/* * This file contains the driver for an XT hard disk controller * (at least the DTC 5150X) for Linux. * * Author: Pat Mackinlay, pat@it.com.au * Date: 29/09/92 * * Revised: 01/01/93, ... * * Ref: DTC 5150X Controller Specification (thanks to Kevin Fowler, * kevinf@agora.rain.com) * Also thanks to: Salvador Abreu, Dave Thaler, Risto Kankkunen and * Wim Van Dorst. * * Revised: 04/04/94 by Risto Kankkunen * Moved the detection code from xd_init() to xd_geninit() as it needed * interrupts enabled and Linus didn't want to enable them in that first * phase. xd_geninit() is the place to do these kinds of things anyway, * he says. */ #include #include #include #include #include #include #include #include #include #include #define MAJOR_NR XT_DISK_MAJOR #include "blk.h" XD_INFO xd_info[XD_MAXDRIVES]; /* If you try this driver and find that your card is not detected by the driver at bootup, you need to add your BIOS signature and details to the following list of signatures. A BIOS signature is a string embedded into the first few bytes of your controller's on-board ROM BIOS. To find out what yours is, use something like MS-DOS's DEBUG command. Run DEBUG, and then you can examine your BIOS signature with: d xxxx:0000 where xxxx is the segment of your controller (like C800 or D000 or something). On the ASCII dump at the right, you should be able to see a string mentioning the manufacturer's copyright etc. Add this string into the table below. The parameters in the table are, in order: offset ; this is the offset (in bytes) from the start of your ROM where the signature starts signature ; this is the actual text of the signature xd_?_init_controller ; this is the controller init routine used by your controller xd_?_init_drive ; this is the drive init routine used by your controller The controllers directly supported at the moment are: DTC 5150x, WD 1004A27X, ST11M/R and override. If your controller is made by the same manufacturer as one of these, try using the same init routines as they do. If that doesn't work, your best bet is to use the "override" routines. These routines use a "portable" method of getting the disk's geometry, and may work with your card. If none of these seem to work, try sending me some email and I'll see what I can do . NOTE: You can now specify your XT controller's parameters from the command line in the form xd=TYPE,IRQ,IO,DMA. The driver should be able to detect your drive's geometry from this info. (eg: xd=0,5,0x320,3 is the "standard"). */ static XD_SIGNATURE xd_sigs[] = { { 0x0000,"Override geometry handler",NULL,xd_override_init_drive,"n unknown" }, /* Pat Mackinlay, pat@it.com.au */ { 0x000B,"CXD23A Not an IBM ROM (C)Copyright Data Technology Corp 12/03/88",xd_dtc_init_controller,xd_dtc_init_drive," DTC 5150X" }, /* Pat Mackinlay, pat@it.com.au */ { 0x0008,"07/15/86 (C) Copyright 1986 Western Digital Corp",xd_wd_init_controller,xd_wd_init_drive," Western Digital 1002AWX1" }, /* Ian Justman, citrus!ianj@csusac.ecs.csus.edu */ { 0x0008,"06/24/88 (C) Copyright 1988 Western Digital Corp",xd_wd_init_controller,xd_wd_init_drive," Western Digital 1004A27X" }, /* Dave Thaler, thalerd@engin.umich.edu */ { 0x0008,"06/24/88(C) Copyright 1988 Western Digital Corp.",xd_wd_init_controller,xd_wd_init_drive," Western Digital WDXT-GEN2" }, /* Dan Newcombe, newcombe@aa.csc.peachnet.edu */ { 0x0015,"SEAGATE ST11 BIOS REVISION",xd_seagate_init_controller,xd_seagate_init_drive," Seagate ST11M/R" }, /* Salvador Abreu, spa@fct.unl.pt */ { 0x0010,"ST11R BIOS",xd_seagate_init_controller,xd_seagate_init_drive," Seagate ST11M/R" }, /* Risto Kankkunen, risto.kankkunen@cs.helsinki.fi */ { 0x0010,"ST11 BIOS V1.7",xd_seagate_init_controller,xd_seagate_init_drive," Seagate ST11R" }, /* Alan Hourihane, alanh@fairlite.demon.co.uk */ { 0x1000,"(c)Copyright 1987 SMS",xd_omti_init_controller,xd_omti_init_drive,"n OMTI 5520" }, /* Dirk Melchers, dirk@merlin.nbg.sub.org */ }; static u_char *xd_bases[] = { (u_char *) 0xC8000,(u_char *) 0xCA000,(u_char *) 0xCC000, (u_char *) 0xCE000,(u_char *) 0xD0000,(u_char *) 0xD8000, (u_char *) 0xE0000 }; static struct hd_struct xd[XD_MAXDRIVES << 6]; static int xd_sizes[XD_MAXDRIVES << 6], xd_access[XD_MAXDRIVES] = { 0, 0 }; static int xd_blocksizes[XD_MAXDRIVES << 6]; static struct gendisk xd_gendisk = { MAJOR_NR, /* Major number */ "xd", /* Major name */ 6, /* Bits to shift to get real from partition */ 1 << 6, /* Number of partitions per real */ XD_MAXDRIVES, /* maximum number of real */ xd_geninit, /* init function */ xd, /* hd struct */ xd_sizes, /* block sizes */ 0, /* number */ (void *) xd_info, /* internal */ NULL /* next */ }; static struct file_operations xd_fops = { NULL, /* lseek - default */ block_read, /* read - general block-dev read */ block_write, /* write - general block-dev write */ NULL, /* readdir - bad */ NULL, /* select */ xd_ioctl, /* ioctl */ NULL, /* mmap */ xd_open, /* open */ xd_release, /* release */ block_fsync /* fsync */ }; static struct wait_queue *xd_wait_int = NULL, *xd_wait_open = NULL; static u_char xd_valid[XD_MAXDRIVES] = { 0,0 }; static u_char xd_drives = 0, xd_irq = 0, xd_dma = 0, xd_maxsectors; static u_char xd_override = 0, xd_type = 0; static u_short xd_iobase = 0; /* xd_init: register the block device number and set up pointer tables */ u_long xd_init (u_long mem_start,u_long mem_end) { if (register_blkdev(MAJOR_NR,"xd",&xd_fops)) { printk("xd_init: unable to get major number %d\n",MAJOR_NR); return (mem_start); } blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; read_ahead[MAJOR_NR] = 8; /* 8 sector (4kB) read ahead */ xd_gendisk.next = gendisk_head; gendisk_head = &xd_gendisk; return mem_start; } /* xd_detect: scan the possible BIOS ROM locations for the signature strings */ static u_char xd_detect (u_char *controller,u_char **address) { u_char i,j,found = 0; if (xd_override) { *controller = xd_type; *address = NULL; return(1); } for (i = 0; i < (sizeof(xd_bases) / sizeof(xd_bases[0])) && !found; i++) for (j = 1; j < (sizeof(xd_sigs) / sizeof(xd_sigs[0])) && !found; j++) if (!memcmp(xd_bases[i] + xd_sigs[j].offset,xd_sigs[j].string,strlen(xd_sigs[j].string))) { *controller = j; *address = xd_bases[i]; found++; } return (found); } /* xd_geninit: grab the IRQ and DMA channel, initialise the drives */ /* and set up the "raw" device entries in the table */ static void xd_geninit (void) { u_char i,controller,*address; if (xd_detect(&controller,&address)) { printk("xd_geninit: detected a%s controller (type %d) at address %p\n",xd_sigs[controller].name,controller,address); if (controller) xd_sigs[controller].init_controller(address); xd_drives = xd_initdrives(xd_sigs[controller].init_drive); printk("xd_geninit: detected %d hard drive%s (using IRQ%d & DMA%d)\n",xd_drives,xd_drives == 1 ? "" : "s",xd_irq,xd_dma); for (i = 0; i < xd_drives; i++) printk("xd_geninit: drive %d geometry - heads = %d, cylinders = %d, sectors = %d\n",i,xd_info[i].heads,xd_info[i].cylinders,xd_info[i].sectors); if (!request_irq(xd_irq,xd_interrupt_handler, 0, "XT harddisk")) { if (request_dma(xd_dma,"xd")) { printk("xd_geninit: unable to get DMA%d\n",xd_dma); free_irq(xd_irq); } } else printk("xd_geninit: unable to get IRQ%d\n",xd_irq); } for (i = 0; i < xd_drives; i++) { xd[i << 6].nr_sects = xd_info[i].heads * xd_info[i].cylinders * xd_info[i].sectors; xd_valid[i] = 1; } xd_gendisk.nr_real = xd_drives; for(i=0;i<(XD_MAXDRIVES << 6);i++) xd_blocksizes[i] = 1024; blksize_size[MAJOR_NR] = xd_blocksizes; } /* xd_open: open a device */ static int xd_open (struct inode *inode,struct file *file) { int dev = DEVICE_NR(MINOR(inode->i_rdev)); if (dev < xd_drives) { while (!xd_valid[dev]) sleep_on(&xd_wait_open); xd_access[dev]++; return (0); } else return (-ENODEV); } /* do_xd_request: handle an incoming request */ static void do_xd_request (void) { u_int block,count,retry; int code; sti(); while (code = 0, CURRENT) { INIT_REQUEST; /* do some checking on the request structure */ if (CURRENT_DEV < xd_drives && CURRENT->sector + CURRENT->nr_sectors <= xd[MINOR(CURRENT->dev)].nr_sects) { block = CURRENT->sector + xd[MINOR(CURRENT->dev)].start_sect; count = CURRENT->nr_sectors; switch (CURRENT->cmd) { case READ: case WRITE: for (retry = 0; (retry < XD_RETRIES) && !code; retry++) code = xd_readwrite(CURRENT->cmd,CURRENT_DEV,CURRENT->buffer,block,count); break; default: printk("do_xd_request: unknown request\n"); break; } } end_request(code); /* wrap up, 0 = fail, 1 = success */ } } /* xd_ioctl: handle device ioctl's */ static int xd_ioctl (struct inode *inode,struct file *file,u_int cmd,u_long arg) { XD_GEOMETRY *geometry = (XD_GEOMETRY *) arg; int dev = DEVICE_NR(MINOR(inode->i_rdev)),err; if (inode && (dev < xd_drives)) switch (cmd) { case HDIO_GETGEO: if (arg) { if ((err = verify_area(VERIFY_WRITE,geometry,sizeof(*geometry)))) return (err); put_fs_byte(xd_info[dev].heads,(char *) &geometry->heads); put_fs_byte(xd_info[dev].sectors,(char *) &geometry->sectors); put_fs_word(xd_info[dev].cylinders,(short *) &geometry->cylinders); put_fs_long(xd[MINOR(inode->i_rdev)].start_sect,(long *) &geometry->start); return (0); } break; case BLKRASET: if(!suser()) return -EACCES; if(!inode->i_rdev) return -EINVAL; if(arg > 0xff) return -EINVAL; read_ahead[MAJOR(inode->i_rdev)] = arg; return 0; case BLKGETSIZE: if (arg) { if ((err = verify_area(VERIFY_WRITE,(long *) arg,sizeof(long)))) return (err); put_fs_long(xd[MINOR(inode->i_rdev)].nr_sects,(long *) arg); return (0); } break; case BLKFLSBUF: if(!suser()) return -EACCES; if(!inode->i_rdev) return -EINVAL; fsync_dev(inode->i_rdev); invalidate_buffers(inode->i_rdev); return 0; case BLKRRPART: return (xd_reread_partitions(inode->i_rdev)); RO_IOCTLS(inode->i_rdev,arg); } return (-EINVAL); } /* xd_release: release the device */ static void xd_release (struct inode *inode, struct file *file) { int dev = DEVICE_NR(MINOR(inode->i_rdev)); if (dev < xd_drives) { sync_dev(dev); xd_access[dev]--; } } /* xd_reread_partitions: rereads the partition table from a