/* * linux/drivers/block/opti621.c Version 0.3 Nov 29, 1997 * * Copyright (C) 1996-1998 Linus Torvalds & author (see below) */ /* * OPTi 82C621 chipset EIDE controller driver * Author: Jaromir Koutek (E-mail: Jaromir.Koutek@st.mff.cuni.cz) * * Some parts of code are from ali14xx.c and from rz1000.c. * I used docs from OPTi databook, from ftp.opti.com, file 9123-0002.ps * and disassembled/traced setupvic.exe (DOS program). * It increases kernel code about 2 kB. * My card is Octek PIDE 1.01 (on card) or OPTiViC (program). * It has a place for a secondary connector in circuit, but nothing * is there. It cost about $25. Also BIOS says no address for * secondary controller (see bellow in ide_init_opti621). * I've only tested this on my system, which only has one disk. * It's Western Digital WDAC2850, with PIO mode 3. The PCI bus * is at 20 MHz (I have DX2/80, I tried PCI at 40, but I got random * lockups). I tried the OCTEK double speed CD-ROM and * it does not work! But I can't boot DOS also, so it's probably * hardware fault. I have connected Conner 80MB, the Seagate 850MB (no * problems) and Seagate 1GB (as slave, WD as master). My experiences * with the third, 1GB drive: I got 3MB/s (hdparm), but sometimes * it slows to about 100kB/s! I don't know why and I have * not this drive now, so I can't try it again. * If you have two disk, please boot in single mode and carefully * (you can boot on read-only fs) try to set PIO mode 0 etc. * The main problem with OPTi is that some timings for master * and slave must be the same. For example, if you have master * PIO 3 and slave PIO 0, driver have to set some timings of * master for PIO 0. Second problem is that opti621_tune_drive * got only one drive to set, but have to set both drives. * This is solved in compute_pios. If you don't set * the second drive, compute_pios use ide_get_best_pio_mode * for autoselect mode (you can change it to PIO 0, if you want). * If you then set the second drive to another PIO, the old value * (automatically selected) will be overrided by yours. * I don't know what there is a 25/33MHz switch in configuration * register, driver is written for use at any frequency which get * (use idebus=xx to select PCI bus speed). * Use ide0=autotune for automatical tune of the PIO modes. * If you get strange results, do not use this and set PIO manually * by hdparm. * I write this driver because I lost the paper ("manual") with * settings of jumpers on the card and I have to boot Linux with * Loadlin except LILO, cause I have to run the setupvic.exe program * already or I get disk errors (my test: rpm -Vf * /usr/X11R6/bin/XF86_SVGA - or any big file). * Some numbers from hdparm -t /dev/hda: * Timing buffer-cache reads: 32 MB in 3.02 seconds =10.60 MB/sec * Timing buffered disk reads: 16 MB in 5.52 seconds = 2.90 MB/sec * I have 4 Megs/s before, but I don't know why (maybe bad hdparm). * If you tried this driver, please send me a E-mail of your experiences. * My E-mail address is Jaromir.Koutek@st.mff.cuni.cz (I hope * till 30. 6. 2000), otherwise you can try miri@atrey.karlin.mff.cuni.cz. * I think OPTi is trademark of OPTi, Octek is trademark of Octek and so on. */ #undef REALLY_SLOW_IO /* most systems can safely undef this */ #define OPTI621_DEBUG /* define for debug messages */ #include #include #include #include #include #include #include #include #include #include "ide.h" #include "ide_modes.h" #include #include #define OPTI621_MAX_PIO 3 /* In fact, I do not have any PIO 4 drive * (address: 25 ns, data: 70 ns, recovery: 35 ns), * but OPTi 82C621 is programmable and it can do (minimal values): * on 40MHz PCI bus (pulse 25 ns): * address: 25 ns, data: 25 ns, recovery: 50 ns; * on 20MHz PCI bus (pulse 50 ns): * address: 50 ns, data: 50 ns, recovery: 100 ns. */ /* #define READ_PREFETCH 0 */ /* Uncommnent for disable read prefetch. * There is some readprefetch capatibility in hdparm, * but when I type hdparm -P 1 /dev/hda, I got errors * and till reset drive is inacessible. * This (hw) read prefetch is safe on my drive. */ #ifndef READ_PREFETCH #define READ_PREFETCH 0x40 /* read prefetch is enabled */ #endif /* else read prefetch is disabled */ #define READ_REG 0 /* index of Read cycle timing register */ #define WRITE_REG 1 /* index of Write cycle timing register */ #define MISC_REG 6 /* index of Miscellaneous register */ #define CNTRL_REG 3 /* index of Control register */ int reg_base; #define PIO_NOT_EXIST 254 #define PIO_DONT_KNOW 255 /* there are stored pio numbers from other calls of opti621_tune_drive */ static void compute_pios(ide_drive_t *drive, byte pio) /* Store values into drive->drive_data * second_contr - 0 for primary controller, 1 for secondary * slave_drive - 0 -> pio is for master, 1 -> pio is for slave * pio - PIO mode for selected drive (for other we don't know) */ { int d; ide_hwif_t *hwif = HWIF(drive); drive->drive_data = ide_get_best_pio_mode(drive, pio, OPTI621_MAX_PIO, NULL); for (d = 0; d < 2; ++d) { drive = &hwif->drives[d]; if (drive->present) { if (drive->drive_data == PIO_DONT_KNOW) drive->drive_data = ide_get_best_pio_mode(drive, 255, OPTI621_MAX_PIO, NULL); #ifdef OPTI621_DEBUG printk("%s: Selected PIO mode %d\n", drive->name, drive->drive_data); #endif } else { drive->drive_data = PIO_NOT_EXIST; } } } int cmpt_clk(int time, int bus_speed) /* Returns (rounded up) time in clocks for time in ns, * with bus_speed in MHz. * Example: bus_speed = 40 MHz, time = 80 ns * 1000/40 = 25 ns (clk value), * 80/25 = 3.2, rounded up to 4 (I hope ;-)). * Use idebus=xx to select right frequency. */ { return ((time*bus_speed+999)/1000); } static void write_reg(byte value, int reg) /* Write value to register reg, base of register * is at reg_base (0x1f0 primary, 0x170 secondary, * if not changed by PCI configuration). * This is from setupvic.exe program. */ { inw(reg_base+1); inw(reg_base+1); outb(3, reg_base+2); outb(value, reg_base+reg); outb(0x83, reg_base+2); } static byte read_reg(int reg) /* Read value from register reg, base of register * is at reg_base (0x1f0 primary, 0x170 secondary, * if not changed by PCI configuration). * This is from setupvic.exe program. */ { byte ret; inw(reg_base+1); inw(reg_base+1); outb(3, reg_base+2); ret=inb(reg_base+reg); outb(0x83, reg_base+2); return ret; } typedef struct pio_clocks_s { int address_time; /* Address setup (clocks) */ int data_time; /* Active/data pulse (clocks) */ int recovery_time; /* Recovery time (clocks) */ } pio_clocks_t; static void compute_clocks(int pio, pio_clocks_t *clks) { if (pio != PIO_NOT_EXIST) { int adr_setup, data_pls, bus_speed; bus_speed = ide_system_bus_speed(); adr_setup = ide_pio_timings[pio].setup_time; data_pls = ide_pio_timings[pio].active_time; clks->address_time = cmpt_clk(adr_setup, bus_speed); clks->data_time = cmpt_clk(data_pls, bus_speed); clks->recovery_time = cmpt_clk(ide_pio_timings[pio].cycle_time - adr_setup-data_pls, bus_speed); if (clks->address_time<1) clks->address_time = 1; if (clks->address_time>4) clks->address_time = 4; if (clks->data_time<1) clks->data_time = 1; if (clks->data_time>16) clks->data_time = 16; if (clks->recovery_time<2) clks->recovery_time = 2; if (clks->recovery_time>17) clks->recovery_time = 17; } else { clks->address_time = 1; clks->data_time = 1; clks->recovery_time = 2; /* minimal values */ } } /* Main tune procedure, hooked by tuneproc. */ static void opti621_tune_drive (ide_drive_t *drive, byte pio) { /* primary and secondary drives share some registers, * so we have to program both drives */ unsigned long flags; byte pio1, pio2; pio_clocks_t first, second; int ax, drdy; byte cycle1, cycle2, misc; ide_hwif_t *hwif = HWIF(drive); /* set drive->drive_data for both drives */ compute_pios(drive, pio); pio1 = hwif->drives[0].drive_data; pio2 = hwif->drives[1].drive_data; compute_clocks(pio1, &first); compute_clocks(pio2, &second); /* ax = max(a1,a2) */ ax = (first.address_time < second.address_time) ? second.address_time : first.address_time; drdy = 2; /* DRDY is default 2 (by OPTi Databook) */ cycle1 = ((first.data_time-1)<<4) | (first.recovery_time-2); cycle2 = ((second.data_time-1)<<4) | (second.recovery_time-2); misc = READ_PREFETCH | ((ax-1)<<4) | ((drdy-2)<<1); #ifdef OPTI621_DEBUG printk("%s: master: address: %d, data: %d, recovery: %d, drdy: %d [clk]\n", hwif->name, ax, first.data_time, first.recovery_time, drdy); printk("%s: slave: address: %d, data: %d, recovery: %d, drdy: %d [clk]\n", hwif->name, ax, second.data_time, second.recovery_time, drdy); #endif save_flags(flags); cli(); reg_base = hwif->io_ports[IDE_DATA_OFFSET]; outb(0xc0, reg_base+CNTRL_REG); /* allow Register-B */ outb(0xff, reg_base+5); /* hmm, setupvic.exe does this ;-) */ inb(reg_base+CNTRL_REG); /* if reads 0xff, adapter not exist? */ read_reg(CNTRL_REG); /* if reads 0xc0, no interface exist? */ read_reg(5); /* read version, probably 0 */ /* program primary drive */ write_reg(0, MISC_REG); /* select Index-0 for Register-A */ write_reg(cycle1, READ_REG); /* set read cycle timings */ write_reg(cycle1, WRITE_REG); /* set write cycle timings */ /* program secondary drive */ write_reg(1, MISC_REG); /* select Index-1 for Register-B */ write_reg(cycle2, READ_REG); /* set read cycle timings */ write_reg(cycle2, WRITE_REG); /* set write cycle timings */ write_reg(0x85, CNTRL_REG); /* use Register-A for drive 0 */ /* use Register-B for drive 1 */ write_reg(misc, MISC_REG); /* set address setup, DRDY timings, */ /* and read prefetch for both drives */ restore_flags(flags); } /* * ide_init_opti621() is called once for each hwif found at boot. */ void ide_init_opti621 (ide_hwif_t *hwif) { hwif->drives[0].drive_data = PIO_DONT_KNOW; hwif->drives[1].drive_data = PIO_DONT_KNOW; hwif->tuneproc = &opti621_tune_drive; }