/* cm206.c. A linux-driver for the cm206 cdrom player with cm260 adapter card. Copyright (c) 1995, 1996 David van Leeuwen. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. History: Started 25 jan 1994. Waiting for documentation... 22 feb 1995: 0.1a first reasonably safe polling driver. Two major bugs, one in read_sector and one in do_cm206_request, happened to cancel! 25 feb 1995: 0.2a first reasonable interrupt driven version of above. uart writes are still done in polling mode. 25 feb 1995: 0.21a writes also in interrupt mode, still some small bugs to be found... Larger buffer. 2 mrt 1995: 0.22 Bug found (cd-> nowhere, interrupt was called in initialization), read_ahead of 16. Timeouts implemented. unclear if they do something... 7 mrt 1995: 0.23 Start of background read-ahead. 18 mrt 1995: 0.24 Working background read-ahead. (still problems) 26 mrt 1995: 0.25 Multi-session ioctl added (kernel v1.2). Statistics implemented, though separate stats206.h. Accessible trough ioctl 0x1000 (just a number). Hard to choose between v1.2 development and 1.1.75. Bottom-half doesn't work with 1.2... 0.25a: fixed... typo. Still problems... 1 apr 1995: 0.26 Module support added. Most bugs found. Use kernel 1.2.n. 5 apr 1995: 0.27 Auto-probe for the adapter card base address. Auto-probe for the adaptor card irq line. 7 apr 1995: 0.28 Added lilo setup support for base address and irq. Use major number 32 (not in this source), officially assigned to this driver. 9 apr 1995: 0.29 Added very limited audio support. Toc_header, stop, pause, resume, eject. Play_track ignores track info, because we can't read a table-of-contents entry. Toc_entry is implemented as a `placebo' function: always returns start of disc. 3 may 1995: 0.30 Audio support completed. The get_toc_entry function is implemented as a binary search. 15 may 1995: 0.31 More work on audio stuff. Workman is not easy to satisfy; changed binary search into linear search. Auto-probe for base address somewhat relaxed. 1 jun 1995: 0.32 Removed probe_irq_on/off for module version. 10 jun 1995: 0.33 Workman still behaves funny, but you should be able to eject and substitute another disc. An adaptation of 0.33 is included in linux-1.3.7 by Eberhard Moenkeberg 18 jul 1995: 0.34 Patch by Heiko Eissfeldt included, mainly considering verify_area's in the ioctls. Some bugs introduced by EM considering the base port and irq fixed. 18 dec 1995: 0.35 Add some code for error checking... no luck... We jump to reach our goal: version 1.0 in the next stable linux kernel. 19 mar 1996: 0.95 Different implementation of CDROM_GET_UPC, on request of Thomas Quinot. 25 mar 1996: 0.96 Interpretation of opening with O_WRONLY or O_RDWR: open only for ioctl operation, e.g., for operation of tray etc. 4 apr 1996: 0.97 First implementation of layer between VFS and cdrom driver, a generic interface. Much of the functionality of cm206_open() and cm206_ioctl() is transferred to a new file cdrom.c and its header ucdrom.h. Upgrade to Linux kernel 1.3.78. 11 apr 1996 0.98 Upgrade to Linux kernel 1.3.85 More code moved to cdrom.c 0.99 Some more small changes to decrease number of oopses at module load; Branch from here: 0.99.1.0 Update to kernel release 2.0.10 dev_t -> kdev_t (emoenke) various typos found by others. extra module-load oops protection. 0.99.1.1 Initialization constant cdrom_dops.speed changed from float (2.0) to int (2); Cli()-sti() pair around cm260_reset() in module initialization code. 0.99.1.2 Changes literally as proposed by Scott Snyder , which have to do mainly with the poor minor support i had. The major new concept is to change a cdrom driver's operations struct from the capabilities struct. This reflects the fact that there is one major for a driver, whilst there can be many minors whith completely different capabilities. 0.99.1.3 More changes for operations/info separation. 