/***************************************************************************** * raid5.c : Multiple Devices driver for Linux * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman * * RAID-5 management functions. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include static struct md_personality raid5_personality; /* * Stripe cache */ #define NR_STRIPES 128 #define HASH_PAGES 1 #define HASH_PAGES_ORDER 0 #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) #define HASH_MASK (NR_HASH - 1) #define stripe_hash(raid_conf, sect, size) ((raid_conf)->stripe_hashtbl[((sect) / (size >> 9)) & HASH_MASK]) /* * The following can be used to debug the driver */ #define RAID5_DEBUG 0 #if RAID5_DEBUG #define PRINTK(x) do { printk x; } while (0); #else #define PRINTK(x) do { ; } while (0) #endif static inline int stripe_locked(struct stripe_head *sh) { return test_bit(STRIPE_LOCKED, &sh->state); } static inline int stripe_error(struct stripe_head *sh) { return test_bit(STRIPE_ERROR, &sh->state); } /* * Stripes are locked whenever new buffers can't be added to them. */ static inline void lock_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; if (!test_and_set_bit(STRIPE_LOCKED, &sh->state)) { PRINTK(("locking stripe %lu\n", sh->sector)); raid_conf->nr_locked_stripes++; } } static inline void unlock_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; if (test_and_clear_bit(STRIPE_LOCKED, &sh->state)) { PRINTK(("unlocking stripe %lu\n", sh->sector)); raid_conf->nr_locked_stripes--; wake_up(&sh->wait); } } static inline void finish_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; unlock_stripe(sh); sh->cmd = STRIPE_NONE; sh->phase = PHASE_COMPLETE; raid_conf->nr_pending_stripes--; raid_conf->nr_cached_stripes++; wake_up(&raid_conf->wait_for_stripe); } void __wait_on_stripe(struct stripe_head *sh) { DECLARE_WAITQUEUE(wait, current); PRINTK(("wait_on_stripe %lu\n", sh->sector)); sh->count++; add_wait_queue(&sh->wait, &wait); repeat: current->state = TASK_UNINTERRUPTIBLE; if (stripe_locked(sh)) { schedule(); goto repeat; } PRINTK(("wait_on_stripe %lu done\n", sh->sector)); remove_wait_queue(&sh->wait, &wait); sh->count--; current->state = TASK_RUNNING; } static inline void wait_on_stripe(struct stripe_head *sh) { if (stripe_locked(sh)) __wait_on_stripe(sh); } static inline void remove_hash(struct raid5_data *raid_conf, struct stripe_head *sh) { PRINTK(("remove_hash(), stripe %lu\n", sh->sector)); if (sh->hash_pprev) { if (sh->hash_next) sh->hash_next->hash_pprev = sh->hash_pprev; *sh->hash_pprev = sh->hash_next; sh->hash_pprev = NULL; raid_conf->nr_hashed_stripes--; } } static inline void insert_hash(struct raid5_data *raid_conf, struct stripe_head *sh) { struct stripe_head **shp = &stripe_hash(raid_conf, sh->sector, sh->size); PRINTK(("insert_hash(), stripe %lu, nr_hashed_stripes %d\n", sh->sector, raid_conf->nr_hashed_stripes)); if ((sh->hash_next = *shp) != NULL) (*shp)->hash_pprev = &sh->hash_next; *shp = sh; sh->hash_pprev = shp; raid_conf->nr_hashed_stripes++; } static struct buffer_head *get_free_buffer(struct stripe_head *sh, int b_size) { struct buffer_head *bh; unsigned long flags; save_flags(flags); cli(); if ((bh = sh->buffer_pool) == NULL) return NULL; sh->buffer_pool = bh->b_next; bh->b_size = b_size; restore_flags(flags); return bh; } static struct buffer_head *get_free_bh(struct stripe_head *sh) { struct buffer_head *bh; unsigned long flags; save_flags(flags); cli(); if ((bh = sh->bh_pool) == NULL) return NULL; sh->bh_pool = bh->b_next; restore_flags(flags); return bh; } static void put_free_buffer(struct stripe_head *sh, struct buffer_head *bh) { unsigned long flags; save_flags(flags); cli(); bh->b_next = sh->buffer_pool; sh->buffer_pool = bh; restore_flags(flags); } static void put_free_bh(struct stripe_head *sh, struct buffer_head *bh) { unsigned long flags; save_flags(flags); cli(); bh->b_next = sh->bh_pool; sh->bh_pool = bh; restore_flags(flags); } static struct stripe_head *get_free_stripe(struct raid5_data *raid_conf) { struct stripe_head *sh; unsigned long flags; save_flags(flags); cli(); if ((sh = raid_conf->free_sh_list) == NULL) { restore_flags(flags); return NULL; } raid_conf->free_sh_list = sh->free_next; raid_conf->nr_free_sh--; if (!raid_conf->nr_free_sh && raid_conf->free_sh_list) printk ("raid5: bug: free_sh_list != NULL, nr_free_sh == 0\n"); restore_flags(flags); if (sh->hash_pprev || sh->nr_pending || sh->count) printk("get_free_stripe(): bug\n"); return sh; } static void put_free_stripe(struct raid5_data *raid_conf, struct stripe_head *sh) { unsigned long flags; save_flags(flags); cli(); sh->free_next = raid_conf->free_sh_list; raid_conf->free_sh_list = sh; raid_conf->nr_free_sh++; restore_flags(flags); } static void shrink_buffers(struct stripe_head *sh, int num) { struct buffer_head *bh; while (num--) { if ((bh = get_free_buffer(sh, -1)) == NULL) return; free_page((unsigned long) bh->b_data); kfree(bh); } } static void shrink_bh(struct stripe_head *sh, int num) { struct buffer_head *bh; while (num--) { if ((bh = get_free_bh(sh)) == NULL) return; kfree(bh); } } static int grow_buffers(struct stripe_head *sh, int num, int b_size, int priority) { struct buffer_head *bh; while (num--) { if ((bh = kmalloc(sizeof(struct buffer_head), priority)) == NULL) return 1; memset(bh, 0, sizeof (struct buffer_head)); bh->b_data = (char *) __get_free_page(priority); if (!bh->b_data) { kfree(bh); return 1; } bh->b_size = b_size; put_free_buffer(sh, bh); } return 0; } static int