(&io_request_lock,flags); if (hwgroup->handler == NULL) { set_recovery_timer(HWIF(drive)); drive->service_time = jiffies - drive->service_start; ide_do_request(hwgroup); } spin_unlock_irqrestore(&io_request_lock,flags); } else { unexpected_intr(irq, hwgroup); } __cli(); hwif = hwgroup->hwif; do { if (hwif->irq != irq) enable_irq(hwif->irq); } while ((hwif = hwif->next) != hwgroup->hwif); } /* * get_info_ptr() returns the (ide_drive_t *) for a given device number. * It returns NULL if the given device number does not match any present drives. */ static ide_drive_t *get_info_ptr (kdev_t i_rdev) { int major = MAJOR(i_rdev); unsigned int h; for (h = 0; h < MAX_HWIFS; ++h) { ide_hwif_t *hwif = &ide_hwifs[h]; if (hwif->present && major == hwif->major) { unsigned unit = DEVICE_NR(i_rdev); if (unit < MAX_DRIVES) { ide_drive_t *drive = &hwif->drives[unit]; if (drive->present) return drive; } break; } } return NULL; } /* * This function is intended to be used prior to invoking ide_do_drive_cmd(). */ void ide_init_drive_cmd (struct request *rq) { rq->buffer = NULL; rq->cmd = IDE_DRIVE_CMD; rq->sector = 0; rq->nr_sectors = 0; rq->current_nr_sectors = 0; rq->sem = NULL; rq->bh = NULL; rq->bhtail = NULL; rq->next = NULL; } /* * This function issues a special IDE device request * onto the request queue. * * If action is ide_wait, then then rq is queued at the end of * the request queue, and the function sleeps until it has been * processed. This is for use when invoked from an ioctl handler. * * If action is ide_preempt, then the rq is queued at the head of * the request queue, displacing the currently-being-processed * request and this function returns immediately without waiting * for the new rq to be completed. This is VERY DANGEROUS, and is * intended for careful use by the ATAPI tape/cdrom driver code. * * If action is ide_next, then the rq is queued immediately after * the currently-being-processed-request (if any), and the function * returns without waiting for the new rq to be completed. As above, * This is VERY DANGEROUS, and is intended for careful use by the * ATAPI tape/cdrom driver code. * * If action is ide_end, then the rq is queued at the end of the * request queue, and the function returns immediately without waiting * for the new rq to be completed. This is again intended for careful * use by the ATAPI tape/cdrom driver code. */ int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) { unsigned long flags; ide_hwgroup_t *hwgroup = HWGROUP(drive); unsigned int major = HWIF(drive)->major; struct request *cur_rq; struct semaphore sem = MUTEX_LOCKED; if (IS_PDC4030_DRIVE && rq->buffer != NULL) return -ENOSYS; /* special drive cmds not supported */ rq->errors = 0; rq->rq_status = RQ_ACTIVE; rq->rq_dev = MKDEV(major,(drive->select.b.unit)<sem = &sem; __save_flags(flags); __cli(); cur_rq = drive->queue; if (cur_rq == NULL || action == ide_preempt) { rq->next = cur_rq; drive->queue = rq; if (action == ide_preempt) hwgroup->rq = NULL; } else { if (action == ide_wait || action == ide_end) { while (cur_rq->next != NULL) /* find end of list */ cur_rq = cur_rq->next; } rq->next = cur_rq->next; cur_rq->next = rq; } if (!hwgroup->active) { do_hwgroup_request(hwgroup); __cli(); } if (action == ide_wait && rq->rq_status != RQ_INACTIVE) down(&sem); /* wait for it to be serviced */ __restore_flags(flags); return rq->errors ? -EIO : 0; /* return -EIO if errors */ } /* * This routine is called to flush all partitions and partition tables * for a changed disk, and then re-read the new partition table. * If we are revalidating a disk because of a media change, then we * enter with usage == 0. If we are using an ioctl, we automatically have * usage == 1 (we need an open channel to use an ioctl :-), so this * is our limit. */ int ide_revalidate_disk(kdev_t i_rdev) { ide_drive_t *drive; unsigned int p, major, minor; long flags; if ((drive = get_info_ptr(i_rdev)) == NULL) return -ENODEV; major = MAJOR(i_rdev); minor = drive->select.b.unit << PARTN_BITS; __save_flags(flags); __cli(); if (drive->busy || (drive->usage > 1)) { __restore_flags(flags); return -EBUSY; }; drive->busy = 1; MOD_INC_USE_COUNT; __restore_flags(flags); for (p = 0; p < (1<part[p].nr_sects > 0) { kdev_t devp = MKDEV(major, minor+p); struct super_block * sb = get_super(devp); fsync_dev (devp); if (sb) invalidate_inodes(sb); invalidate_buffers (devp); } drive->part[p].start_sect = 0; drive->part[p].nr_sects = 0; }; drive->part[0].nr_sects = current_capacity(drive); if ((drive->media != ide_disk && drive->media != ide_floppy) || drive->driver == NULL || !drive->part[0].nr_sects) drive->part[0].start_sect = -1; resetup_one_dev(HWIF(drive)->gd, drive->select.b.unit); drive->busy = 0; wake_up(&drive->wqueue); MOD_DEC_USE_COUNT; return 0; } static void revalidate_drives (void) { ide_hwif_t *hwif; ide_drive_t *drive; int index, unit; for (index = 0; index < MAX_HWIFS; ++index) { hwif = &ide_hwifs[index]; for (unit = 0; unit < MAX_DRIVES; ++unit) { drive = &ide_hwifs[index].drives[unit]; if (drive->revalidate) { drive->revalidate = 0; if (!initializing) (void) ide_revalidate_disk(MKDEV(hwif->major, unit<type == type) { found = 1; (void) module->init(); } module = module->next; } revalidate_drives(); #ifdef CONFIG_KERNELD if (!found && type == IDE_PROBE_MODULE) (void) request_module("ide-probe"); #endif /* CONFIG_KERNELD */ } static int ide_open(struct inode * inode, struct file * filp) { ide_drive_t *drive; int rc; if ((drive = get_info_ptr(inode->i_rdev)) == NULL) return -ENXIO; MOD_INC_USE_COUNT; if (drive->driver == NULL) ide_init_module(IDE_DRIVER_MODULE); #ifdef CONFIG_KERNELD if (drive->driver == NULL) { if (drive->media == ide_disk) (void) request_module("ide-disk"); if (drive->media == ide_cdrom) (void) request_module("ide-cd"); if (drive->media == ide_tape) (void) request_module("ide-tape"); if (drive->media == ide_floppy) (void) request_module("ide-floppy"); } #endif /* CONFIG_KERNELD */ while (drive->busy) sleep_on(&drive->wqueue); drive->usage++; if (drive->driver != NULL) { if ((rc = DRIVER(drive)->open(inode, filp, drive))) MOD_DEC_USE_COUNT; return rc; } printk ("%s: driver not present\n", drive->name); drive->usage--; MOD_DEC_USE_COUNT; return -ENXIO; } /* * Releasing a block device means we sync() it, so that it can safely * be forgotten about... */ static int ide_release(struct inode * inode, struct file * file) { ide_drive_t *drive; if ((drive = get_info_ptr(inode->i_rdev)) != NULL) { fsync_dev(inode->i_rdev); drive->usage--; if (drive->driver != NULL) DRIVER(drive)->release(inode, file, drive); MOD_DEC_USE_COUNT; } return 0; } int ide_replace_subdriver(ide_drive_t *drive, const char *driver) { if (!drive->present || drive->busy || drive->usage) goto abort; if (drive->driver != NULL && DRIVER(drive)->cleanup(drive)) goto abort; strncpy(drive->driver_req, driver, 9); ide_init_module(IDE_DRIVER_MODULE); drive->driver_req[0] = 0; ide_init_module(IDE_DRIVER_MODULE); if (DRIVER(drive) && !strcmp(DRIVER(drive)->name, driver)) return 0; abort: return 1; } void ide_unregister (unsigned int index) { struct gendisk *gd, **gdp; ide_drive_t *drive, *d; ide_hwif_t *hwif, *g; ide_hwgroup_t *hwgroup; int irq_count = 0, unit; unsigned long flags; if (index >= MAX_HWIFS) return; __save_flags(flags); __cli(); hwif = &ide_hwifs[index]; if (!hwif->present) goto abort; for (unit = 0; unit < MAX_DRIVES; ++unit) { drive = &hwif->drives[unit]; if (!drive->present) continue; if (drive->busy || drive->usage) goto abort; if (drive->driver != NULL && DRIVER(drive)->cleanup(drive)) goto abort; } hwif->present = 0; hwgroup = hwif->hwgroup; /* * free the irq if we were the only hwif using it */ g = hwgroup->hwif; do { if (g->irq == hwif->irq) ++irq_count; g = g->next; } while (g != hwgroup->hwif); if (irq_count == 1) free_irq(hwif->irq, hwgroup); /* * Note that we only release the standard ports, * and do not even try to handle any extra ports * allocated for weird IDE interface chipsets. */ ide_release_region(hwif->io_ports[IDE_DATA_OFFSET], 8); ide_release_region(hwif->io_ports[IDE_CONTROL_OFFSET], 1); /* * Remove us from the hwgroup, and free * the hwgroup if we were the only member */ d = hwgroup->drive; for (index = 0; index < MAX_DRIVES; ++index) { drive = &hwif->drives[index]; if (!drive->present) continue; while (hwgroup->drive->next != drive) hwgroup->drive = hwgroup->drive->next; hwgroup->drive->next = drive->next; if (hwgroup->drive == drive) hwgroup->drive = NULL; if (drive->id != NULL) { kfree(drive->id); drive->id = NULL; } drive->present = 0; } if (d->present) hwgroup->drive = d; while (hwgroup->hwif->next != hwif) hwgroup->hwif = hwgroup->hwif->next; hwgroup->hwif->next = hwif->next; if (hwgroup->hwif == hwif) kfree(hwgroup); else hwgroup->hwif = HWIF(hwgroup->drive); /* * Remove us from the kernel's knowledge */ unregister_blkdev(hwif->major, hwif->name); kfree(blksize_size[hwif->major]); kfree(max_sectors[hwif->major]); kfree(max_readahead[hwif->major]); blk_dev[hwif->major].request_fn = NULL; blk_dev[hwif->major].data = NULL; blk_dev[hwif->major].queue = NULL; blksize_size[hwif->major] = NULL; for (gdp = &gendisk_head; *gdp; gdp = &((*gdp)->next)) if (*gdp == hwif->gd) break; if (*gdp == NULL) printk("gd not in disk chain!\n"); else { gd = *gdp; *gdp = gd->next; kfree(gd->sizes); kfree(gd->part); kfree(gd); } init_hwif_data (index); /* restore hwif data to pristine status */ abort: __restore_flags(flags); } int ide_register (int arg1, int arg2, int irq) { int index, retry = 1; ide_hwif_t *hwif; ide_ioreg_t data_port = (ide_ioreg_t) arg1, ctl_port = (ide_ioreg_t) arg2; do { for (index = 0; index < MAX_HWIFS; ++index) { hwif = &ide_hwifs[index]; if (hwif->io_ports[IDE_DATA_OFFSET] == data_port) goto found; } for (index = 0; index < MAX_HWIFS; ++index) { hwif = &ide_hwifs[index]; if (!hwif->present) goto found; } for (index = 0; index < MAX_HWIFS; index++) ide_unregister(index); } while (retry--); return -1; found: if (hwif->present) ide_unregister(index); if (hwif->present) return -1; ide_init_hwif_ports(hwif->io_ports, data_port, &hwif->irq); if (ctl_port) hwif->io_ports[IDE_CONTROL_OFFSET] = ctl_port; hwif->irq = irq; hwif->noprobe = 0; ide_init_module(IDE_PROBE_MODULE); ide_init_module(IDE_DRIVER_MODULE); return hwif->present ? index : -1; } void ide_add_setting(ide_drive_t *drive, char *name, int rw, int read_ioctl, int write_ioctl, int data_type, int min, int max, int mul_factor, int div_factor, void *data, ide_procset_t *set) { ide_settings_t **p = (ide_settings_t **) &drive->settings, *setting = NULL; while ((*p) && strcmp((*p)->name, name) < 0) p = &((*p)->next); if ((setting = kmalloc(sizeof(*setting), GFP_KERNEL)) == NULL) goto abort; memset(setting, 0, sizeof(*setting)); if ((setting->name = kmalloc(strlen(name) + 1, GFP_KERNEL)) == NULL) goto abort; strcpy(setting->name, name); setting->rw = rw; setting->read_ioctl = read_ioctl; setting->write_ioctl = write_ioctl; setting->data_type = data_type; setting->min = min; setting->max = max; setting->mul_factor = mul_factor; setting->div_factor = div_factor; setting->data = data; setting->set = set; setting->next = *p; if (drive->driver) setting->auto_remove = 1; *p = setting; return; abort: if (setting) kfree(setting); } void ide_remove_setting(ide_drive_t *drive, char *name) { ide_settings_t **p = (ide_settings_t **) &drive->settings, *setting; while ((*p) && strcmp((*p)->name, name)) p = &((*p)->next); if ((setting = (*p)) == NULL) return; (*p) = setting->next; kfree(setting->name); kfree(setting); } static ide_settings_t *ide_find_setting_by_ioctl(ide_drive_t *drive, int cmd) { ide_settings_t *setting = drive->settings; while (setting) { if (setting->read_ioctl == cmd || setting->write_ioctl == cmd) break; setting = setting->next; } return setting; } ide_settings_t *ide_find_setting_by_name(ide_drive_t *drive, char *name) { ide_settings_t *setting = drive->settings; while (setting) { if (strcmp(setting->name, name) == 0) break; setting = setting->next; } return setting; } static void auto_remove_settings(ide_drive_t *drive) { ide_settings_t *setting; repeat: setting = drive->settings; while (setting) { if (setting->auto_remove) { ide_remove_setting(drive, setting->name); goto repeat; } setting = setting->next; } } int ide_read_setting(ide_drive_t *drive, ide_settings_t *setting) { if (!(setting->rw & SETTING_READ)) return -EINVAL; switch(setting->data_type) { case TYPE_BYTE: return *((u8 *) setting->data); case TYPE_SHORT: return *((u16 *) setting->data); case TYPE_INT: case TYPE_INTA: return *((u32 *) setting->data); default: return -EINVAL; } } int ide_write_setting(ide_drive_t *drive, ide_settings_t *setting, int val) { unsigned long flags; int i, rc = 0; u32 *p; if (!suser()) return -EACCES; if (!(setting->rw & SETTING_WRITE)) return -EPERM; if (val < setting->min || val > setting->max) return -EINVAL; __save_flags(flags); __cli(); if (setting->set) rc = setting->set(drive, val); else switch (setting->data_type) { case TYPE_BYTE: *((u8 *) setting->data) = val; break; case TYPE_SHORT: *((u16 *) setting->data) = val; break; case TYPE_INT: *((u32 *) setting->data) = val; break; case TYPE_INTA: p = (u32 *) setting->data; for (i = 0; i < 1 << PARTN_BITS; i++, p++) *p = val; break; } __restore_flags(flags); return rc; } static int set_io_32bit(ide_drive_t *drive, int arg) { drive->io_32bit = arg; #ifdef CONFIG_BLK_DEV_DTC2278 if (HWIF(drive)->chipset == ide_dtc2278) HWIF(drive)->drives[!drive->select.b.unit].io_32bit = arg; #endif /* CONFIG_BLK_DEV_DTC2278 */ return 0; } static int set_using_dma(ide_drive_t *drive, int arg) { if (!drive->driver || !DRIVER(drive)->supports_dma) return -EPERM; if (!drive->id || !(drive->id->capability & 1) || !HWIF(drive)->dmaproc) return -EPERM; if (HWIF(drive)->dmaproc(arg ? ide_dma_on : ide_dma_off, drive)) return -EIO; return 0; } static int set_pio_mode(ide_drive_t *drive, int arg) { struct request rq; if (!HWIF(drive)->tuneproc) return -ENOSYS; if (drive->special.b.set_tune) return -EBUSY; ide_init_drive_cmd(&rq); drive->tune_req = (byte) arg; drive->special.b.set_tune = 1; (void) ide_do_drive_cmd (drive, &rq, ide_wait); return 0; } void ide_add_generic_settings(ide_drive_t *drive) { /* * drive setting name read/write access read ioctl write ioctl data type min max mul_factor div_factor data pointer set function */ ide_add_setting(drive, "io_32bit", drive->no_io_32bit ? SETTING_READ : SETTING_RW, HDIO_GET_32BIT, HDIO_SET_32BIT, TYPE_BYTE, 0, 1 + (SUPPORT_VLB_SYNC << 1), 1, 1, &drive->io_32bit, set_io_32bit); ide_add_setting(drive, "keepsettings", SETTING_RW, HDIO_GET_KEEPSETTINGS, HDIO_SET_KEEPSETTINGS, TYPE_BYTE, 0, 1, 1, 1, &drive->keep_settings, NULL); ide_add_setting(drive, "nice1", SETTING_RW, -1, -1, TYPE_BYTE, 0, 1, 1, 1, &drive->nice1, NULL); ide_add_setting(drive, "pio_mode", SETTING_WRITE, -1, HDIO_SET_PIO_MODE, TYPE_BYTE, 0, 255, 1, 1, NULL, set_pio_mode); ide_add_setting(drive, "slow", SETTING_RW, -1, -1, TYPE_BYTE, 0, 1, 1, 1, &drive->slow, NULL); ide_add_setting(drive, "unmaskirq", drive->no_unmask ? SETTING_READ : SETTING_RW, HDIO_GET_UNMASKINTR, HDIO_SET_UNMASKINTR, TYPE_BYTE, 0, 1, 1, 1, &drive->unmask, NULL); ide_add_setting(drive, "using_dma", SETTING_RW, HDIO_GET_DMA, HDIO_SET_DMA, TYPE_BYTE, 0, 1, 1, 1, &drive->using_dma, set_using_dma); } int ide_wait_cmd (ide_drive_t *drive, int cmd, int nsect, int feature, int sectors, byte *buf) { struct request rq; byte buffer[4]; if (!buf) buf = buffer; memset(buf, 0, 4 + SECTOR_WORDS * 4 * sectors); ide_init_drive_cmd(&rq); rq.buffer = buf; *buf++ = cmd; *buf++ = nsect; *buf++ = feature; *buf++ = sectors; return ide_do_drive_cmd(drive, &rq, ide_wait); } static int ide_ioctl (struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { int err, major, minor; ide_drive_t *drive; struct request rq; kdev_t dev; ide_settings_t *setting; if (!inode || !(dev = inode->i_rdev)) return -EINVAL; major = MAJOR(dev); minor = MINOR(dev); if ((drive = get_info_ptr(inode->i_rdev)) == NULL) return -ENODEV; if ((setting = ide_find_setting_by_ioctl(drive, cmd)) != NULL) { if (cmd == setting->read_ioctl) { err = ide_read_setting(drive, setting); return err >= 0 ? put_user(err, (long *) arg) : err; } else { if ((MINOR(inode->i_rdev) & PARTN_MASK)) return -EINVAL; return ide_write_setting(drive, setting, arg); } } ide_init_drive_cmd (&rq); switch (cmd) { case HDIO_GETGEO: { struct hd_geometry *loc = (struct hd_geometry *) arg; if (!loc || (drive->media != ide_disk && drive->media != ide_floppy)) return -EINVAL; if (put_user(drive->bios_head, (byte *) &loc->heads)) return -EFAULT; if (put_user(drive->bios_sect, (byte *) &loc->sectors)) return -EFAULT; if (put_user(drive->bios_cyl, (unsigned short *) &loc->cylinders)) return -EFAULT; if (put_user((unsigned)drive->part[MINOR(inode->i_rdev)&PARTN_MASK].start_sect, (unsigned long *) &loc->start)) return -EFAULT; return 0; } case BLKFLSBUF: if (!suser()) return -EACCES; fsync_dev(inode->i_rdev); invalidate_buffers(inode->i_rdev); return 0; case BLKGETSIZE: /* Return device size */ return put_user(drive->part[MINOR(inode->i_rdev)&PARTN_MASK].nr_sects, (long *) arg); case BLKRRPART: /* Re-read partition tables */ if (!suser()) return -EACCES; return ide_revalidate_disk(inode->i_rdev); case HDIO_GET_IDENTITY: if (MINOR(inode->i_rdev) & PARTN_MASK) return -EINVAL; if (drive->id == NULL) return -ENOMSG; #if 0 if (copy_to_user((char *)arg, (char *)drive->id, sizeof(*drive->id))) return -EFAULT; #else if (copy_to_user((char *)arg, (char *)drive->id, 142)) return -EFAULT; #endif return 0; case HDIO_GET_NICE: return put_user(drive->dsc_overlap << IDE_NICE_DSC_OVERLAP | drive->atapi_overlap << IDE_NICE_ATAPI_OVERLAP | drive->nice0 << IDE_NICE_0 | drive->nice1 << IDE_NICE_1 | drive->nice2 << IDE_NICE_2, (long *) arg); case HDIO_DRIVE_CMD: { byte args[4], *argbuf = args; int argsize = 4; if (!suser()) return -EACCES; if (NULL == (void *) arg) return ide_do_drive_cmd(drive, &rq, ide_wait); if (copy_from_user(args, (void *)arg, 4)) return -EFAULT; if (args[3]) { argsize = 4 + (SECTOR_WORDS * 4 * args[3]); argbuf = kmalloc(argsize, GFP_KERNEL); if (argbuf == NULL) return -ENOMEM; memcpy(argbuf, args, 4); } err = ide_wait_cmd(drive, args[0], args[1], args[2], args[3], argbuf); if (copy_to_user((void *)arg, argbuf, argsize)) err = -EFAULT; if (argsize > 4) kfree(argbuf); return err; } case HDIO_SCAN_HWIF: { int args[3]; if (!suser()) return -EACCES; if (copy_from_user(args, (void *)arg, 3 * sizeof(int))) return -EFAULT; if (ide_register(args[0], args[1], args[2]) == -1) return -EIO; return 0; } case HDIO_SET_NICE: if (!suser()) return -EACCES; if (drive->driver == NULL) return -EPERM; if (arg != (arg & ((1 << IDE_NICE_DSC_OVERLAP) | (1 << IDE_NICE_1)))) return -EPERM; drive->dsc_overlap = (arg >> IDE_NICE_DSC_OVERLAP) & 1; if (drive->dsc_overlap && !DRIVER(drive)->supports_dsc_overlap) { drive->dsc_overlap = 0; return -EPERM; } drive->nice1 = (arg >> IDE_NICE_1) & 1; return 0; RO_IOCTLS(inode->i_rdev, arg); default: if (drive->driver != NULL) return DRIVER(drive)->ioctl(drive, inode, file, cmd, arg); return -EPERM; } } static int ide_check_media_change (kdev_t i_rdev) { ide_drive_t *drive; if ((drive = get_info_ptr(i_rdev)) == NULL) return -ENODEV; if (drive->driver != NULL) return DRIVER(drive)->media_change(drive); return 0; } void ide_fixstring (byte *s, const int bytecount, const int byteswap) { byte *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ if (byteswap) { /* convert from big-endian to host byte order */ for (p = end ; p != s;) { unsigned short *pp = (unsigned short *) (p -= 2); *pp = ntohs(*pp); } } /* strip leading blanks */ while (s != end && *s == ' ') ++s; /* compress internal blanks and strip trailing blanks */ while (s != end && *s) { if (*s++ != ' ' || (s != end && *s && *s != ' ')) *p++ = *(s-1); } /* wipe out trailing garbage */ while (p != end) *p++ = '\0'; } /* * stridx() returns the offset of c within s, * or -1 if c is '\0' or not found within s. */ __initfunc(static int stridx (const char *s, char c)) { char *i = strchr(s, c); return (i && c) ? i - s : -1; } /* * match_parm() does parsing for ide_setup(): * * 1. the first char of s must be '='. * 2. if the remainder matches one of the supplied keywords, * the index (1 based) of the keyword is negated and returned. * 3. if the remainder is a series of no more than max_vals numbers * separated by commas, the numbers are saved in vals[] and a * count of how many were saved is returned. Base10 is assumed, * and base16 is allowed when prefixed with "0x". * 4. otherwise, zero is returned. */ __initfunc(static int match_parm (char *s, const char *keywords[], int vals[], int max_vals)) { static const char *decimal = "0123456789"; static const char *hex = "0123456789abcdef"; int i, n; if (*s++ == '=') { /* * Try matching against the supplied keywords, * and return -(index+1) if we match one */ if (keywords != NULL) { for (i = 0; *keywords != NULL; ++i) { if (!strcmp(s, *keywords++)) return -(i+1); } } /* * Look for a series of no more than "max_vals" * numeric values separated by commas, in base10, * or base16 when prefixed with "0x". * Return a count of how many were found. */ for (n = 0; (i = stridx(decimal, *s)) >= 0;) { vals[n] = i; while ((i = stridx(decimal, *++s)) >= 0) vals[n] = (vals[n] * 10) + i; if (*s == 'x' && !vals[n]) { while ((i = stridx(hex, *++s)) >= 0) vals[n] = (vals[n] * 0x10) + i; } if (++n == max_vals) break; if (*s == ',' || *s == ';') ++s; } if (!*s) return n; } return 0; /* zero = nothing matched */ } /* * ide_setup() gets called VERY EARLY during initialization, * to handle kernel "command line" strings beginning with "hdx=" * or "ide". Here is the complete set currently supported: * * "hdx=" is recognized for all "x" from "a" to "h", such as "hdc". * "idex=" is recognized for all "x" from "0" to "3", such as "ide1". * * "hdx=noprobe" : drive may be present, but do not probe for it * "hdx=none" : drive is NOT present, ignore cmos and do not probe * "hdx=nowerr" : ignore the WRERR_STAT bit on this drive * "hdx=cdrom" : drive is present, and is a cdrom drive * "hdx=cyl,head,sect" : disk drive is present, with specified geometry * "hdx=autotune" : driver will attempt to tune interface speed * to the fastest PIO mode supported, * if possible for this drive only. * Not fully supported by all chipset types, * and quite likely to cause trouble with * older/odd IDE drives. * * "idebus=xx" : inform IDE driver of VESA/PCI bus speed in MHz, * where "xx" is between 20 and 66 inclusive, * used when tuning chipset PIO modes. * For PCI bus, 25 is correct for a P75 system, * 30 is correct for P90,P120,P180 systems, * and 33 is used for P100,P133,P166 systems. * If in doubt, use idebus=33 for PCI. * As for VLB, it is safest to not specify it. * * "idex=noprobe" : do not attempt to access/use this interface * "idex=base" : probe for an interface at the addr specified, * where "base" is usually 0x1f0 or 0x170 * and "ctl" is assumed to be "base"+0x206 * "idex=base,ctl" : specify both base and ctl * "idex=base,ctl,irq" : specify base, ctl, and irq number * "idex=autotune" : driver will attempt to tune interface speed * to the fastest PIO mode supported, * for all drives on this interface. * Not fully supported by all chipset types, * and quite likely to cause trouble with * older/odd IDE drives. * "idex=noautotune" : driver will NOT attempt to tune interface speed * This is the default for most chipsets, * except the cmd640. * "idex=serialize" : do not overlap operations on idex and ide(x^1) * "idex=four" : four drives on idex and ide(x^1) share same ports * "idex=reset" : reset interface before first use * "idex=nodma" : do not enable DMA by default on either drive * * The following are valid ONLY on ide0, * and the defaults for the base,ctl ports must not be altered. * * "ide0=dtc2278" : probe/support DTC2278 interface * "ide0=ht6560b" : probe/support HT6560B interface * "ide0=cmd640_vlb" : *REQUIRED* for VLB cards with the CMD640 chip * (not for PCI -- automatically detected) * "ide0=qd6580" : probe/support qd6580 interface * "ide0=ali14xx" : probe/support ali14xx chipsets (ALI M1439, M1443, M1445) * "ide0=umc8672" : probe/support umc8672 chipsets */ __initfunc(void ide_setup (char *s)) { int i, vals[3]; ide_hwif_t *hwif; ide_drive_t *drive; unsigned int hw, unit; const char max_drive = 'a' + ((MAX_HWIFS * MAX_DRIVES) - 1); const char max_hwif = '0' + (MAX_HWIFS - 1); printk("ide_setup: %s", s); init_ide_data (); /* * Look for drive options: "hdx=" */ if (s[0] == 'h' && s[1] == 'd' && s[2] >= 'a' && s[2] <= max_drive) { const char *hd_words[] = {"none", "noprobe", "nowerr", "cdrom", "serialize", "autotune", "noautotune", "slow", "swapdata", NULL}; unit = s[2] - 'a'; hw = unit / MAX_DRIVES; unit = unit % MAX_DRIVES; hwif = &ide_hwifs[hw]; drive = &hwif->drives[unit]; switch (match_parm(&s[3], hd_words, vals, 3)) { case -1: /* "none" */ drive->nobios = 1; /* drop into "noprobe" */ case -2: /* "noprobe" */ drive->noprobe = 1; goto done; case -3: /* "nowerr" */ drive->bad_wstat = BAD_R_STAT; hwif->noprobe = 0; goto done; case -4: /* "cdrom" */ drive->present = 1; drive->media = ide_cdrom; hwif->noprobe = 0; goto done; case -5: /* "serialize" */ printk(" -- USE \"ide%d=serialize\" INSTEAD", hw); goto do_serialize; case -6: /* "autotune" */ drive->autotune = 1; goto done; case -7: /* "noautotune" */ drive->autotune = 2; goto done; case -8: /* "slow" */ drive->slow = 1; goto done; case -9: /* swapdata */ drive->bswap = 1; goto done; case 3: /* cyl,head,sect */ drive->media = ide_disk; drive->cyl = drive->bios_cyl = vals[0]; drive->head = drive->bios_head = vals[1]; drive->sect = drive->bios_sect = vals[2]; drive->present = 1; drive->forced_geom = 1; hwif->noprobe = 0; goto done; default: goto bad_option; } } if (s[0] != 'i' || s[1] != 'd' || s[2] != 'e') goto bad_option; /* * Look for bus speed option: "idebus=" */ if (s[3] == 'b' && s[4] == 'u' && s[5] == 's') { if (match_parm(&s[6], NULL, vals, 1) != 1) goto bad_option; if (vals[0] >= 20 && vals[0] <= 66) idebus_parameter = vals[0]; else printk(" -- BAD BUS SPEED! Expected value from 20 to 66"); goto done; } /* * Look for interface options: "idex=" */ if (s[3] >= '0' && s[3] <= max_hwif) { /* * Be VERY CAREFUL changing this: note hardcoded indexes below */ const char *ide_words[] = {"noprobe", "serialize", "autotune", "noautotune", "reset", "nodma", "four", "qd6580", "ht6560b", "cmd640_vlb", "dtc2278", "umc8672", "ali14xx", "dc4030", NULL}; hw = s[3] - '0'; hwif = &ide_hwifs[hw]; i = match_parm(&s[4], ide_words, vals, 3); /* * Cryptic check to ensure chipset not already set for hwif: */ if (i > 0 || i <= -7) { /* is parameter a chipset name? */ if (hwif->chipset != ide_unknown) goto bad_option; /* chipset already specified */ if (i <= -7 && hw != 0) goto bad_hwif; /* chipset drivers are for "ide0=" only */ if (ide_hwifs[hw^1].chipset != ide_unknown) goto bad_option; /* chipset for 2nd port already specified */ printk("\n"); } switch (i) { #ifdef CONFIG_BLK_DEV_PDC4030 case -14: /* "dc4030" */ { extern void setup_pdc4030(ide_hwif_t *); setup_pdc4030(hwif); goto done; } #endif /* CONFIG_BLK_DEV_PDC4030 */ #ifdef CONFIG_BLK_DEV_ALI14XX case -13: /* "ali14xx" */ { extern void init_ali14xx (void); init_ali14xx(); goto done; } #endif /* CONFIG_BLK_DEV_ALI14XX */ #ifdef CONFIG_BLK_DEV_UMC8672 case -12: /* "umc8672" */ { extern void init_umc8672 (void); init_umc8672(); goto done; } #endif /* CONFIG_BLK_DEV_UMC8672 */ #ifdef CONFIG_BLK_DEV_DTC2278 case -11: /* "dtc2278" */ { extern void init_dtc2278 (void); init_dtc2278(); goto done; } #endif /* CONFIG_BLK_DEV_DTC2278 */ #ifdef CONFIG_BLK_DEV_CMD640 case -10: /* "cmd640_vlb" */ { extern int cmd640_vlb; /* flag for cmd640.c */ cmd640_vlb = 1; goto done; } #endif /* CONFIG_BLK_DEV_CMD640 */ #ifdef CONFIG_BLK_DEV_HT6560B case -9: /* "ht6560b" */ { extern void init_ht6560b (void); init_ht6560b(); goto done; } #endif /* CONFIG_BLK_DEV_HT6560B */ #if CONFIG_BLK_DEV_QD6580 case -8: /* "qd6580" */ { extern void init_qd6580 (void); init_qd6580(); goto done; } #endif /* CONFIG_BLK_DEV_QD6580 */ #ifdef CONFIG_BLK_DEV_4DRIVES case -7: /* "four" drives on one set of ports */ { ide_hwif_t *mate = &ide_hwifs[hw^1]; mate->drives[0].select.all ^= 0x20; mate->drives[1].select.all ^= 0x20; hwif->chipset = mate->chipset = ide_4drives; mate->irq = hwif->irq; memcpy(mate->io_ports, hwif->io_ports, sizeof(hwif->io_ports)); goto do_serialize; } #endif /* CONFIG_BLK_DEV_4DRIVES */ case -6: /* nodma */ hwif->no_autodma = 1; goto done; case -5: /* "reset" */ hwif->reset = 1; goto done; case -4: /* "noautotune" */ hwif->drives[0].autotune = 2; hwif->drives[1].autotune = 2; goto done; case -3: /* "autotune" */ hwif->drives[0].autotune = 1; hwif->drives[1].autotune = 1; goto done; case -2: /* "serialize" */ do_serialize: hwif->mate = &ide_hwifs[hw^1]; hwif->mate->mate = hwif; hwif->serialized = hwif->mate->serialized = 1; goto done; case -1: /* "noprobe" */ hwif->noprobe = 1; goto done; case 1: /* base */ vals[1] = vals[0] + 0x206; /* default ctl */ case 2: /* base,ctl */ vals[2] = 0; /* default irq = probe for it */ case 3: /* base,ctl,irq */ ide_init_hwif_ports(hwif->io_ports, (ide_ioreg_t) vals[0], &hwif->irq); hwif->io_ports[IDE_CONTROL_OFFSET] = (ide_ioreg_t) vals[1]; hwif->irq = vals[2]; hwif->noprobe = 0; hwif->chipset = ide_generic; goto done; case 0: goto bad_option; default: printk(" -- SUPPORT NOT CONFIGURED IN THIS KERNEL\n"); return; } } bad_option: printk(" -- BAD OPTION\n"); return; bad_hwif: printk("-- NOT SUPPORTED ON ide%d", hw); done: printk("\n"); } /* * This routine is called from the partition-table code in genhd.c * to "convert" a drive to a logical geometry with fewer than 1024 cyls. * * The second parameter, "xparm", determines exactly how the translation * will be handled: * 0 = convert to CHS with fewer than 1024 cyls * using the same method as Ontrack DiskManager. * 1 = same as "0", plus offset everything by 63 sectors. * -1 = similar to "0", plus redirect sector 0 to sector 1. * >1 = convert to a CHS geometry with "xparm" heads. * * Returns 0 if the translation was not possible, if the device was not * an IDE disk drive, or if a geometry was "forced" on the commandline. * Returns 1 if the geometry translation was successful. */ int ide_xlate_1024 (kdev_t i_rdev, int xparm, const char *msg) { ide_drive_t *drive; static const byte head_vals[] = {4, 8, 16, 32, 64, 128, 255, 0}; const byte *heads = head_vals; unsigned long tracks; if ((drive = get_info_ptr(i_rdev)) == NULL || drive->forced_geom) return 0; if (xparm > 1 && xparm <= drive->bios_head && drive->bios_sect == 63) return 0; /* we already have a translation */ printk("%s ", msg); if (xparm == -1 && drive->bios_cyl < 1024) return 0; /* small disk: no translation needed */ if (drive->id) { drive->cyl = drive->id->cyls; drive->head = drive->id->heads; drive->sect = drive->id->sectors; } drive->bios_cyl = drive->cyl; drive->bios_head = drive->head; drive->bios_sect = drive->sect; drive->special.b.set_geometry = 1; tracks = drive->bios_cyl * drive->bios_head * drive->bios_sect / 63; drive->bios_sect = 63; if (xparm > 1) { drive->bios_head = xparm; drive->bios_cyl = tracks / drive->bios_head; } else { while (drive->bios_cyl >= 1024) { drive->bios_head = *heads; drive->bios_cyl = tracks / drive->bios_head; if (0 == *++heads) break; } #if FAKE_FDISK_FOR_EZDRIVE if (xparm == -1) { drive->remap_0_to_1 = 1; msg = "0->1"; } else #endif /* FAKE_FDISK_FOR_EZDRIVE */ if (xparm == 1) { drive->sect0 = 63; drive->bios_cyl = (tracks - 1) / drive->bios_head; msg = "+63"; } printk("[remap %s] ", msg); } drive->part[0].nr_sects = current_capacity(drive); printk("[%d/%d/%d]", drive->bios_cyl, drive->bios_head, drive->bios_sect); return 1; } /* * probe_for_hwifs() finds/initializes "known" IDE interfaces */ __initfunc(static void probe_for_hwifs (void)) { #ifdef CONFIG_PCI if (pcibios_present()) { #ifdef CONFIG_BLK_DEV_IDEPCI ide_scan_pcibus(); #else #ifdef CONFIG_BLK_DEV_RZ1000 { extern void ide_probe_for_rz100x(void); ide_probe_for_rz100x(); } #endif /* CONFIG_BLK_DEV_RZ1000 */ #endif /* CONFIG_BLK_DEV_IDEPCI */ } #endif /* CONFIG_PCI */ #ifdef CONFIG_BLK_DEV_CMD640 { extern void ide_probe_for_cmd640x(void); ide_probe_for_cmd640x(); } #endif /* CONFIG_BLK_DEV_CMD640 */ #ifdef CONFIG_BLK_DEV_PDC4030 { extern int init_pdc4030(void); (void) init_pdc4030(); } #endif /* CONFIG_BLK_DEV_PDC4030 */ } __initfunc(void ide_init_builtin_drivers (void)) { /* * Probe for special PCI and other "known" interface chipsets */ probe_for_hwifs (); #ifdef CONFIG_BLK_DEV_IDE #ifdef __mc68000__ if (ide_hwifs[0].io_ports[IDE_DATA_OFFSET]) { ide_get_lock(&ide_lock, NULL, NULL); disable_irq(ide_hwifs[0].irq); } #endif /* __mc68000__ */ (void) ideprobe_init(); #ifdef __mc68000__ if (ide_hwifs[0].io_ports[IDE_DATA_OFFSET]) { enable_irq(ide_hwifs[0].irq); ide_release_lock(&ide_lock); } #endif /* __mc68000__ */ #endif /* CONFIG_BLK_DEV_IDE */ #ifdef CONFIG_PROC_FS proc_ide_init(); #endif /* * Attempt to match drivers for the available drives */ #ifdef CONFIG_BLK_DEV_IDEDISK (void) idedisk_init(); #endif /* CONFIG_BLK_DEV_IDEDISK */ #ifdef CONFIG_BLK_DEV_IDECD (void) ide_cdrom_init(); #endif /* CONFIG_BLK_DEV_IDECD */ #ifdef CONFIG_BLK_DEV_IDETAPE (void) idetape_init(); #endif /* CONFIG_BLK_DEV_IDETAPE */ #ifdef CONFIG_BLK_DEV_IDEFLOPPY (void) idefloppy_init(); #endif /* CONFIG_BLK_DEV_IDEFLOPPY */ #ifdef CONFIG_BLK_DEV_IDESCSI (void) idescsi_init(); #endif /* CONFIG_BLK_DEV_IDESCSI */ } static int default_cleanup (ide_drive_t *drive) { return ide_unregister_subdriver(drive); } static void default_do_request(ide_drive_t *drive, struct request *rq, unsigned long block) { ide_end_request(0, HWGROUP(drive)); } static void default_end_request (byte uptodate, ide_hwgroup_t *hwgroup) { ide_end_request(uptodate, hwgroup); } static int default_ioctl (ide_drive_t *drive, struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { return -EIO; } static int default_open (struct inode *inode, struct file *filp, ide_drive_t *drive) { drive->usage--; return -EIO; } static void default_release (struct inode *inode, struct file *filp, ide_drive_t *drive) { } static int default_check_media_change (ide_drive_t *drive) { return 1; } static void default_pre_reset (ide_drive_t *drive) { } static unsigned long default_capacity (ide_drive_t *drive) { return 0x7fffffff; /* cdrom or tape */ } static void default_special (ide_drive_t *drive) { special_t *s = &drive->special; s->all = 0; drive->mult_req = 0; } static void setup_driver_defaults (ide_drive_t *drive) { ide_driver_t *d = drive->driver; if (d->cleanup == NULL) d->cleanup = default_cleanup; if (d->do_request == NULL) d->do_request = default_do_request; if (d->end_request == NULL) d->end_request = default_end_request; if (d->ioctl == NULL) d->ioctl = default_ioctl; if (d->open == NULL) d->open = default_open; if (d->release == NULL) d->release = default_release; if (d->media_change == NULL) d->media_change = default_check_media_change; if (d->pre_reset == NULL) d->pre_reset = default_pre_reset; if (d->capacity == NULL) d->capacity = default_capacity; if (d->special == NULL) d->special = default_special; } ide_drive_t *ide_scan_devices (byte media, const char *name, ide_driver_t *driver, int n) { unsigned int unit, index, i; for (index = 0; index < MAX_HWIFS; ++index) if (ide_hwifs[index].present) goto search; ide_init_module(IDE_PROBE_MODULE); search: for (index = 0, i = 0; index < MAX_HWIFS; ++index) { ide_hwif_t *hwif = &ide_hwifs[index]; if (!hwif->present) continue; for (unit = 0; unit < MAX_DRIVES; ++unit) { ide_drive_t *drive = &hwif->drives[unit]; char *req = drive->driver_req; if (*req && !strstr(name, req)) continue; if (drive->present && drive->media == media && drive->driver == driver && ++i > n) return drive; } } return NULL; } static ide_proc_entry_t generic_subdriver_entries[] = { { "capacity", proc_ide_read_capacity, NULL }, { NULL, NULL, NULL } }; int ide_register_subdriver (ide_drive_t *drive, ide_driver_t *driver, int version) { unsigned long flags; __save_flags(flags); __cli(); if (version != IDE_SUBDRIVER_VERSION || !drive->present || drive->driver != NULL || drive->busy || drive->usage) { __restore_flags(flags); return 1; } drive->driver = driver; setup_driver_defaults(drive); __restore_flags(flags); if (drive->autotune != 2) { if (driver->supports_dma && HWIF(drive)->dmaproc != NULL) (void) (HWIF(drive)->dmaproc(ide_dma_check, drive)); drive->dsc_overlap = (drive->next != drive && driver->supports_dsc_overlap); drive->nice1 = 1; } drive->revalidate = 1; ide_add_proc_entries(drive, generic_subdriver_entries); ide_add_proc_entries(drive, driver->proc); return 0; } int ide_unregister_subdriver (ide_drive_t *drive) { unsigned long flags; __save_flags(flags); __cli(); if (drive->usage || drive->busy || drive->driver == NULL || DRIVER(drive)->busy) { __restore_flags(flags); return 1; } ide_remove_proc_entries(drive, DRIVER(drive)->proc); ide_remove_proc_entries(drive, generic_subdriver_entries); auto_remove_settings(drive); drive->driver = NULL; __restore_flags(flags); return 0; } int ide_register_module (ide_module_t *module) { ide_module_t *p = ide_modules; while (p) { if (p == module) return 1; p = p->next; } module->next = ide_modules; ide_modules = module; revalidate_drives(); return 0; } void ide_unregister_module (ide_module_t *module) { ide_module_t **p; for (p = &ide_modules; (*p) && (*p) != module; p = &((*p)->next)); if (*p) *p = (*p)->next; } struct file_operations ide_fops[] = {{ NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* poll */ ide_ioctl, /* ioctl */ NULL, /* mmap */ ide_open, /* open */ ide_release, /* release */ block_fsync, /* fsync */ NULL, /* fasync */ ide_check_media_change, /* check_media_change */ ide_revalidate_disk /* revalidate */ }}; EXPORT_SYMBOL(ide_hwifs); EXPORT_SYMBOL(ide_register_module); EXPORT_SYMBOL(ide_unregister_module); /* * Probe module */ EXPORT_SYMBOL(ide_timer_expiry); EXPORT_SYMBOL(ide_intr); EXPORT_SYMBOL(ide_geninit); EXPORT_SYMBOL(ide_fops); EXPORT_SYMBOL(ide_get_queue); EXPORT_SYMBOL(do_ide0_request); EXPORT_SYMBOL(ide_add_generic_settings); #if MAX_HWIFS > 1 EXPORT_SYMBOL(do_ide1_request); #endif /* MAX_HWIFS > 1 */ #if MAX_HWIFS > 2 EXPORT_SYMBOL(do_ide2_request); #endif /* MAX_HWIFS > 2 */ #if MAX_HWIFS > 3 EXPORT_SYMBOL(do_ide3_request); #endif /* MAX_HWIFS > 3 */ /* * Driver module */ EXPORT_SYMBOL(ide_scan_devices); EXPORT_SYMBOL(ide_register_subdriver); EXPORT_SYMBOL(ide_unregister_subdriver); EXPORT_SYMBOL(ide_input_data); EXPORT_SYMBOL(ide_output_data); EXPORT_SYMBOL(atapi_input_bytes); EXPORT_SYMBOL(atapi_output_bytes); EXPORT_SYMBOL(ide_set_handler); EXPORT_SYMBOL(ide_dump_status); EXPORT_SYMBOL(ide_error); EXPORT_SYMBOL(ide_fixstring); EXPORT_SYMBOL(ide_wait_stat); EXPORT_SYMBOL(ide_do_reset); EXPORT_SYMBOL(ide_init_drive_cmd); EXPORT_SYMBOL(ide_do_drive_cmd); EXPORT_SYMBOL(ide_end_drive_cmd); EXPORT_SYMBOL(ide_end_request); EXPORT_SYMBOL(ide_revalidate_disk); EXPORT_SYMBOL(ide_cmd); EXPORT_SYMBOL(ide_wait_cmd); EXPORT_SYMBOL(ide_stall_queue); EXPORT_SYMBOL(ide_add_proc_entries); EXPORT_SYMBOL(ide_remove_proc_entries); EXPORT_SYMBOL(ide_add_setting); EXPORT_SYMBOL(ide_remove_setting); EXPORT_SYMBOL(proc_ide_read_geometry); EXPORT_SYMBOL(ide_register); EXPORT_SYMBOL(ide_unregister); /* * This is gets invoked once during initialization, to set *everything* up */ __initfunc(int ide_init (void)) { init_ide_data (); initializing = 1; ide_init_builtin_drivers(); initializing = 0; return 0; } #ifdef MODULE char *options = NULL; MODULE_PARM(options,"s"); __initfunc(static void parse_options (char *line)) { char *next = line; if (line == NULL || !*line) return; while ((line = next) != NULL) { if ((next = strchr(line,' ')) != NULL) *next++ = 0; if (!strncmp(line,"ide",3) || (!strncmp(line,"hd",2) && line[2] != '=')) ide_setup(line); } } int init_module (void) { parse_options(options); return ide_init(); } void cleanup_module (void) { int index; for (index = 0; index < MAX_HWIFS; ++index) ide_unregister(index); } #endif /* MODULE */