0.99.1.4 Added speed selection (someone had to do this first). * * Parts of the code are based upon lmscd.c written by Kai Petzke, * sbpcd.c written by Eberhard Moenkeberg, and mcd.c by Martin * Harriss, but any off-the-shelf dynamic programming algorithm won't * be able to find them. * * The cm206 drive interface and the cm260 adapter card seem to be * sufficiently different from their cm205/cm250 counterparts * in order to write a complete new driver. * * I call all routines connected to the Linux kernel something * with `cm206' in it, as this stuff is too series-dependent. * * Currently, my limited knowledge is based on: * - The Linux Kernel Hacker's guide, v. 0.5, by Michael K. Johnson * - Linux Kernel Programmierung, by Michael Beck and others * - Philips/LMS cm206 and cm226 product specification * - Philips/LMS cm260 product specification * * David van Leeuwen, david@tm.tno.nl. */ #define VERSION "$Id: cm206.c,v 0.99.1.4 1996/12/23 21:46:13 david Exp $" #include #include /* These include what we really need */ #include #include #include #include #include #include #include #include #include #include #include #include #define MAJOR_NR CM206_CDROM_MAJOR #include #undef DEBUG #define STATISTICS /* record times and frequencies of events */ #undef AUTO_PROBE_MODULE #define USE_INSW #include /* This variable defines whether or not to probe for adapter base port address and interrupt request. It can be overridden by the boot parameter `auto'. */ static int auto_probe=1; /* Yes, why not? */ static int cm206_base = CM206_BASE; static int cm206_irq = CM206_IRQ; MODULE_PARM(cm206_base, "i"); MODULE_PARM(cm206_irq, "i"); #define POLLOOP 10000 #define READ_AHEAD 1 /* defines private buffer, waste! */ #define BACK_AHEAD 1 /* defines adapter-read ahead */ #define DATA_TIMEOUT (3*HZ) /* measured in jiffies (10 ms) */ #define UART_TIMEOUT (5*HZ/100) #define DSB_TIMEOUT (7*HZ) /* time for the slowest command to finish */ #define LINUX_BLOCK_SIZE 512 /* WHERE is this defined? */ #define RAW_SECTOR_SIZE 2352 /* ok, is also defined in cdrom.h */ #define ISO_SECTOR_SIZE 2048 #define BLOCKS_ISO (ISO_SECTOR_SIZE/LINUX_BLOCK_SIZE) /* 4 */ #define CD_SYNC_HEAD 16 /* CD_SYNC + CD_HEAD */ #ifdef STATISTICS /* keep track of errors in counters */ #define stats(i) { ++cd->stats[st_ ## i]; \ cd->last_stat[st_ ## i] = cd->stat_counter++; \ } #else #define stats(i) (void) 0 #endif #ifdef DEBUG /* from lmscd.c */ #define debug(a) printk a #else #define debug(a) (void) 0 #endif typedef unsigned char uch; /* 8-bits */ typedef unsigned short ush; /* 16-bits */ struct toc_struct{ /* private copy of Table of Contents */ uch track, fsm[3], q0; }; struct cm206_struct { ush intr_ds; /* data status read on last interrupt */ ush intr_ls; /* uart line status read on last interrupt*/ uch intr_ur; /* uart receive buffer */ uch dsb, cc; /* drive status byte and condition (error) code */ uch fool; int command; /* command to be written to the uart */ int openfiles; ush sector[READ_AHEAD*RAW_SECTOR_SIZE/2]; /* buffered cd-sector */ int sector_first, sector_last; /* range of these sector */ struct wait_queue * uart; /* wait for interrupt */ struct wait_queue * data; struct timer_list timer; /* time-out */ char timed_out; signed char max_sectors; char wait_back; /* we're waiting for a background-read */ char background; /* is a read going on in the background? */ int adapter_first; /* if so, that's the starting sector */ int adapter_last; char fifo_overflowed; uch disc_status[7]; /* result of get_disc_status command */ #ifdef STATISTICS int stats[NR_STATS]; int last_stat[NR_STATS]; /* `time' at which stat was stat */ int stat_counter; #endif struct toc_struct toc[101]; /* The whole table of contents + lead-out */ uch q[10]; /* Last read q-channel info */ uch audio_status[5]; /* last read position on pause */ uch media_changed; /* record if media changed */ }; #define DISC_STATUS cd->disc_status[0] #define FIRST_TRACK cd->disc_status[1] #define LAST_TRACK cd->disc_status[2] #define PAUSED cd->audio_status[0] /* misuse this memory byte! */ #define PLAY_TO cd->toc[0] /* toc[0] records end-time in play */ static struct cm206_struct * cd; /* the main memory structure */ /* First, we define some polling functions. These are actually only being used in the initialization. */ void send_command_polled(int command) { int loop=POLLOOP; while (!(inw(r_line_status) & ls_transmitter_buffer_empty) && loop>0) --loop; outw(command, r_uart_transmit); } uch receive_echo_polled(void) { int loop=POLLOOP; while (!