grow_bh(struct stripe_head *sh, int num, int priority) { struct buffer_head *bh; while (num--) { if ((bh = kmalloc(sizeof(struct buffer_head), priority)) == NULL) return 1; memset(bh, 0, sizeof (struct buffer_head)); put_free_bh(sh, bh); } return 0; } static void raid5_kfree_buffer(struct stripe_head *sh, struct buffer_head *bh) { unsigned long flags; save_flags(flags); cli(); put_free_buffer(sh, bh); restore_flags(flags); } static void raid5_kfree_bh(struct stripe_head *sh, struct buffer_head *bh) { unsigned long flags; save_flags(flags); cli(); put_free_bh(sh, bh); restore_flags(flags); } static void raid5_kfree_old_bh(struct stripe_head *sh, int i) { if (!sh->bh_old[i]) { printk("raid5_kfree_old_bh: bug: sector %lu, index %d not present\n", sh->sector, i); return; } raid5_kfree_buffer(sh, sh->bh_old[i]); sh->bh_old[i] = NULL; } static void raid5_update_old_bh(struct stripe_head *sh, int i) { PRINTK(("stripe %lu, idx %d, updating cache copy\n", sh->sector, i)); if (!sh->bh_copy[i]) { printk("raid5_update_old_bh: bug: sector %lu, index %d not present\n", sh->sector, i); return; } if (sh->bh_old[i]) raid5_kfree_old_bh(sh, i); sh->bh_old[i] = sh->bh_copy[i]; sh->bh_copy[i] = NULL; } static void kfree_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; int disks = raid_conf->raid_disks, j; PRINTK(("kfree_stripe called, stripe %lu\n", sh->sector)); if (sh->phase != PHASE_COMPLETE || stripe_locked(sh) || sh->count) { printk("raid5: kfree_stripe(), sector %lu, phase %d, locked %d, count %d\n", sh->sector, sh->phase, stripe_locked(sh), sh->count); return; } for (j = 0; j < disks; j++) { if (sh->bh_old[j]) raid5_kfree_old_bh(sh, j); if (sh->bh_new[j] || sh->bh_copy[j]) printk("raid5: bug: sector %lu, new %p, copy %p\n", sh->sector, sh->bh_new[j], sh->bh_copy[j]); } remove_hash(raid_conf, sh); put_free_stripe(raid_conf, sh); } static int shrink_stripe_cache(struct raid5_data *raid_conf, int nr) { struct stripe_head *sh; int i, count = 0; PRINTK(("shrink_stripe_cache called, %d/%d, clock %d\n", nr, raid_conf->nr_hashed_stripes, raid_conf->clock)); for (i = 0; i < NR_HASH; i++) { repeat: sh = raid_conf->stripe_hashtbl[(i + raid_conf->clock) & HASH_MASK]; for (; sh; sh = sh->hash_next) { if (sh->phase != PHASE_COMPLETE) continue; if (stripe_locked(sh)) continue; if (sh->count) continue; kfree_stripe(sh); if (++count == nr) { PRINTK(("shrink completed, nr_hashed_stripes %d\n", raid_conf->nr_hashed_stripes)); raid_conf->clock = (i + raid_conf->clock) & HASH_MASK; return nr; } goto repeat; } } PRINTK(("shrink completed, nr_hashed_stripes %d\n", raid_conf->nr_hashed_stripes)); return count; } static struct stripe_head *find_stripe(struct raid5_data *raid_conf, unsigned long sector, int size) { struct stripe_head *sh; if (raid_conf->buffer_size != size) { PRINTK(("switching size, %d --> %d\n", raid_conf->buffer_size, size)); shrink_stripe_cache(raid_conf, raid_conf->max_nr_stripes); raid_conf->buffer_size = size; } PRINTK(("find_stripe, sector %lu\n", sector)); for (sh = stripe_hash(raid_conf, sector, size); sh; sh = sh->hash_next) if (sh->sector == sector && sh->raid_conf == raid_conf) { if (sh->size == size) { PRINTK(("found stripe %lu\n", sector)); return sh; } else { PRINTK(("switching size for %lu, %d --> %d\n", sector, sh->size, size)); kfree_stripe(sh); break; } } PRINTK(("stripe %lu not in cache\n", sector)); return NULL; } static int grow_stripes(struct raid5_data *raid_conf, int num, int priority) { struct stripe_head *sh; while (num--) { if ((sh = kmalloc(sizeof(struct stripe_head), priority)) == NULL) return 1; memset(sh, 0, sizeof(*sh)); if (grow_buffers(sh, 2 * raid_conf->raid_disks, PAGE_SIZE, priority)) { shrink_buffers(sh, 2 * raid_conf->raid_disks); kfree(sh); return 1; } if (grow_bh(sh, raid_conf->raid_disks, priority)) { shrink_buffers(sh, 2 * raid_conf->raid_disks); shrink_bh(sh, raid_conf->raid_disks); kfree(sh); return 1; } put_free_stripe(raid_conf, sh); raid_conf->nr_stripes++; } return 0; } static void shrink_stripes(struct raid5_data *raid_conf, int num) { struct stripe_head *sh; while (num--) { sh = get_free_stripe(raid_conf); if (!sh) break; shrink_buffers(sh, raid_conf->raid_disks * 2); shrink_bh(sh, raid_conf->raid_disks); kfree(sh); raid_conf->nr_stripes--; } } static struct stripe_head *kmalloc_stripe(struct raid5_data *raid_conf, unsigned long sector, int size) { struct stripe_head *sh = NULL, *tmp; struct buffer_head *buffer_pool, *bh_pool; PRINTK(("kmalloc_stripe called\n")); while ((sh = get_free_stripe(raid_conf)) == NULL) { shrink_stripe_cache(raid_conf, raid_conf->max_nr_stripes / 8); if ((sh = get_free_stripe(raid_conf)) != NULL) break; if (!raid_conf->nr_pending_stripes) printk("raid5: bug: nr_free_sh == 0, nr_pending_stripes == 0\n"); md_wakeup_thread(raid_conf->thread); PRINTK(("waiting for some stripes to complete\n")); sleep_on(&raid_conf->wait_for_stripe); } /* * The above might have slept, so perhaps another process * already created the stripe for us.. */ if ((tmp = find_stripe(raid_conf, sector, size)) != NULL) { put_free_stripe(raid_conf, sh); wait_on_stripe(tmp); return tmp; } if (sh) { buffer_pool = sh->buffer_pool; bh_pool = sh->bh_pool; memset(sh, 0, sizeof(*sh)); sh->buffer_pool = buffer_pool; sh->bh_pool = bh_pool; sh->phase = PHASE_COMPLETE; sh->cmd = STRIPE_NONE; sh->raid_conf = raid_conf; sh->sector = sector; sh->size = size; raid_conf->nr_cached_stripes++; insert_hash(raid_conf, sh); } else printk("raid5: bug: kmalloc_stripe() == NULL\n"); return sh; } static