drive */ static int xd_reread_partitions(int dev) { int target = DEVICE_NR(MINOR(dev)),start = target << xd_gendisk.minor_shift,partition; cli(); xd_valid[target] = (xd_access[target] != 1); sti(); if (xd_valid[target]) return (-EBUSY); for (partition = xd_gendisk.max_p - 1; partition >= 0; partition--) { sync_dev(MAJOR_NR << 8 | start | partition); invalidate_inodes(MAJOR_NR << 8 | start | partition); invalidate_buffers(MAJOR_NR << 8 | start | partition); xd_gendisk.part[start + partition].start_sect = 0; xd_gendisk.part[start + partition].nr_sects = 0; }; xd_gendisk.part[start].nr_sects = xd_info[target].heads * xd_info[target].cylinders * xd_info[target].sectors; resetup_one_dev(&xd_gendisk,target); xd_valid[target] = 1; wake_up(&xd_wait_open); return (0); } /* xd_readwrite: handle a read/write request */ static int xd_readwrite (u_char operation,u_char drive,char *buffer,u_int block,u_int count) { u_char cmdblk[6],sense[4]; u_short track,cylinder; u_char head,sector,control,mode,temp; #ifdef DEBUG_READWRITE printk("xd_readwrite: operation = %s, drive = %d, buffer = 0x%X, block = %d, count = %d\n",operation == READ ? "read" : "write",drive,buffer,block,count); #endif /* DEBUG_READWRITE */ control = xd_info[drive].control; while (count) { temp = count < xd_maxsectors ? count : xd_maxsectors; track = block / xd_info[drive].sectors; head = track % xd_info[drive].heads; cylinder = track / xd_info[drive].heads; sector = block % xd_info[drive].sectors; #ifdef DEBUG_READWRITE printk("xd_readwrite: drive = %d, head = %d, cylinder = %d, sector = %d, count = %d\n",drive,head,cylinder,sector,temp); #endif /* DEBUG_READWRITE */ mode = xd_setup_dma(operation == READ ? DMA_MODE_READ : DMA_MODE_WRITE,(u_char *)buffer,temp * 0x200); xd_build(cmdblk,operation == READ ? CMD_READ : CMD_WRITE,drive,head,cylinder,sector,temp & 0xFF,control); switch (xd_command(cmdblk,mode,(u_char *) buffer,(u_char *) buffer,sense,XD_TIMEOUT)) { case 1: printk("xd_readwrite: timeout, recalibrating drive\n"); xd_recalibrate(drive); return (0); case 2: switch ((sense[0] & 0x30) >> 4) { case 0: printk("xd_readwrite: drive error, code = 0x%X",sense[0] & 0x0F); break; case 1: printk("xd_readwrite: controller error, code = 0x%X",sense[0] & 0x0F); break; case 2: printk("xd_readwrite: command error, code = 0x%X",sense[0] & 0x0F); break; case 3: printk("xd_readwrite: miscellaneous error, code = 0x%X",sense[0] & 0x0F); break; } if (sense[0] & 0x80) printk(" - drive = %d, head = %d, cylinder = %d, sector = %d\n",sense[1] & 0xE0,sense[1] & 0x1F,((sense[2] & 0xC0) << 2) | sense[3],sense[2] & 0x3F); else printk(" - no valid disk address\n"); return (0); } count -= temp, buffer += temp * 0x200, block += temp; } return (1); } /* xd_recalibrate: recalibrate a given drive and reset controller if necessary */ static void xd_recalibrate (u_char drive) { u_char cmdblk[6]; xd_build(cmdblk,CMD_RECALIBRATE,drive,0,0,0,0,0); if (xd_command(cmdblk,PIO_MODE,0,0,0,XD_TIMEOUT * 8)) printk("xd_recalibrate: warning! error recalibrating, controller may be unstable\n"); } /* xd_interrupt_handler: interrupt service routine */ static void xd_interrupt_handler (int unused) { if (inb(XD_STATUS) & STAT_INTERRUPT) { /* check if it was our device */ #ifdef DEBUG_OTHER printk("xd_interrupt_handler: interrupt detected\n"); #endif /* DEBUG_OTHER */ outb(0,XD_CONTROL); /* acknowledge interrupt */ wake_up(&xd_wait_int); /* and wake up sleeping processes */ } else printk("xd_interrupt_handler: unexpected interrupt\n"); } /* xd_dma: set up the DMA controller for a data transfer */ static u_char xd_setup_dma (u_char mode,u_char *buffer,u_int count) { if (buffer < ((u_char *) 0x1000000 - count)) { /* transfer to address < 16M? */ if (((u_int) buffer & 0xFFFF0000) != ((u_int) buffer + count) & 0xFFFF0000) { #ifdef DEBUG_OTHER printk("xd_setup_dma: using PIO, transfer overlaps 64k boundary\n"); #endif /* DEBUG_OTHER */ return (PIO_MODE); } disable_dma(xd_dma); clear_dma_ff(xd_dma); set_dma_mode(xd_dma,mode); set_dma_addr(xd_dma,(u_int) buffer); set_dma_count(xd_dma,count); return (DMA_MODE); /* use DMA and INT */ } #ifdef DEBUG_OTHER printk("xd_setup_dma: using PIO, cannot DMA above 16 meg\n"); #endif /* DEBUG_OTHER */ return (PIO_MODE); } /* xd_build: put stuff into an array in a format suitable for the controller */ static u_char *xd_build (u_char *cmdblk,u_char command,u_char drive,u_char head,u_short cylinder,u_char sector,u_char count,u_char control) { cmdblk[0] = command; cmdblk[1] = ((drive & 0x07) << 5) | (head & 0x1F); cmdblk[2] = ((cylinder & 0x300) >> 2) | (sector & 0x3F); cmdblk[3] = cylinder & 0xFF; cmdblk[4] = count; cmdblk[5] = control; return (cmdblk); } /* xd_waitport: waits until port & mask == flags or a timeout occurs. return 1 for a timeout */ static inline u_char xd_waitport (u_short port,u_char flags,u_char mask,u_long timeout) { u_long expiry = jiffies + timeout; while (((inb(port) & mask) != flags) && (jiffies < expiry)) ; return (jiffies >= expiry); } /* xd_command: handle all data transfers necessary for a single command */ static u_int xd_command (u_char *command,u_char mode,u_char *indata,u_char *outdata,u_char *sense,u_long timeout) { u_char cmdblk[6],csb,complete = 0; #ifdef DEBUG_COMMAND printk("xd_command: command = 0x%X, mode = 0x%X, indata = 0x%X, outdata = 0x%X, sense = 0x%X\n",command,mode,indata,outdata,sense); #endif /* DEBUG_COMMAND */ outb(0,XD_SELECT); outb(mode,XD_CONTROL); if (xd_waitport(XD_STATUS,STAT_SELECT,STAT_SELECT,timeout)) return (1); while (!complete) { if (xd_waitport(XD_STATUS,STAT_READY,STAT_READY,timeout)) return (1); switch (inb(XD_STATUS) & (STAT_COMMAND | STAT_INPUT)) { case 0: if (mode == DMA_MODE) { enable_dma(xd_dma); sleep_on(&xd_wait_int); disable_dma(xd_dma); } else outb(outdata ? *outdata++ : 0,XD_DATA); break; case STAT_INPUT: if (mode == DMA_MODE) { enable_dma(xd_dma); sleep_on(&xd_wait_int); disable_dma(xd_dma); } else if (indata) *indata++ = inb(XD_DATA); else inb(XD_DATA); break; case STAT_COMMAND: outb(command ? *command++ : 0,XD_DATA); break; case STAT_COMMAND | STAT_INPUT: complete = 1; break; } } csb = inb(XD_DATA); if (xd_waitport(XD_STATUS,0,STAT_SELECT,timeout)) /* wait until deselected */ return (1); if (csb & CSB_ERROR) { /* read sense data if error */ xd_build(cmdblk,CMD_SENSE,(csb & CSB_LUN) >> 5,0,0,0,0,0); if (xd_command(cmdblk,0,sense,0,0,XD_TIMEOUT)) printk("xd_command: warning! sense command failed!