(inw(r_line_status) & ls_receive_buffer_full) && loop>0) --loop; return ((uch) inw(r_uart_receive)); } uch send_receive_polled(int command) { send_command_polled(command); return receive_echo_polled(); } /* The interrupt handler. When the cm260 generates an interrupt, very much care has to be taken in reading out the registers in the right order; in case of a receive_buffer_full interrupt, first the uart_receive must be read, and then the line status again to de-assert the interrupt line. It took me a couple of hours to find this out:-( The function reset_cm206 appears to cause an interrupt, because pulling up the INIT line clears both the uart-write-buffer /and/ the uart-write-buffer-empty mask. We call this a `lost interrupt,' as there seems so reason for this to happen. */ static void cm206_interrupt(int sig, void *dev_id, struct pt_regs * regs) /* you rang? */ { volatile ush fool; cd->intr_ds = inw(r_data_status); /* resets data_ready, data_error, crc_error, sync_error, toc_ready interrupts */ cd->intr_ls = inw(r_line_status); /* resets overrun bit */ if (cd->intr_ls & ls_attention) stats(attention); /* receive buffer full? */ if (cd->intr_ls & ls_receive_buffer_full) { cd->intr_ur = inb(r_uart_receive); /* get order right! */ cd->intr_ls = inw(r_line_status); /* resets rbf interrupt */ if (!cd->background && cd->uart) wake_up_interruptible(&cd->uart); } /* data ready in fifo? */ else if (cd->intr_ds & ds_data_ready) { if (cd->background) ++cd->adapter_last; if ((cd->wait_back || !cd->background) && cd->data) wake_up_interruptible(&cd->data); stats(data_ready); } /* ready to issue a write command? */ else if (cd->command && cd->intr_ls & ls_transmitter_buffer_empty) { outw(dc_normal | (inw(r_data_status) & 0x7f), r_data_control); outw(cd->command, r_uart_transmit); cd->command=0; if (!cd->background) wake_up_interruptible(&cd->uart); } /* now treat errors (at least, identify them for debugging) */ else if (cd->intr_ds & ds_fifo_overflow) { debug(("Fifo overflow at sectors 0x%x\n", cd->sector_first)); fool = inw(r_fifo_output_buffer); /* de-assert the interrupt */ cd->fifo_overflowed=1; /* signal one word less should be read */ stats(fifo_overflow); } else if (cd->intr_ds & ds_data_error) { debug(("Data error at sector 0x%x\n", cd->sector_first)); stats(data_error); } else if (cd->intr_ds & ds_crc_error) { debug(("CRC error at sector 0x%x\n", cd->sector_first)); stats(crc_error); } else if (cd->intr_ds & ds_sync_error) { debug(("Sync at sector 0x%x\n", cd->sector_first)); stats(sync_error); } else if (cd->intr_ds & ds_toc_ready) { /* do something appropriate */ } /* couldn't see why this interrupt, maybe due to init */ else { outw(dc_normal | READ_AHEAD, r_data_control); stats(lost_intr); } if (cd->background && (cd->adapter_last-cd->adapter_first == cd->max_sectors || cd->fifo_overflowed)) mark_bh(CM206_BH); /* issue a stop read command */ stats(interrupt); } /* we have put the address of the wait queue in who */ void cm206_timeout(unsigned long who) { cd->timed_out = 1; wake_up_interruptible((struct wait_queue **) who); } /* This function returns 1 if a timeout occurred, 0 if an interrupt happened */ int sleep_or_timeout(struct wait_queue ** wait, int timeout) { cd->timer.data=(unsigned long) wait; cd->timer.expires = jiffies + timeout; add_timer(&cd->timer); interruptible_sleep_on(wait); del_timer(&cd->timer); if (cd->timed_out) { cd->timed_out = 0; return 1; } else return 0; } void cm206_delay(int jiffies) { struct wait_queue * wait = NULL; sleep_or_timeout(&wait, jiffies); } void send_command(int command) { if (!(inw(r_line_status) & ls_transmitter_buffer_empty)) { cd->command = command; cli(); /* don't interrupt before sleep */ outw(dc_mask_sync_error | dc_no_stop_on_error | (inw(r_data_status) & 0x7f), r_data_control); /* interrupt routine sends command */ if (sleep_or_timeout(&cd->uart, UART_TIMEOUT)) { debug(("Time out on write-buffer\n")); stats(write_timeout); outw(command, r_uart_transmit); } } else outw(command, r_uart_transmit); } uch receive_echo(void) { if (!(inw(r_line_status) & ls_receive_buffer_full) && sleep_or_timeout(&cd->uart, UART_TIMEOUT)) { debug(("Time out on receive-buffer\n")); stats(receive_timeout); return ((uch) inw(r_uart_receive)); } return cd->intr_ur; } inline uch send_receive(int command) { send_command(command); return receive_echo(); } uch wait_dsb(void) { if (!(inw(r_line_status) & ls_receive_buffer_full) && sleep_or_timeout(&cd->uart, DSB_TIMEOUT)) { debug(("Time out on Drive Status Byte\n")); stats(dsb_timeout); return ((uch) inw(r_uart_receive)); } return cd->intr_ur; } int type_0_command(int command, int expect_dsb) { int e; if (command != (e=send_receive(command))) { debug(("command 0x%x echoed as 0x%x\n", command, e)); stats(echo); return -1; } if (expect_dsb) { cd->dsb = wait_dsb(); /* wait for command to finish */ } return 0; } int type_1_command(int command, int bytes, uch * status) /* returns info */ { int i; if (type_0_command(command,0)) return -1; for(i=0; ibackground) return -1; /* can't do twice */ outw(dc_normal | BACK_AHEAD, r_data_control); if (!reading && start_read(start)) return -2; cd->adapter_first = cd->adapter_last = start; cd->background = 1; /* flag a read is going on */ return 0; } #ifdef USE_INSW #define transport_data insw #else /* this routine implements insw(,,). There was a time i had the impression that there would be any difference in error-behaviour. */ void transport_data(int port, ush * dest, int count) { int i; ush * d; for (i=0, d=dest; ibackground) { cd->background=0; cd->adapter_last = -1; /* invalidate adapter memory */ stop_read(); } cd->fifo_overflowed=0; reset_cm260(); /* empty fifo etc. */ if (start_read(start)) return -1; if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) { debug(("Read timed out sector 0x%x\n", start)); stats(read_timeout); stop_read(); return -3; } transport_data(r_fifo_output_buffer, cd->sector, READ_AHEAD*RAW_SECTOR_SIZE/2); if (read_background(start+READ_AHEAD,1)) stats(read_background); cd->sector_first = start; cd->sector_last = start+READ_AHEAD; stats(read_restarted); return 0; } /* The function of bottom-half is to send a stop command to the drive This isn't easy because the routine is not `owned' by any process; we can't go to sleep! The variable cd->background gives the status: 0 no read pending 1 a read is pending 2 c_stop waits for write_buffer_empty 3 c_stop waits for receive_buffer_full: echo 4 c_stop waits for receive_buffer_full: 0xff */ void cm206_bh(void) { debug(("bh: %d\n", cd->background)); switch (cd->background) { case 1: stats(bh); if (!(cd->intr_ls & ls_transmitter_buffer_empty)) { cd->command = c_stop; outw(dc_mask_sync_error | dc_no_stop_on_error | (inw(r_data_status) & 0x7f), r_data_control); cd->background=2; break; /* we'd better not time-out here! */ } else outw(c_stop, r_uart_transmit); /* fall into case 2: */ case 2: /* the write has been satisfied by interrupt routine */ cd->background=3; break; case 3: if (cd->intr_ur != c_stop) { debug(("cm206_bh: c_stop echoed 0x%x\n", cd->intr_ur)); stats(echo); } cd->background++; break; case 4: if (cd->intr_ur != 0xff) { debug(("cm206_bh: c_stop reacted with 0x%x\n", cd->intr_ur)); stats(stop_0xff); } cd->background=0; } } /* This command clears the dsb_possible_media_change flag, so we must * retain it. */ void get_drive_status(void) { uch status[2]; type_1_command(c_drive_status, 2, status); /* this might be done faster */ cd->dsb=status[0]; cd->cc=status[1]; cd->media_changed |= !!(cd->dsb & (dsb_possible_media_change | dsb_drive_not_ready | dsb_tray_not_closed)); } void get_disc_status(void) { if (type_1_command(c_disc_status, 7, cd->disc_status)) { debug(("get_disc_status: error\n")); } } /* The new open. The real opening strategy is defined in cdrom.c. */ static int cm206_open(struct cdrom_device_info * cdi, int purpose) { if (!cd->openfiles) { /* reset only first time */ cd->background=0; reset_cm260(); cd->adapter_last = -1; /* invalidate adapter memory */ cd->sector_last = -1; } ++cd->openfiles; MOD_INC_USE_COUNT; stats(open); return 0; } static void cm206_release(struct cdrom_device_info * cdi) { if (cd->openfiles==1) { if (cd->background) { cd->background=0; stop_read(); } cd->sector_last = -1; /* Make our internal buffer invalid */ FIRST_TRACK = 0; /* No valid disc status */ } --cd->openfiles; MOD_DEC_USE_COUNT; } /* Empty buffer empties $sectors$ sectors of the adapter card buffer, * and then reads a sector in kernel memory. */ void empty_buffer(int sectors) { while (sectors>=0) { transport_data(r_fifo_output_buffer, cd->sector + cd->fifo_overflowed, RAW_SECTOR_SIZE/2 - cd->fifo_overflowed); --sectors; ++cd->adapter_first; /* update the current adapter sector */ cd->fifo_overflowed=0; /* reset overflow bit */ stats(sector_transferred); } cd->sector_first=cd->adapter_first-1; cd->sector_last=cd->adapter_first; /* update the buffer sector */ } /* try_adapter. This function determines if the requested sector is in adapter memory, or will appear there soon. Returns 0 upon success */ int try_adapter(int sector) { if (cd->adapter_first <= sector && sector < cd->adapter_last) { /* sector is in adapter memory */ empty_buffer(sector - cd->adapter_first); return 0; } else if (cd->background==1 && cd->adapter_first <= sector && sector < cd->adapter_first+cd->max_sectors) { /* a read is going on, we can wait for it */ cd->wait_back=1; while (sector >= cd->adapter_last) { if (sleep_or_timeout(&cd->data, DATA_TIMEOUT)) { debug(("Timed out during background wait: %d %d %d %d\n", sector, cd->adapter_last, cd->adapter_first, cd->background)); stats(back_read_timeout); cd->wait_back=0; return -1; } } cd->wait_back=0; empty_buffer(sector - cd->adapter_first); return 0; } else return -2; } /* This is not a very smart implementation. We could optimize for consecutive block numbers. I'm not convinced this would really bring down the processor load. */ static void do_cm206_request(void) { long int i, cd_sec_no; int quarter, error; uch * source, * dest; while(1) { /* repeat until all requests have been satisfied */ INIT_REQUEST; if (CURRENT == NULL || CURRENT->rq_status == RQ_INACTIVE) return; if (CURRENT->cmd != READ) { debug(("Non-read command %d on cdrom\n", CURRENT->cmd)); end_request(0); continue; } error=0; for (i=0; inr_sectors; i++) { cd_sec_no = (CURRENT->sector+i)/BLOCKS_ISO; /* 4 times 512 bytes */ quarter = (CURRENT->sector+i) % BLOCKS_ISO; dest = CURRENT->buffer + i*LINUX_BLOCK_SIZE; /* is already in buffer memory? */ if (cd->sector_first <= cd_sec_no && cd_sec_no < cd->sector_last) { source = ((uch *) cd->sector) + 16 + quarter*LINUX_BLOCK_SIZE + (cd_sec_no-cd->sector_first)*RAW_SECTOR_SIZE; memcpy(dest, source, LINUX_BLOCK_SIZE); } else if (!try_adapter(cd_sec_no) || !read_sector(cd_sec_no)) { source = ((uch *) cd->sector)+16+quarter*LINUX_BLOCK_SIZE; memcpy(dest, source, LINUX_BLOCK_SIZE); } else { error=1; } } end_request(!error); } } /* Audio support. I've tried very hard, but the cm206 drive doesn't seem to have a get_toc (table-of-contents) function, while i'm pretty sure it must read the toc upon disc insertion. Therefore this function has been implemented through a binary search strategy. All track starts that happen to be found are stored in cd->toc[], for future use. I've spent a whole day on a bug that only shows under Workman--- I don't get it. Tried everything, nothing works. If workman asks for track# 0xaa, it'll get the wrong time back. Any other program receives the correct value. I'm stymied. */ /* seek seeks to address lba. It does wait to arrive there. */ void seek(int lba) { int i; uch seek_command[4]={c_seek, }; fsm(lba, &seek_command[1]); for (i=0; i<4; i++) type_0_command(seek_command[i], 0); cd->dsb = wait_dsb(); } uch bcdbin(unsigned char bcd) /* stolen from mcd.c! */ { return (bcd >> 4)*10 + (bcd & 0xf); } inline uch normalize_track(uch track) { if (track<1) return 1; if (track>LAST_TRACK) return LAST_TRACK+1; return track; } /* This function does a binary search for track start. It records all * tracks seen in the process. Input $track$ must be between 1 and * #-of-tracks+1 */ int get_toc_lba(uch track) { int max=74*60*75-150, min=0; int i, lba, l, old_lba=0; uch * q = cd->q; uch ct; /* current track */ int binary=0; const skip = 3*60*75; for (i=track; i>0; i--) if (cd->toc[i].track) { min = fsm2lba(cd->toc[i].fsm); break; } lba = min + skip; /* 3 minutes */ do { seek(lba); type_1_command(c_read_current_q, 10, q); ct = normalize_track(q[1]); if (!cd->toc[ct].track) { l = q[9]-bcdbin(q[5]) + 75*(q[8]-bcdbin(q[4])-2 + 60*(q[7]-bcdbin(q[3]))); cd->toc[ct].track=q[1]; /* lead out still 0xaa */ fsm(l, cd->toc[ct].fsm); cd->toc[ct].q0 = q[0]; /* contains adr and ctrl info */ if (ct==track) return l; } old_lba=lba; if (binary) { if (ct < track) min = lba; else max = lba; lba = (min+max)/2; } else { if(ct < track) lba += skip; else { binary=1; max = lba; min = lba - skip; lba = (min+max)/2; } } } while (lba!=old_lba); return lba; } void update_toc_entry(uch track) { track = normalize_track(track); if (!cd->toc[track].track) get_toc_lba(track); } /* return 0 upon success */ int read_toc_header(struct cdrom_tochdr * hp) { if (!FIRST_TRACK) get_disc_status(); if (hp && DISC_STATUS & cds_all_audio) { /* all audio */ int i; hp->cdth_trk0 = FIRST_TRACK; hp->cdth_trk1 = LAST_TRACK; cd->toc[1].track=1; /* fill in first track position */ for (i=0; i<3; i++) cd->toc[1].fsm[i] = cd->disc_status[3+i]; update_toc_entry(LAST_TRACK+1); /* find most entries */ return 0; } return -1; } void play_from_to_msf(struct cdrom_msf* msfp) { uch play_command[] = {c_play, msfp->cdmsf_frame0, msfp->cdmsf_sec0, msfp->cdmsf_min0, msfp->cdmsf_frame1, msfp->cdmsf_sec1, msfp->cdmsf_min1, 2, 2}; int i; for (i=0; i<9; i++) type_0_command(play_command[i], 0); for (i=0; i<3; i++) PLAY_TO.fsm[i] = play_command[i+4]; PLAY_TO.track = 0; /* say no track end */ cd->dsb = wait_dsb(); } void play_from_to_track(int from, int to) { uch play_command[8] = {c_play, }; int i; if (from==0) { /* continue paused play */ for (i=0; i<3; i++) { play_command[i+1] = cd->audio_status[i+2]; play_command[i+4] = PLAY_TO.fsm[i]; } } else { update_toc_entry(from); update_toc_entry(to+1); for (i=0; i<3; i++) { play_command[i+1] = cd->toc[from].fsm[i]; PLAY_TO.fsm[i] = play_command[i+4] = cd->toc[to+1].fsm[i]; } PLAY_TO.track = to; } for (i=0; i<7; i++) type_0_command(play_command[i],0); for (i=0; i<2; i++) type_0_command(0x2, 0); /* volume */ cd->dsb = wait_dsb(); } int get_current_q(struct cdrom_subchnl * qp) { int i; uch * q = cd->q; if (type_1_command(c_read_current_q, 10, q)) return 0; /* q[0] = bcdbin(q[0]); Don't think so! */ for (i=2; i<6; i++) q[i]=bcdbin(q[i]); qp->cdsc_adr = q[0] & 0xf; qp->cdsc_ctrl = q[0] >> 4; /* from mcd.c */ qp->cdsc_trk = q[1]; qp->cdsc_ind = q[2]; if (qp->cdsc_format == CDROM_MSF) { qp->cdsc_reladdr.msf.minute = q[3]; qp->cdsc_reladdr.msf.second = q[4]; qp->cdsc_reladdr.msf.frame = q[5]; qp->cdsc_absaddr.msf.minute = q[7]; qp->cdsc_absaddr.msf.second = q[8]; qp->cdsc_absaddr.msf.frame = q[9]; } else { qp->cdsc_reladdr.lba = f_s_m2lba(q[5], q[4], q[3]); qp->cdsc_absaddr.lba = f_s_m2lba(q[9], q[8], q[7]); } get_drive_status(); if (cd->dsb & dsb_play_in_progress) qp->cdsc_audiostatus = CDROM_AUDIO_PLAY ; else if (PAUSED) qp->cdsc_audiostatus = CDROM_AUDIO_PAUSED; else qp->cdsc_audiostatus = CDROM_AUDIO_NO_STATUS; return 0; } void invalidate_toc(void) { memset(cd->toc, 0, sizeof(cd->toc)); memset(cd->disc_status, 0, sizeof(cd->disc_status)); } /* cdrom.c guarantees that cdte_format == CDROM_MSF */ void get_toc_entry(struct cdrom_tocentry * ep) { uch track = normalize_track(ep->cdte_track); update_toc_entry(track); ep->cdte_addr.msf.frame = cd->toc[track].fsm[0]; ep->cdte_addr.msf.second = cd->toc[track].fsm[1]; ep->cdte_addr.msf.minute = cd->toc[track].fsm[2]; ep->cdte_adr = cd->toc[track].q0 & 0xf; ep->cdte_ctrl = cd->toc[track].q0 >> 4; ep->cdte_datamode=0; } /* Audio ioctl. Ioctl commands connected to audio are in such an * idiosyncratic i/o format, that we leave these untouched. Return 0 * upon success. Memory checking has been done by cdrom_ioctl(), the * calling function, as well as LBA/MSF sanitization. */ int cm206_audio_ioctl(struct cdrom_device_info * cdi, unsigned int cmd, void * arg) { switch (cmd) { case CDROMREADTOCHDR: return read_toc_header((struct cdrom_tochdr *) arg); case CDROMREADTOCENTRY: get_toc_entry((struct cdrom_tocentry *) arg); return 0; case CDROMPLAYMSF: play_from_to_msf((struct cdrom_msf *) arg); return 0; case CDROMPLAYTRKIND: /* admittedly, not particularly beautiful */ play_from_to_track(((struct cdrom_ti *)arg)->cdti_trk0, ((struct cdrom_ti *)arg)->cdti_trk1); return 0; case CDROMSTOP: PAUSED=0; if (cd->dsb & dsb_play_in_progress) return type_0_command(c_stop, 1); else return 0; case CDROMPAUSE: get_drive_status(); if (cd->dsb & dsb_play_in_progress) { type_0_command(c_stop, 1); type_1_command(c_audio_status, 5, cd->audio_status); PAUSED=1; /* say we're paused */ } return 0; case CDROMRESUME: if (PAUSED) play_from_to_track(0,0); PAUSED=0; return 0; case CDROMSTART: case CDROMVOLCTRL: return 0; case CDROMSUBCHNL: return get_current_q((struct cdrom_subchnl *)arg); default: return -EINVAL; } } /* Ioctl. These ioctls are specific to the cm206 driver. I have made some driver statistics accessible through ioctl calls. */ static int cm206_ioctl(struct cdrom_device_info * cdi, unsigned int cmd, unsigned long arg) { switch (cmd) { #ifdef STATISTICS case CM206CTL_GET_STAT: if (arg >= NR_STATS) return -EINVAL; else return cd->stats[arg]; case CM206CTL_GET_LAST_STAT: if (arg >= NR_STATS) return -EINVAL; else return cd->last_stat[arg]; #endif default: debug(("Unknown ioctl call 0x%x\n", cmd)); return -EINVAL; } } int cm206_media_changed(struct cdrom_device_info * cdi, int disc_nr) { if (cd != NULL) { int r; get_drive_status(); /* ensure cd->media_changed OK */ r = cd->media_changed; cd->media_changed = 0; /* clear bit */ return r; } else return -EIO; } /* The new generic cdrom support. Routines should be concise, most of the logic should be in cdrom.c */ /* returns number of times device is in use */ int cm206_open_files(struct cdrom_device_info * cdi) { if (cd) return cd->openfiles; return -1; } /* controls tray movement */ int cm206_tray_move(struct cdrom_device_info * cdi, int position) { if (position) { /* 1: eject */ type_0_command(c_open_tray,1); invalidate_toc(); } else type_0_command(c_close_tray, 1); /* 0: close */ return 0; } /* gives current state of the drive */ int cm206_drive_status(struct cdrom_device_info * cdi, int slot_nr) { get_drive_status(); if (cd->dsb & dsb_tray_not_closed) return CDS_TRAY_OPEN; if (!