struct stripe_head *get_stripe(struct raid5_data *raid_conf, unsigned long sector, int size) { struct stripe_head *sh; PRINTK(("get_stripe, sector %lu\n", sector)); sh = find_stripe(raid_conf, sector, size); if (sh) wait_on_stripe(sh); else sh = kmalloc_stripe(raid_conf, sector, size); return sh; } static struct buffer_head *raid5_kmalloc_buffer(struct stripe_head *sh, int b_size) { struct buffer_head *bh; if ((bh = get_free_buffer(sh, b_size)) == NULL) printk("raid5: bug: raid5_kmalloc_buffer() == NULL\n"); return bh; } static struct buffer_head *raid5_kmalloc_bh(struct stripe_head *sh) { struct buffer_head *bh; if ((bh = get_free_bh(sh)) == NULL) printk("raid5: bug: raid5_kmalloc_bh() == NULL\n"); return bh; } static inline void raid5_end_buffer_io (struct stripe_head *sh, int i, int uptodate) { struct buffer_head *bh = sh->bh_new[i]; sh->bh_new[i] = NULL; raid5_kfree_bh(sh, sh->bh_req[i]); sh->bh_req[i] = NULL; bh->b_end_io(bh, uptodate); if (!uptodate) printk(KERN_ALERT "raid5: %s: unrecoverable I/O error for " "block %lu\n", kdevname(bh->b_dev), bh->b_blocknr); } static inline void raid5_mark_buffer_uptodate (struct buffer_head *bh, int uptodate) { if (uptodate) set_bit(BH_Uptodate, &bh->b_state); else clear_bit(BH_Uptodate, &bh->b_state); } static void raid5_end_request (struct buffer_head * bh, int uptodate) { struct stripe_head *sh = bh->b_dev_id; struct raid5_data *raid_conf = sh->raid_conf; int disks = raid_conf->raid_disks, i; unsigned long flags; PRINTK(("end_request %lu, nr_pending %d\n", sh->sector, sh->nr_pending)); save_flags(flags); cli(); raid5_mark_buffer_uptodate(bh, uptodate); --sh->nr_pending; if (!sh->nr_pending) { md_wakeup_thread(raid_conf->thread); atomic_inc(&raid_conf->nr_handle); } if (!uptodate) md_error(bh->b_dev, bh->b_rdev); if (raid_conf->failed_disks) { for (i = 0; i < disks; i++) { if (raid_conf->disks[i].operational) continue; if (bh != sh->bh_old[i] && bh != sh->bh_req[i] && bh != sh->bh_copy[i]) continue; if (bh->b_rdev != raid_conf->disks[i].dev) continue; set_bit(STRIPE_ERROR, &sh->state); } } restore_flags(flags); } static int raid5_map (struct md_dev *mddev, kdev_t *rdev, unsigned long *rsector, unsigned long size) { /* No complex mapping used: the core of the work is done in the * request routine */ return 0; } static void raid5_build_block (struct stripe_head *sh, struct buffer_head *bh, int i) { struct raid5_data *raid_conf = sh->raid_conf; struct md_dev *mddev = raid_conf->mddev; int minor = (int) (mddev - md_dev); char *b_data; kdev_t dev = MKDEV(MD_MAJOR, minor); int block = sh->sector / (sh->size >> 9); b_data = ((volatile struct buffer_head *) bh)->b_data; memset (bh, 0, sizeof (struct buffer_head)); init_buffer(bh, raid5_end_request, sh); bh->b_dev = dev; bh->b_blocknr = block; ((volatile struct buffer_head *) bh)->b_data = b_data; bh->b_rdev = raid_conf->disks[i].dev; bh->b_rsector = sh->sector; bh->b_state = (1 << BH_Req) | (1 << BH_Mapped); bh->b_size = sh->size; bh->b_list = BUF_LOCKED; } static int raid5_error (struct md_dev *mddev, kdev_t dev) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; md_superblock_t *sb = mddev->sb; struct disk_info *disk; int i; PRINTK(("raid5_error called\n")); raid_conf->resync_parity = 0; for (i = 0, disk = raid_conf->disks; i < raid_conf->raid_disks; i++, disk++) if (disk->dev == dev && disk->operational) { disk->operational = 0; sb->disks[disk->number].state |= (1 << MD_FAULTY_DEVICE); sb->disks[disk->number].state &= ~(1 << MD_SYNC_DEVICE); sb->disks[disk->number].state &= ~(1 << MD_ACTIVE_DEVICE); sb->active_disks--; sb->working_disks--; sb->failed_disks++; mddev->sb_dirty = 1; raid_conf->working_disks--; raid_conf->failed_disks++; md_wakeup_thread(raid_conf->thread); printk (KERN_ALERT "RAID5: Disk failure on %s, disabling device." "Operation continuing on %d devices\n", kdevname (dev), raid_conf->working_disks); } return 0; } /* * Input: a 'big' sector number, * Output: index of the data and parity disk, and the sector # in them. */ static inline unsigned long raid5_compute_sector (int r_sector, unsigned int raid_disks, unsigned int data_disks, unsigned int * dd_idx, unsigned int * pd_idx, struct raid5_data *raid_conf) { unsigned int stripe; int chunk_number, chunk_offset; unsigned long new_sector; int sectors_per_chunk = raid_conf->chunk_size >> 9; /* First compute the information on this sector */ /* * Compute the chunk number and the sector offset inside the chunk */ chunk_number = r_sector / sectors_per_chunk; chunk_offset = r_sector % sectors_per_chunk; /* * Compute the stripe number */ stripe = chunk_number / data_disks; /* * Compute the data disk and parity disk indexes inside the stripe */ *dd_idx = chunk_number % data_disks; /* * Select the parity disk based on the user selected algorithm. */ if (raid_conf->level == 4) *pd_idx = data_disks; else switch (raid_conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: *pd_idx = data_disks - stripe % raid_disks; if (*dd_idx >= *pd_idx) (*dd_idx)++; break; case ALGORITHM_RIGHT_ASYMMETRIC: *pd_idx = stripe % raid_disks; if (*dd_idx >= *pd_idx) (*dd_idx)++; break; case ALGORITHM_LEFT_SYMMETRIC: *pd_idx = data_disks - stripe % raid_disks; *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; break; case ALGORITHM_RIGHT_SYMMETRIC: *pd_idx = stripe % raid_disks; *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; break; default: printk ("raid5: unsupported algorithm %d\n", raid_conf->algorithm); } /* * Finally, compute the new sector number */ new_sector = stripe * sectors_per_chunk + chunk_offset; #if 0 if ( *dd_idx > data_disks || *pd_idx > data_disks || chunk_offset + bh->b_size / 512 > sectors_per_chunk ) printk ("raid5: bug: dd_idx == %d, pd_idx == %d, chunk_offset == %d\n", *dd_idx, *pd_idx, chunk_offset); #endif return new_sector; } static unsigned long compute_blocknr(struct stripe_head *sh, int i) { struct raid5_data *raid_conf = sh->raid_conf; int raid_disks = raid_conf->raid_disks, data_disks = raid_disks - 1; unsigned long new_sector = sh->sector, check; int sectors_per_chunk = raid_conf->chunk_size >> 9; unsigned long stripe = new_sector / sectors_per_chunk; int chunk_offset = new_sector % sectors_per_chunk; int chunk_number, dummy1, dummy2, dd_idx = i; unsigned long r_sector, blocknr; switch (raid_conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: case ALGORITHM_RIGHT_ASYMMETRIC: if (i > sh->pd_idx) i--; break; case ALGORITHM_LEFT_SYMMETRIC: case ALGORITHM_RIGHT_SYMMETRIC: if (i < sh->pd_idx) i += raid_disks; i -= (sh->pd_idx + 1); break; default: printk ("raid5: unsupported algorithm %d\n", raid_conf->algorithm); } chunk_number = stripe * data_disks + i; r_sector = chunk_number * sectors_per_chunk + chunk_offset; blocknr = r_sector / (sh->size >> 9); check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, raid_conf); if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { printk("compute_blocknr: map not correct\n"); return 0; } return blocknr; } #ifdef HAVE_ARCH_XORBLOCK static void xor_block(struct buffer_head *dest, struct buffer_head *source) { __xor_block((char *) dest->b_data, (char *) source->b_data, dest->b_size); } #else static void xor_block(struct buffer_head *dest, struct buffer_head *source) { long lines = dest->b_size / (sizeof (long)) / 8, i; long *destp = (long *) dest->b_data, *sourcep = (long *) source->b_data; for (i = lines; i > 0; i--) { *(destp + 0) ^= *(sourcep + 0); *(destp + 1) ^= *(sourcep + 1); *(destp + 2) ^= *(sourcep + 2); *(destp + 3) ^= *(sourcep + 3); *(destp + 4) ^= *(sourcep + 4); *(destp + 5) ^= *(sourcep + 5); *(destp + 6) ^= *(sourcep + 6); *(destp + 7) ^= *(sourcep + 7); destp += 8; sourcep += 8; } } #endif static void compute_block(struct stripe_head *sh, int dd_idx) { struct raid5_data *raid_conf = sh->raid_conf; int i, disks = raid_conf->raid_disks; PRINTK(("compute_block, stripe %lu, idx %d\n", sh->sector, dd_idx)); if (sh->bh_old[dd_idx] == NULL) sh->bh_old[dd_idx] = raid5_kmalloc_buffer(sh, sh->size); raid5_build_block(sh, sh->bh_old[dd_idx], dd_idx); memset(sh->bh_old[dd_idx]->b_data, 0, sh->size); for (i = 0; i < disks; i++) { if (i == dd_idx) continue; if (sh->bh_old[i]) { xor_block(sh->bh_old[dd_idx], sh->bh_old[i]); continue; } else printk("compute_block() %d, stripe %lu, %d not present\n", dd_idx, sh->sector, i); } raid5_mark_buffer_uptodate(sh->bh_old[dd_idx], 1); } static void compute_parity(struct stripe_head *sh, int method) { struct raid5_data *raid_conf = sh->raid_conf; int i, pd_idx = sh->pd_idx, disks = raid_conf->raid_disks; PRINTK(("compute_parity, stripe %lu, method %d\n", sh->sector, method)); for (i = 0; i < disks; i++) { if (i == pd_idx || !sh->bh_new[i]) continue; if (!sh->bh_copy[i]) sh->bh_copy[i] = raid5_kmalloc_buffer(sh, sh->size); raid5_build_block(sh, sh->bh_copy[i], i); mark_buffer_clean(sh->bh_new[i]); memcpy(sh->bh_copy[i]->b_data, sh->bh_new[i]->b_data, sh->size); } if (sh->bh_copy[pd_idx] == NULL) sh->bh_copy[pd_idx] = raid5_kmalloc_buffer(sh, sh->size); raid5_build_block(sh, sh->bh_copy[pd_idx], sh->pd_idx); if (method == RECONSTRUCT_WRITE) { memset(sh->bh_copy[pd_idx]->b_data, 0, sh->size); for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i]) { xor_block(sh->bh_copy[pd_idx], sh->bh_copy[i]); continue; } if (sh->bh_old[i]) { xor_block(sh->bh_copy[pd_idx], sh->bh_old[i]); continue; } } } else if (method == READ_MODIFY_WRITE) { memcpy(sh->bh_copy[pd_idx]->b_data, sh->bh_old[pd_idx]->b_data, sh->size); for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i] && sh->bh_old[i]) { xor_block(sh->bh_copy[pd_idx], sh->bh_copy[i]); xor_block(sh->bh_copy[pd_idx], sh->bh_old[i]); continue; } } } raid5_mark_buffer_uptodate(sh->bh_copy[pd_idx], 1); } static void add_stripe_bh (struct stripe_head *sh, struct buffer_head *bh, int dd_idx, int rw) { struct raid5_data *raid_conf = sh->raid_conf; struct buffer_head *bh_req; if (sh->bh_new[dd_idx]) { printk("raid5: bug: stripe->bh_new[%d], sector %lu exists\n", dd_idx, sh->sector); printk("forcing oops.\n"); *(int*)0=0; } set_bit(BH_Lock, &bh->b_state); bh_req = raid5_kmalloc_bh(sh); raid5_build_block(sh, bh_req, dd_idx); bh_req->b_data = bh->b_data; if (sh->phase == PHASE_COMPLETE && sh->cmd == STRIPE_NONE) { sh->phase = PHASE_BEGIN; sh->cmd = (rw == READ) ? STRIPE_READ : STRIPE_WRITE; raid_conf->nr_pending_stripes++; atomic_inc(&raid_conf->nr_handle); } sh->bh_new[dd_idx] = bh; sh->bh_req[dd_idx] = bh_req; sh->cmd_new[dd_idx] = rw; sh->new[dd_idx] = 1; } static void complete_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; int disks = raid_conf->raid_disks; int i, new = 0; PRINTK(("complete_stripe %lu\n", sh->sector)); for (i = 0; i < disks; i++) { if (sh->cmd == STRIPE_WRITE && i == sh->pd_idx) raid5_update_old_bh(sh, i); if (sh->bh_new[i]) { if (!sh->new[i]) { #if 0 if (sh->cmd == STRIPE_WRITE) { if (memcmp(sh->bh_new[i]->b_data, sh->bh_copy[i]->b_data, sh->size)) { printk("copy differs, %s, sector %lu ", test_bit(BH_Dirty, &sh->bh_new[i]->b_state) ? "dirty" : "clean", sh->sector); } else if (test_bit(BH_Dirty, &sh->bh_new[i]->b_state)) printk("sector %lu dirty\n", sh->sector); } #endif if (sh->cmd == STRIPE_WRITE) raid5_update_old_bh(sh, i); raid5_end_buffer_io(sh, i, 1); continue; } else new++; } if (new && sh->cmd == STRIPE_WRITE) printk("raid5: bug, completed STRIPE_WRITE with new == %d\n", new); } if (!new) finish_stripe(sh); else { PRINTK(("stripe %lu, new == %d\n", sh->sector, new)); sh->phase = PHASE_BEGIN; } } /* * handle_stripe() is our main logic routine. Note that: * * 1. lock_stripe() should be used whenever we can't accept additonal * buffers, either during short sleeping in handle_stripe() or * during io operations. * * 2. We should be careful to set sh->nr_pending whenever we sleep, * to prevent re-entry of handle_stripe() for the same sh. * * 3. raid_conf->failed_disks and disk->operational can be changed * from an interrupt. This complicates things a bit, but it allows * us to stop issuing requests for a failed drive as soon as possible. */ static void handle_stripe(struct stripe_head *sh) { struct raid5_data *raid_conf = sh->raid_conf; struct md_dev *mddev = raid_conf->mddev; int minor = (int) (mddev - md_dev); struct buffer_head *bh; int disks = raid_conf->raid_disks; int i, nr = 0, nr_read = 0, nr_write = 0; int nr_cache = 0, nr_cache_other = 0, nr_cache_overwrite = 0, parity = 0; int nr_failed_other = 0, nr_failed_overwrite = 0, parity_failed = 0; int reading = 0, nr_writing = 0; int method1 = INT_MAX, method2 = INT_MAX; int block; unsigned long flags; int operational[MD_SB_DISKS], failed_disks = raid_conf->failed_disks; PRINTK(("handle_stripe(), stripe %lu\n", sh->sector)); if (sh->nr_pending) { printk("handle_stripe(), stripe %lu, io still pending\n", sh->sector); return; } if (sh->phase == PHASE_COMPLETE) { printk("handle_stripe(), stripe %lu, already complete\n", sh->sector); return; } atomic_dec(&raid_conf->nr_handle); if (test_and_clear_bit(STRIPE_ERROR, &sh->state)) { printk("raid5: restarting stripe %lu\n", sh->sector); sh->phase = PHASE_BEGIN; } if ((sh->cmd == STRIPE_WRITE && sh->phase == PHASE_WRITE) || (sh->cmd == STRIPE_READ && sh->phase == PHASE_READ)) { /* * Completed */ complete_stripe(sh); if (sh->phase == PHASE_COMPLETE) return; } save_flags(flags); cli(); for (i = 0; i < disks; i++) { operational[i] = raid_conf->disks[i].operational; if (i == sh->pd_idx && raid_conf->resync_parity) operational[i] = 0; } failed_disks = raid_conf->failed_disks; restore_flags(flags); if (failed_disks > 1) { for (i = 0; i < disks; i++) { if (sh->bh_new[i]) { raid5_end_buffer_io(sh, i, 0); continue; } } finish_stripe(sh); return; } for (i = 0; i < disks; i++) { if (sh->bh_old[i]) nr_cache++; if (i == sh->pd_idx) { if (sh->bh_old[i]) parity = 1; else if(!operational[i]) parity_failed = 1; continue; } if (!sh->bh_new[i]) { if (sh->bh_old[i]) nr_cache_other++; else if (!operational[i]) nr_failed_other++; continue; } sh->new[i] = 0; nr++; if (sh->cmd_new[i] == READ) nr_read++; if (sh->cmd_new[i] == WRITE) nr_write++; if (sh->bh_old[i]) nr_cache_overwrite++; else if (!operational[i]) nr_failed_overwrite++; } if (nr_write && nr_read) printk("raid5: bug, nr_write == %d, nr_read == %d, sh->cmd == %d\n", nr_write, nr_read, sh->cmd); if (nr_write) { /* * Attempt to add entries :-) */ if (nr_write != disks - 1) { for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i]) continue; block = (int) compute_blocknr(sh, i); bh = get_hash_table(MKDEV(MD_MAJOR, minor), block, sh->size); if (bh) { if (atomic_read(&bh->b_count) == 1 && buffer_dirty(bh) && !buffer_locked(bh)) { PRINTK(("Whee.. sector %lu, index %d (%d) found in the buffer cache!\n", sh->sector, i, block)); add_stripe_bh(sh, bh, i, WRITE); sh->new[i] = 0; nr++; nr_write++; if (sh->bh_old[i]) { nr_cache_overwrite++; nr_cache_other--; } else if (!operational[i]) { nr_failed_overwrite++; nr_failed_other--; } } atomic_dec(&bh->b_count); } } } PRINTK(("handle_stripe() -- begin writing, stripe %lu\n", sh->sector)); /* * Writing, need to update parity buffer. * * Compute the number of I/O requests in the "reconstruct * write" and "read modify write" methods. */ if (!nr_failed_other) method1 = (disks - 1) - (nr_write + nr_cache_other); if (!nr_failed_overwrite && !parity_failed) method2 = nr_write - nr_cache_overwrite + (1 - parity); if (method1 == INT_MAX && method2 == INT_MAX) printk("raid5: bug: method1 == method2 == INT_MAX\n"); PRINTK(("handle_stripe(), sector %lu, nr_write %d, method1 %d, method2 %d\n", sh->sector, nr_write, method1, method2)); if (!method1 || !method2) { lock_stripe(sh); sh->nr_pending++; sh->phase = PHASE_WRITE; compute_parity(sh, method1 <= method2 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE); for (i = 0; i < disks; i++) { if (!operational[i] && !raid_conf->spare && !raid_conf->resync_parity) continue; if (i == sh->pd_idx || sh->bh_new[i]) nr_writing++; } sh->nr_pending = nr_writing; PRINTK(("handle_stripe() %lu, writing back %d\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (!operational[i] && !raid_conf->spare && !raid_conf->resync_parity) continue; bh = sh->bh_copy[i]; if (i != sh->pd_idx && ((bh == NULL) ^ (sh->bh_new[i] == NULL))) printk("raid5: bug: bh == %p, bh_new[%d] == %p\n", bh, i, sh->bh_new[i]); if (i == sh->pd_idx && !bh) printk("raid5: bug: bh == NULL, i == pd_idx == %d\n", i); if (bh) { bh->b_state |= (1<b_state); if (!operational[i] && !raid_conf->resync_parity) { bh->b_rdev = raid_conf->spare->dev; make_request(MAJOR(raid_conf->spare->dev), WRITE, bh); } else