\n"); } #ifdef DEBUG_COMMAND printk("xd_command: completed with csb = 0x%X\n",csb); #endif /* DEBUG_COMMAND */ return (csb & CSB_ERROR); } static u_char xd_initdrives (void (*init_drive)(u_char drive)) { u_char cmdblk[6],i,count = 0; for (i = 0; i < XD_MAXDRIVES; i++) { xd_build(cmdblk,CMD_TESTREADY,i,0,0,0,0,0); if (!xd_command(cmdblk,PIO_MODE,0,0,0,XD_TIMEOUT * 8)) { init_drive(count); count++; } } return (count); } static void xd_dtc_init_controller (u_char *address) { switch ((u_long) address) { case 0xC8000: xd_iobase = 0x320; break; case 0xCA000: xd_iobase = 0x324; break; default: printk("xd_dtc_init_controller: unsupported BIOS address %p\n",address); xd_iobase = 0x320; break; } xd_irq = 5; /* the IRQ _can_ be changed on this card, but requires a hardware mod */ xd_dma = 3; xd_maxsectors = 0x01; /* my card seems to have trouble doing multi-block transfers? */ outb(0,XD_RESET); /* reset the controller */ } static void xd_dtc_init_drive (u_char drive) { u_char cmdblk[6],buf[64]; xd_build(cmdblk,CMD_DTCGETGEOM,drive,0,0,0,0,0); if (!xd_command(cmdblk,PIO_MODE,buf,0,0,XD_TIMEOUT * 2)) { xd_info[drive].heads = buf[0x0A]; /* heads */ xd_info[drive].cylinders = ((u_short *) (buf))[0x04]; /* cylinders */ xd_info[drive].sectors = 17; /* sectors */ #if 0 xd_info[drive].rwrite = ((u_short *) (buf + 1))[0x05]; /* reduced write */ xd_info[drive].precomp = ((u_short *) (buf + 1))[0x06]; /* write precomp */ xd_info[drive].ecc = buf[0x0F]; /* ecc length */ #endif /* 0 */ xd_info[drive].control = 0; /* control byte */ xd_setparam(CMD_DTCSETPARAM,drive,xd_info[drive].heads,xd_info[drive].cylinders,((u_short *) (buf + 1))[0x05],((u_short *) (buf + 1))[0x06],buf[0x0F]); xd_build(cmdblk,CMD_DTCSETSTEP,drive,0,0,0,0,7); if (xd_command(cmdblk,PIO_MODE,0,0,0,XD_TIMEOUT * 2)) printk("xd_dtc_init_drive: error setting step rate for drive %d\n",drive); } else printk("xd_dtc_init_drive: error reading geometry for drive %d\n",drive); } static void xd_wd_init_controller (u_char *address) { switch ((u_long) address) { case 0xC8000: xd_iobase = 0x320; break; case 0xCA000: xd_iobase = 0x324; break; case 0xCC000: xd_iobase = 0x328; break; case 0xCE000: xd_iobase = 0x32C; break; case 0xD0000: xd_iobase = 0x328; break; case 0xD8000: xd_iobase = 0x32C; break; default: printk("xd_wd_init_controller: unsupported BIOS address %p\n",address); xd_iobase = 0x320; break; } xd_irq = 5; /* don't know how to auto-detect this yet */ xd_dma = 3; xd_maxsectors = 0x01; /* this one doesn't wrap properly either... */ /* outb(0,XD_RESET); */ /* reset the controller */ } static void xd_wd_init_drive (u_char drive) { u_char cmdblk[6],buf[0x200]; xd_build(cmdblk,CMD_READ,drive,0,0,0,1,0); if (!xd_command(cmdblk,PIO_MODE,buf,0,0,XD_TIMEOUT * 2)) { xd_info[drive].heads = buf[0x1AF]; /* heads */ xd_info[drive].cylinders = ((u_short *) (buf + 1))[0xD6]; /* cylinders */ xd_info[drive].sectors = 17; /* sectors */ #if 0 xd_info[drive].rwrite = ((u_short *) (buf))[0xD8]; /* reduced write */ xd_info[drive].wprecomp = ((u_short *) (buf))[0xDA]; /* write precomp */ xd_info[drive].ecc = buf[0x1B4]; /* ecc length */ #endif /* 0 */ xd_info[drive].control = buf[0x1B5]; /* control byte */ xd_setparam(CMD_WDSETPARAM,drive,xd_info[drive].heads,xd_info[drive].cylinders,((u_short *) (buf))[0xD8],((u_short *) (buf))[0xDA],buf[0x1B4]); } else printk("xd_wd_init_drive: error reading geometry for drive %d\n",drive); } static void xd_seagate_init_controller (u_char *address) { switch ((u_long) address) { case 0xC8000: xd_iobase = 0x320; break; case 0xD0000: xd_iobase = 0x324; break; case 0xD8000: xd_iobase = 0x328; break; case 0xE0000: xd_iobase = 0x32C; break; default: printk("xd_seagate_init_controller: unsupported BIOS address %p\n",address); xd_iobase = 0x320; break; } xd_irq = 5; /* the IRQ and DMA channel are fixed on the Seagate controllers */ xd_dma = 3; xd_maxsectors = 0x40; outb(0,XD_RESET); /* reset the controller */ } static void xd_seagate_init_drive (u_char drive) { u_char cmdblk[6],buf[0x200]; xd_build(cmdblk,CMD_ST11GETGEOM,drive,0,0,0,1,0); if (!xd_command(cmdblk,PIO_MODE,buf,0,0,XD_TIMEOUT * 2)) { xd_info[drive].heads = buf[0x04]; /* heads */ xd_info[drive].cylinders = (buf[0x02] << 8) | buf[0x03]; /* cylinders */ xd_info[drive].sectors = buf[0x05]; /* sectors */ xd_info[drive].control = 0; /* control byte */ } else printk("xd_seagate_init_drive: error reading geometry from drive %d\n",drive); } /* Omti support courtesy Dirk Melchers */ static void xd_omti_init_controller (u_char *address) { switch ((u_long) address) { case 0xC8000: xd_iobase = 0x320; break; case 0xD0000: xd_iobase = 0x324; break; case 0xD8000: xd_iobase = 0x328; break; case 0xE0000: xd_iobase = 0x32C; break; default: printk("xd_omti_init_controller: unsupported BIOS address %p\n",address); xd_iobase = 0x320; break; } xd_irq = 5; /* the IRQ and DMA channel are fixed on the Omti controllers */ xd_dma = 3; xd_maxsectors = 0x40; outb(0,XD_RESET); /* reset the controller */ } static void xd_omti_init_drive (u_char drive) { /* gets infos from drive */ xd_override_init_drive(drive); /* set other parameters, Hardcoded, not that nice :-) */ xd_info[drive].control = 2; } /* xd_override_init_drive: this finds disk geometry in a "binary search" style, narrowing in on the "correct" number of heads etc. by trying values until it gets the highest successful value. Idea courtesy Salvador Abreu (spa@fct.unl.pt). */ static void xd_override_init_drive (u_char drive) { u_short min[] = { 0,0,0 },max[] = { 16,1024,64 },test[] = { 0,0,0 }; u_char cmdblk[6],i; for (i = 0; i < 3; i++) { while (min[i] != max[i] - 1) { test[i] = (min[i] + max[i]) / 2; xd_build(cmdblk,CMD_SEEK,drive,(u_char) test[0],(u_short) test[1],(u_char) test[2],0,0); if (!xd_command(cmdblk,PIO_MODE,0,0,0,XD_TIMEOUT * 2)) min[i] = test[i]; else max[i] = test[i]; } test[i] = min[i]; } xd_info[drive].heads = (u_char) min[0] + 1; xd_info[drive].cylinders = (u_short) min[1] + 1; xd_info[drive].sectors = (u_char) min[2] + 1; xd_info[drive].control = 0; } /* xd_setup: initialise from command line parameters */ void xd_setup (char *command,int *integers) { xd_override = 1; xd_type = integers[1]; xd_irq = integers[2]; xd_iobase = integers[3]; xd_dma = integers[4]; xd_maxsectors = 0x01; } /* xd_setparam: set the drive characteristics */ static void xd_setparam (u_char command,u_char drive,u_char heads,u_short cylinders,u_short rwrite,u_short wprecomp,u_char ecc) { u_char cmdblk[14]; xd_build(cmdblk,command,drive,0,0,0,0,0); cmdblk[6] = (u_char) (cylinders >> 8) & 0x03; cmdblk[7] = (u_char) (cylinders & 0xFF); cmdblk[8] = heads & 0x1F; cmdblk[9] = (u_char) (rwrite >> 8) & 0x03; cmdblk[10] = (u_char) (rwrite & 0xFF); cmdblk[11] = (u_char) (wprecomp >> 8) & 0x03; cmdblk[12] = (u_char) (wprecomp & 0xFF); cmdblk[13] = ecc; if (xd_command(cmdblk,PIO_MODE,0,0,0,XD_TIMEOUT * 2)) printk("xd_setparam: error setting characteristics for drive %d\n",drive); }