(cd->dsb & dsb_disc_present)) return CDS_NO_DISC; if (cd->dsb & dsb_drive_not_ready) return CDS_DRIVE_NOT_READY; return CDS_DISC_OK; } /* gives current state of disc in drive */ int cm206_disc_status(struct cdrom_device_info * cdi) { uch xa; get_drive_status(); if ((cd->dsb & dsb_not_useful) | !(cd->dsb & dsb_disc_present)) return CDS_NO_DISC; get_disc_status(); if (DISC_STATUS & cds_all_audio) return CDS_AUDIO; xa = DISC_STATUS >> 4; switch (xa) { case 0: return CDS_DATA_1; /* can we detect CDS_DATA_2? */ case 1: return CDS_XA_2_1; /* untested */ case 2: return CDS_XA_2_2; } return 0; } /* locks or unlocks door lock==1: lock; return 0 upon success */ int cm206_lock_door(struct cdrom_device_info * cdi, int lock) { uch command = (lock) ? c_lock_tray : c_unlock_tray; type_0_command(command, 1); /* wait and get dsb */ /* the logic calculates the success, 0 means successful */ return lock ^ ((cd->dsb & dsb_tray_locked) != 0); } /* Although a session start should be in LBA format, we return it in MSF format because it is slightly easier, and the new generic ioctl will take care of the necessary conversion. */ int cm206_get_last_session(struct cdrom_device_info * cdi, struct cdrom_multisession * mssp) { if (!FIRST_TRACK) get_disc_status(); if (mssp != NULL) { if (DISC_STATUS & cds_multi_session) { /* multi-session */ mssp->addr.msf.frame = cd->disc_status[3]; mssp->addr.msf.second = cd->disc_status[4]; mssp->addr.msf.minute = cd->disc_status[5]; mssp->addr_format = CDROM_MSF; mssp->xa_flag = 1; } else { mssp->xa_flag = 0; } return 1; } return 0; } int cm206_get_upc(struct cdrom_device_info * cdi, struct cdrom_mcn * mcn) { uch upc[10]; char * ret = mcn->medium_catalog_number; int i; if (type_1_command(c_read_upc, 10, upc)) return -EIO; for (i=0; i<13; i++) { int w=i/2+1, r=i%2; if (r) ret[i] = 0x30 | (upc[w] & 0x0f); else ret[i] = 0x30 | ((upc[w] >> 4) & 0x0f); } ret[13] = '\0'; return 0; } int cm206_reset(struct cdrom_device_info * cdi) { stop_read(); reset_cm260(); outw(dc_normal | dc_break | READ_AHEAD, r_data_control); udelay(1000); /* 750 musec minimum */ outw(dc_normal | READ_AHEAD, r_data_control); cd->sector_last = -1; /* flag no data buffered */ cd->adapter_last = -1; invalidate_toc(); return 0; } int cm206_select_speed(struct cdrom_device_info * cdi, int speed) { int r; switch (speed) { case 0: r = type_0_command(c_auto_mode, 1); break; case 1: r = type_0_command(c_force_1x, 1); break; case 2: r = type_0_command(c_force_2x, 1); break; default: return -1; } if (r<0) return r; else return 1; } static struct cdrom_device_ops cm206_dops = { cm206_open, /* open */ cm206_release, /* release */ cm206_drive_status, /* drive status */ cm206_disc_status, /* disc status */ cm206_media_changed, /* media changed */ cm206_tray_move, /* tray move */ cm206_lock_door, /* lock door */ cm206_select_speed, /* select speed */ NULL, /* select disc */ cm206_get_last_session, /* get last session */ cm206_get_upc, /* get universal product code */ cm206_reset, /* hard reset */ cm206_audio_ioctl, /* audio ioctl */ cm206_ioctl, /* device-specific ioctl */ CDC_CLOSE_TRAY | CDC_OPEN_TRAY | CDC_LOCK | CDC_MULTI_SESSION | CDC_MEDIA_CHANGED | CDC_MCN | CDC_PLAY_AUDIO, /* capability */ 1, /* number of minor devices */ }; static struct cdrom_device_info cm206_info = { &cm206_dops, /* device operations */ NULL, /* link */ NULL, /* handle (not used by cm206) */ MKDEV(MAJOR_NR,0), /* dev */ 0, /* mask */ 2, /* maximum speed */ 1, /* number of discs */ 0, /* options, not owned */ 0, /* mc_flags, not owned */ 0 /* use count, not owned */ }; /* This routine gets called during initialization if thing go wrong, * can be used in cleanup_module as well. */ void cleanup(int level) { switch (level) { case 4: if (unregister_cdrom(&cm206_info)) { printk("Can't unregister cdrom cm206\n"); return; } if (unregister_blkdev(MAJOR_NR, "cm206")) { printk("Can't unregister major cm206\n"); return; } case 3: free_irq(cm206_irq, NULL); case 2: case 1: kfree(cd); release_region(cm206_base, 16); default: } } /* This function probes for the adapter card. It returns the base address if it has found the adapter card. One can specify a base port to probe specifically, or 0 which means span all possible bases. Linus says it is too dangerous to use writes for probing, so we stick with pure reads for a while. Hope that 8 possible ranges, check_region, 15 bits of one port and 6 of another make things likely enough to accept the region on the first hit... */ __initfunc(int probe_base_port(int base)) { int