make_request(MAJOR(raid_conf->disks[i].dev), WRITE, bh); } } return; } lock_stripe(sh); sh->nr_pending++; if (method1 < method2) { sh->write_method = RECONSTRUCT_WRITE; for (i = 0; i < disks; i++) { if (i == sh->pd_idx) continue; if (sh->bh_new[i] || sh->bh_old[i]) continue; sh->bh_old[i] = raid5_kmalloc_buffer(sh, sh->size); raid5_build_block(sh, sh->bh_old[i], i); reading++; } } else { sh->write_method = READ_MODIFY_WRITE; for (i = 0; i < disks; i++) { if (sh->bh_old[i]) continue; if (!sh->bh_new[i] && i != sh->pd_idx) continue; sh->bh_old[i] = raid5_kmalloc_buffer(sh, sh->size); raid5_build_block(sh, sh->bh_old[i], i); reading++; } } sh->phase = PHASE_READ_OLD; sh->nr_pending = reading; PRINTK(("handle_stripe() %lu, reading %d old buffers\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (!sh->bh_old[i]) continue; if (buffer_uptodate(sh->bh_old[i])) continue; clear_bit(BH_Lock, &sh->bh_old[i]->b_state); make_request(MAJOR(raid_conf->disks[i].dev), READ, sh->bh_old[i]); } } else { /* * Reading */ method1 = nr_read - nr_cache_overwrite; lock_stripe(sh); sh->nr_pending++; PRINTK(("handle_stripe(), sector %lu, nr_read %d, nr_cache %d, method1 %d\n", sh->sector, nr_read, nr_cache, method1)); if (!method1 || (method1 == 1 && nr_cache == disks - 1)) { PRINTK(("read %lu completed from cache\n", sh->sector)); for (i = 0; i < disks; i++) { if (!sh->bh_new[i]) continue; if (!sh->bh_old[i]) compute_block(sh, i); memcpy(sh->bh_new[i]->b_data, sh->bh_old[i]->b_data, sh->size); } sh->nr_pending--; complete_stripe(sh); return; } if (nr_failed_overwrite) { sh->phase = PHASE_READ_OLD; sh->nr_pending = (disks - 1) - nr_cache; PRINTK(("handle_stripe() %lu, phase READ_OLD, pending %d\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (sh->bh_old[i]) continue; if (!operational[i]) continue; sh->bh_old[i] = raid5_kmalloc_buffer(sh, sh->size); raid5_build_block(sh, sh->bh_old[i], i); clear_bit(BH_Lock, &sh->bh_old[i]->b_state); make_request(MAJOR(raid_conf->disks[i].dev), READ, sh->bh_old[i]); } } else { sh->phase = PHASE_READ; sh->nr_pending = nr_read - nr_cache_overwrite; PRINTK(("handle_stripe() %lu, phase READ, pending %d\n", sh->sector, sh->nr_pending)); for (i = 0; i < disks; i++) { if (!sh->bh_new[i]) continue; if (sh->bh_old[i]) { memcpy(sh->bh_new[i]->b_data, sh->bh_old[i]->b_data, sh->size); continue; } make_request(MAJOR(raid_conf->disks[i].dev), READ, sh->bh_req[i]); } } } } static int raid5_make_request (struct md_dev *mddev, int rw, struct buffer_head * bh) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; const unsigned int raid_disks = raid_conf->raid_disks; const unsigned int data_disks = raid_disks - 1; unsigned int dd_idx, pd_idx; unsigned long new_sector; struct stripe_head *sh; if (rw == READA) rw = READ; if (rw == WRITEA) rw = WRITE; new_sector = raid5_compute_sector(bh->b_rsector, raid_disks, data_disks, &dd_idx, &pd_idx, raid_conf); PRINTK(("raid5_make_request, sector %lu\n", new_sector)); repeat: sh = get_stripe(raid_conf, new_sector, bh->b_size); if ((rw == READ && sh->cmd == STRIPE_WRITE) || (rw == WRITE && sh->cmd == STRIPE_READ)) { PRINTK(("raid5: lock contention, rw == %d, sh->cmd == %d\n", rw, sh->cmd)); lock_stripe(sh); if (!sh->nr_pending) handle_stripe(sh); goto repeat; } sh->pd_idx = pd_idx; if (sh->phase != PHASE_COMPLETE && sh->phase != PHASE_BEGIN) PRINTK(("stripe %lu catching the bus!\n", sh->sector)); if (sh->bh_new[dd_idx]) { printk("raid5: bug: stripe->bh_new[%d], sector %lu exists\n", dd_idx, sh->sector); printk("raid5: bh %p, bh_new %p\n", bh, sh->bh_new[dd_idx]); lock_stripe(sh); md_wakeup_thread(raid_conf->thread); wait_on_stripe(sh); goto repeat; } add_stripe_bh(sh, bh, dd_idx, rw); md_wakeup_thread(raid_conf->thread); return 0; } static void unplug_devices(struct stripe_head *sh) { #if 0 struct raid5_data *raid_conf = sh->raid_conf; int i; for (i = 0; i < raid_conf->raid_disks; i++) unplug_device(blk_dev + MAJOR(raid_conf->disks[i].dev)); #endif } /* * This is our raid5 kernel thread. * * We scan the hash table for stripes which can be handled now. * During the scan, completed stripes are saved for us by the interrupt * handler, so that they will not have to wait for our next wakeup. */ static void raid5d (void *data) { struct stripe_head *sh; struct raid5_data *raid_conf = data; struct md_dev *mddev = raid_conf->mddev; int i, handled = 0, unplug = 0; unsigned long flags; PRINTK(("+++ raid5d active\n")); if (mddev->sb_dirty) { mddev->sb_dirty = 0; md_update_sb((int) (mddev - md_dev)); } for (i = 0; i < NR_HASH; i++) { repeat: sh = raid_conf->stripe_hashtbl[i]; for (; sh; sh = sh->hash_next) { if (sh->raid_conf != raid_conf) continue; if (sh->phase == PHASE_COMPLETE) continue; if (sh->nr_pending) continue; if (sh->sector == raid_conf->next_sector) { raid_conf->sector_count += (sh->size >> 9); if (raid_conf->sector_count >= 128) unplug = 1; } else unplug = 1; if (unplug) { PRINTK(("unplugging devices, sector == %lu, count == %d\n", sh->sector, raid_conf->sector_count)); unplug_devices(sh); unplug = 0; raid_conf->sector_count = 0; } raid_conf->next_sector = sh->sector + (sh->size >> 9); handled++; handle_stripe(sh); goto repeat; } } if (raid_conf) { PRINTK(("%d stripes handled, nr_handle %d\n", handled, atomic_read(&raid_conf->nr_handle))); save_flags(flags); cli(); if (!atomic_read(&raid_conf->nr_handle)) clear_bit(THREAD_WAKEUP, &raid_conf->thread->flags); } PRINTK(("--- raid5d inactive\n")); } #if SUPPORT_RECONSTRUCTION /* * Private kernel thread for parity reconstruction after an unclean * shutdown. Reconstruction on spare drives in case of a failed drive * is done by the generic mdsyncd. */ static void raid5syncd (void *data) { struct raid5_data *raid_conf = data; struct md_dev *mddev = raid_conf->mddev; if (!raid_conf->resync_parity) return; md_do_sync(mddev); raid_conf->resync_parity = 0; } #endif /* SUPPORT_RECONSTRUCTION */ static int __check_consistency (struct md_dev *mddev, int row) { struct raid5_data *raid_conf = mddev->private; kdev_t dev; struct buffer_head *bh[MD_SB_DISKS], tmp; int i, rc = 0, nr = 0; if (raid_conf->working_disks != raid_conf->raid_disks) return 0; tmp.b_size = 4096; if ((tmp.b_data = (char *) get_free_page(GFP_KERNEL)) == NULL) return 0; memset(bh, 0, MD_SB_DISKS * sizeof(struct buffer_head *)); for (i = 0; i < raid_conf->raid_disks; i++) { dev = raid_conf->disks[i].dev; set_blocksize(dev, 4096); if ((bh[i] = bread(dev, row / 4, 4096)) == NULL) break; nr++; } if (nr == raid_conf->raid_disks) { for (i = 1; i < nr; i++) xor_block(&tmp, bh[i]); if (memcmp(tmp.b_data, bh[0]->b_data, 4096)) rc = 1; } for (i = 0; i < raid_conf->raid_disks; i++) { dev = raid_conf->disks[i].dev; if (bh[i]) { bforget(bh[i]); bh[i] = NULL; } fsync_dev(dev); invalidate_buffers(dev); } free_page((unsigned long) tmp.b_data); return rc; } static int check_consistency (struct md_dev *mddev) { int size = mddev->sb->size; int row; for (row = 0; row < size; row += size / 8) if (__check_consistency(mddev, row)) return 1; return 0; } static int raid5_run (int minor, struct md_dev *mddev) { struct raid5_data *raid_conf; int i, j, raid_disk, memory; md_superblock_t *sb = mddev->sb; md_descriptor_t *descriptor; struct real_dev *realdev; MOD_INC_USE_COUNT; if (sb->level != 5 && sb->level != 4) { printk("raid5: %s: raid level not set to 4/5 (%d)\n", kdevname(MKDEV(MD_MAJOR, minor)), sb->level); MOD_DEC_USE_COUNT; return -EIO; } mddev->private = kmalloc (sizeof (struct raid5_data), GFP_KERNEL); if ((raid_conf = mddev->private) == NULL) goto abort; memset (raid_conf, 0, sizeof (*raid_conf)); raid_conf->mddev = mddev; if ((raid_conf->stripe_hashtbl = (struct stripe_head **) __get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL) goto abort; memset(raid_conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE); init_waitqueue_head(&raid_conf->wait_for_stripe); PRINTK(("raid5_run(%d) called.\n", minor)); for (i = 0; i < mddev->nb_dev; i++) { realdev = &mddev->devices[i]; if (!realdev->sb) { printk(KERN_ERR "raid5: disabled device %s (couldn't access raid superblock)\n", kdevname(realdev->dev)); continue; } /* * This is important -- we are using the descriptor on * the disk only to get a pointer to the descriptor on * the main superblock, which might be more recent. */ descriptor = &sb->disks[realdev->sb->descriptor.number]; if (descriptor->state & (1 << MD_FAULTY_DEVICE)) { printk(KERN_ERR "raid5: disabled device %s (errors detected)\n", kdevname(realdev->dev)); continue; } if (descriptor->state & (1 << MD_ACTIVE_DEVICE)) { if (!(descriptor->state & (1 << MD_SYNC_DEVICE))) { printk(KERN_ERR "raid5: disabled device %s (not in sync)\n", kdevname(realdev->dev)); continue; } raid_disk = descriptor->raid_disk; if (descriptor->number > sb->nr_disks || raid_disk > sb->raid_disks) { printk(KERN_ERR "raid5: disabled device %s (inconsistent descriptor)\n", kdevname(realdev->dev)); continue; } if (raid_conf->disks[raid_disk].operational) { printk(KERN_ERR "raid5: disabled device %s (device %d already operational)\n", kdevname(realdev->dev), raid_disk); continue; } printk(KERN_INFO "raid5: device %s operational as raid disk %d\n", kdevname(realdev->dev), raid_disk); raid_conf->disks[raid_disk].number = descriptor->number; raid_conf->disks[raid_disk].raid_disk = raid_disk; raid_conf->disks[raid_disk].dev = mddev->devices[i].dev; raid_conf->disks[raid_disk].operational = 1; raid_conf->working_disks++; } else { /* * Must be a spare disk .. */ printk(KERN_INFO "raid5: spare disk %s\n", kdevname(realdev->dev)); raid_disk = descriptor->raid_disk; raid_conf->disks[raid_disk].number = descriptor->number; raid_conf->disks[raid_disk].raid_disk = raid_disk; raid_conf->disks[raid_disk].dev = mddev->devices [i].dev; raid_conf->disks[raid_disk].operational = 0; raid_conf->disks[raid_disk].write_only = 0; raid_conf->disks[raid_disk].spare = 1; } } raid_conf->raid_disks = sb->raid_disks; raid_conf->failed_disks = raid_conf->raid_disks - raid_conf->working_disks; raid_conf->mddev = mddev; raid_conf->chunk_size = sb->chunk_size; raid_conf->level = sb->level; raid_conf->algorithm = sb->parity_algorithm; raid_conf->max_nr_stripes = NR_STRIPES; if (raid_conf->working_disks != sb->raid_disks && sb->state != (1 << MD_SB_CLEAN)) { printk(KERN_ALERT "raid5: raid set %s not clean and not all disks are operational -- run ckraid\n", kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } if (!raid_conf->chunk_size || raid_conf->chunk_size % 4) { printk(KERN_ERR "raid5: invalid chunk size %d for %s\n", raid_conf->chunk_size, kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } if (raid_conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { printk(KERN_ERR "raid5: unsupported parity algorithm %d for %s\n", raid_conf->algorithm, kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } if (raid_conf->failed_disks > 1) { printk(KERN_ERR "raid5: not enough operational devices for %s (%d/%d failed)\n", kdevname(MKDEV(MD_MAJOR, minor)), raid_conf->failed_disks, raid_conf->raid_disks); goto abort; } if ((sb->state & (1 << MD_SB_CLEAN)) && check_consistency(mddev)) { printk(KERN_ERR "raid5: detected raid-5 xor inconsistenty -- run ckraid\n"); sb->state |= 1 << MD_SB_ERRORS; goto abort; } if ((raid_conf->thread = md_register_thread(raid5d, raid_conf)) == NULL) { printk(KERN_ERR "raid5: couldn't allocate thread for %s\n", kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } #if SUPPORT_RECONSTRUCTION if ((raid_conf->resync_thread = md_register_thread(raid5syncd, raid_conf)) == NULL) { printk(KERN_ERR "raid5: couldn't allocate thread for %s\n", kdevname(MKDEV(MD_MAJOR, minor))); goto abort; } #endif /* SUPPORT_RECONSTRUCTION */ memory = raid_conf->max_nr_stripes * (sizeof(struct stripe_head) + raid_conf->raid_disks * (sizeof(struct buffer_head) + 2 * (sizeof(struct buffer_head) + PAGE_SIZE))) / 1024; if (grow_stripes(raid_conf, raid_conf->max_nr_stripes, GFP_KERNEL)) { printk(KERN_ERR "raid5: couldn't allocate %dkB for buffers\n", memory); shrink_stripes(raid_conf, raid_conf->max_nr_stripes); goto abort; } else printk(KERN_INFO "raid5: allocated %dkB for %s\n", memory, kdevname(MKDEV(MD_MAJOR, minor))); /* * Regenerate the "device is in sync with the raid set" bit for * each device. */ for (i = 0; i < sb->nr_disks ; i++) { sb->disks[i].state &= ~(1 << MD_SYNC_DEVICE); for (j = 0; j < sb->raid_disks; j++) { if (!raid_conf->disks[j].operational) continue; if (sb->disks[i].number == raid_conf->disks[j].number) sb->disks[i].state |= 1 << MD_SYNC_DEVICE; } } sb->active_disks = raid_conf->working_disks; if (sb->active_disks == sb->raid_disks) printk("raid5: raid level %d set %s active with %d out of %d devices, algorithm %d\n", raid_conf->level, kdevname(MKDEV(MD_MAJOR, minor)), sb->active_disks, sb->raid_disks, raid_conf->algorithm); else printk(KERN_ALERT "raid5: raid level %d set %s active with %d out of %d devices, algorithm %d\n", raid_conf->level, kdevname(MKDEV(MD_MAJOR, minor)), sb->active_disks, sb->raid_disks, raid_conf->algorithm); if ((sb->state & (1 << MD_SB_CLEAN)) == 0) { printk("raid5: raid set %s not clean; re-constructing parity\n", kdevname(MKDEV(MD_MAJOR, minor))); raid_conf->resync_parity = 1; #if SUPPORT_RECONSTRUCTION md_wakeup_thread(raid_conf->resync_thread); #endif /* SUPPORT_RECONSTRUCTION */ } /* Ok, everything is just fine now */ return (0); abort: if (raid_conf) { if (raid_conf->stripe_hashtbl) free_pages((unsigned long) raid_conf->stripe_hashtbl, HASH_PAGES_ORDER); kfree(raid_conf); } mddev->private = NULL; printk(KERN_ALERT "raid5: failed to run raid set %s\n", kdevname(MKDEV(MD_MAJOR, minor))); MOD_DEC_USE_COUNT; return -EIO; } static int raid5_stop (int minor, struct md_dev *mddev) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; shrink_stripe_cache(raid_conf, raid_conf->max_nr_stripes); shrink_stripes(raid_conf, raid_conf->max_nr_stripes); md_unregister_thread(raid_conf->thread); #if SUPPORT_RECONSTRUCTION md_unregister_thread(raid_conf->resync_thread); #endif /* SUPPORT_RECONSTRUCTION */ free_pages((unsigned long) raid_conf->stripe_hashtbl, HASH_PAGES_ORDER); kfree(raid_conf); mddev->private = NULL; MOD_DEC_USE_COUNT; return 0; } static int raid5_status (char *page, int minor, struct md_dev *mddev) { struct raid5_data *raid_conf = (struct raid5_data *) mddev->private; md_superblock_t *sb = mddev->sb; int sz = 0, i; sz += sprintf (page+sz, " level %d, %dk chunk, algorithm %d", sb->level, sb->chunk_size >> 10, sb->parity_algorithm); sz += sprintf (page+sz, " [%d/%d] [", raid_conf->raid_disks, raid_conf->working_disks); for (i = 0; i < raid_conf->raid_disks; i++) sz += sprintf (page+sz, "%s", raid_conf->disks[i].operational ? "U" : "_"); sz += sprintf (page+sz, "]"); return sz; } static int raid5_mark_spare(struct md_dev *mddev, md_descriptor_t *spare, int state) { int i = 0, failed_disk = -1; struct raid5_data *raid_conf = mddev->private; struct disk_info *disk = raid_conf->disks; unsigned long flags; md_superblock_t *sb = mddev->sb; md_descriptor_t *descriptor; for (i = 0; i < MD_SB_DISKS; i++, disk++) { if (disk->spare && disk->number == spare->number) goto found; } return 1; found: for (i = 0, disk = raid_conf->disks; i < raid_conf->raid_disks; i++, disk++) if (!disk->operational) failed_disk = i; if (failed_disk == -1) return 1; save_flags(flags); cli(); switch (state) { case SPARE_WRITE: disk->operational = 1; disk->write_only = 1; raid_conf->spare = disk; break; case SPARE_INACTIVE: disk->operational = 0; disk->write_only = 0; raid_conf->spare = NULL; break; case SPARE_ACTIVE: disk->spare = 0; disk->write_only = 0; descriptor = &sb->disks[raid_conf->disks[failed_disk].number]; i = spare->raid_disk; disk->raid_disk = spare->raid_disk = descriptor->raid_disk; if (disk->raid_disk != failed_disk) printk("raid5: disk->raid_disk != failed_disk"); descriptor->raid_disk = i; raid_conf->spare = NULL; raid_conf->working_disks++; raid_conf->failed_disks--; raid_conf->disks[failed_disk] = *disk; break; default: printk("raid5_mark_spare: bug: state == %d\n", state); restore_flags(flags); return 1; } restore_flags(flags); return 0; } static struct md_personality raid5_personality= { "raid5", raid5_map, raid5_make_request, raid5_end_request, raid5_run, raid5_stop, raid5_status, NULL, /* no ioctls */ 0, raid5_error, /* raid5_hot_add_disk, */ NULL, /* raid1_hot_remove_drive */ NULL, raid5_mark_spare }; int raid5_init (void) { return register_md_personality (RAID5, &raid5_personality); } #ifdef MODULE int init_module (void) { return raid5_init(); } void cleanup_module (void) { unregister_md_personality (RAID5); } #endif