b=0x300, e=0x370; /* this is the range of start addresses */ volatile int fool, i; if (base) b=e=base; for (base=b; base<=e; base += 0x10) { if (check_region(base, 0x10)) continue; for (i=0; i<3; i++) fool = inw(base+2); /* empty possibly uart_receive_buffer */ if((inw(base+6) & 0xffef) != 0x0001 || /* line_status */ (inw(base) & 0xad00) != 0) /* data status */ continue; return(base); } return 0; } #if !defined(MODULE) || defined(AUTO_PROBE_MODULE) /* Probe for irq# nr. If nr==0, probe for all possible irq's. */ __initfunc(int probe_irq(int nr)) { int irqs, irq; outw(dc_normal | READ_AHEAD, r_data_control); /* disable irq-generation */ sti(); irqs = probe_irq_on(); reset_cm260(); /* causes interrupt */ udelay(100); /* wait for it */ irq = probe_irq_off(irqs); outw(dc_normal | READ_AHEAD, r_data_control); /* services interrupt */ if (nr && irq!=nr && irq>0) return 0; /* wrong interrupt happened */ else return irq; } #endif __initfunc(int cm206_init(void)) { uch e=0; long int size=sizeof(struct cm206_struct); printk(KERN_INFO VERSION); cm206_base = probe_base_port(auto_probe ? 0 : cm206_base); if (!cm206_base) { printk(" can't find adapter!\n"); return -EIO; } printk(" adapter at 0x%x", cm206_base); request_region(cm206_base, 16, "cm206"); cd = (struct cm206_struct *) kmalloc(size, GFP_KERNEL); if (!cd) return -EIO; /* Now we have found the adaptor card, try to reset it. As we have * found out earlier, this process generates an interrupt as well, * so we might just exploit that fact for irq probing! */ #if !defined(MODULE) || defined(AUTO_PROBE_MODULE) cm206_irq = probe_irq(auto_probe ? 0 : cm206_irq); if (cm206_irq<=0) { printk("can't find IRQ!\n"); cleanup(1); return -EIO; } else printk(" IRQ %d found\n", cm206_irq); #else cli(); reset_cm260(); /* Now, the problem here is that reset_cm260 can generate an interrupt. It seems that this can cause a kernel oops some time later. So we wait a while and `service' this interrupt. */ udelay(10); outw(dc_normal | READ_AHEAD, r_data_control); sti(); printk(" using IRQ %d\n", cm206_irq); #endif if (send_receive_polled(c_drive_configuration) != c_drive_configuration) { printk(" drive not there\n"); cleanup(1); return -EIO; } e = send_receive_polled(c_gimme); printk(KERN_INFO "Firmware revision %d", e & dcf_revision_code); if (e & dcf_transfer_rate) printk(" double"); else printk(" single"); printk(" speed drive"); if (e & dcf_motorized_tray) printk(", motorized tray"); if (request_irq(cm206_irq, cm206_interrupt, 0, "cm206", NULL)) { printk("\nUnable to reserve IRQ---aborted\n"); cleanup(2); return -EIO; } printk(".\n"); if (register_blkdev(MAJOR_NR, "cm206", &cdrom_fops) != 0) { printk("Cannot register for major %d!\n", MAJOR_NR); cleanup(3); return -EIO; } if (register_cdrom(&cm206_info, "cm206") != 0) { printk("Cannot register for cdrom %d!\n", MAJOR_NR); cleanup(3); return -EIO; } blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST; read_ahead[MAJOR_NR] = 16; /* reads ahead what? */ init_bh(CM206_BH, cm206_bh); memset(cd, 0, sizeof(*cd)); /* give'm some reasonable value */ cd->sector_last = -1; /* flag no data buffered */ cd->adapter_last = -1; cd->timer.function = cm206_timeout; cd->max_sectors = (inw(r_data_status) & ds_ram_size) ? 24 : 97; printk(KERN_INFO "%d kB adapter memory available, " " %ld bytes kernel memory used.\n", cd->max_sectors*2, size); return 0; } #ifdef MODULE static int cm206[2] = {0,0}; /* for compatible `insmod' parameter passing */ __initfunc(void parse_options(void)) { int i; for (i=0; i<2; i++) { if (0x300 <= cm206[i] && i<= 0x370 && cm206[i] % 0x10 == 0) { cm206_base = cm206[i]; auto_probe=0; } else if (3 <= cm206[i] && cm206[i] <= 15) { cm206_irq = cm206[i]; auto_probe=0; } } } int init_module(void) { parse_options(); #if !defined(AUTO_PROBE_MODULE) auto_probe=0; #endif return cm206_init(); } void cleanup_module(void) { cleanup(4); printk(KERN_INFO "cm206 removed\n"); } #else /* !MODULE */ /* This setup function accepts either `auto' or numbers in the range * 3--11 (for irq) or 0x300--0x370 (for base port) or both. */ __initfunc(void cm206_setup(char *s, int *p)) { int i; if (!strcmp(s, "auto")) auto_probe=1; for(i=1; i<=p[0]; i++) { if (0x300 <= p[i] && i<= 0x370 && p[i] % 0x10 == 0) { cm206_base = p[i]; auto_probe = 0; } else if (3 <= p[i] && p[i] <= 15) { cm206_irq = p[i]; auto_probe = 0; } } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -D__KERNEL__ -I. -I/usr/src/linux/include/linux -Wall -Wstrict-prototypes -O2 -m486 -c cm206.c -o cm206.o" * End: */