/* * esp.c - driver for Hayes ESP serial cards * * --- Notices from serial.c, upon which this driver is based --- * * Copyright (C) 1991, 1992 Linus Torvalds * * Extensively rewritten by Theodore Ts'o, 8/16/92 -- 9/14/92. Now * much more extensible to support other serial cards based on the * 16450/16550A UART's. Added support for the AST FourPort and the * Accent Async board. * * set_serial_info fixed to set the flags, custom divisor, and uart * type fields. Fix suggested by Michael K. Johnson 12/12/92. * * 11/95: TIOCMIWAIT, TIOCGICOUNT by Angelo Haritsis * * 03/96: Modularised by Angelo Haritsis * * rs_set_termios fixed to look also for changes of the input * flags INPCK, BRKINT, PARMRK, IGNPAR and IGNBRK. * Bernd Anhäupl 05/17/96. * * --- End of notices from serial.c --- * * Support for the ESP serial card by Andrew J. Robinson * (Card detection routine taken from a patch * by Dennis J. Boylan). Patches to allow use with 2.1.x contributed * by Chris Faylor. * * Most recent changes: (Andrew J. Robinson) * Added rx_trigger, tx_trigger, flow_off, flow_on, and rx_timeout options. * ESP enhanced mode configuration can be viewed/changed by a patched * version of setserial. * * This module exports the following rs232 io functions: * * int espserial_init(void); */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "esp.h" #define NR_PORTS 64 /* maximum number of ports */ #define NR_PRIMARY 8 /* maximum number of primary ports */ /* The following variables can be set by giving module options */ static int irq[NR_PRIMARY] = {0,0,0,0,0,0,0,0}; /* IRQ for each base port */ static unsigned int divisor[NR_PRIMARY] = {0,0,0,0,0,0,0,0}; /* custom divisor for each port */ static unsigned int dma = CONFIG_ESPSERIAL_DMA_CHANNEL; /* DMA channel */ static unsigned int rx_trigger = CONFIG_ESPSERIAL_RX_TRIGGER; static unsigned int tx_trigger = CONFIG_ESPSERIAL_TX_TRIGGER; static unsigned int flow_off = CONFIG_ESPSERIAL_FLOW_OFF; static unsigned int flow_on = CONFIG_ESPSERIAL_FLOW_ON; static unsigned int rx_timeout = CONFIG_ESPSERIAL_RX_TMOUT; MODULE_PARM(irq, "1-8i"); MODULE_PARM(divisor, "1-8i"); MODULE_PARM(dma, "i"); MODULE_PARM(rx_trigger, "i"); MODULE_PARM(tx_trigger, "i"); MODULE_PARM(flow_off, "i"); MODULE_PARM(flow_on, "i"); MODULE_PARM(rx_timeout, "i"); /* END */ static char *dma_buffer; static int dma_bytes; #define DMA_BUFFER_SZ 1024 #define WAKEUP_CHARS 1024 static char *serial_name = "ESP serial driver"; static char *serial_version = "1.6"; static DECLARE_TASK_QUEUE(tq_esp); static struct tty_driver esp_driver, esp_callout_driver; static int serial_refcount; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 /* * Serial driver configuration section. Here are the various options: * * SERIAL_PARANOIA_CHECK * Check the magic number for the esp_structure where * ever possible. */ #undef SERIAL_PARANOIA_CHECK #define SERIAL_DO_RESTART #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #define _INLINE_ inline #if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT) #define DBG_CNT(s) printk("(%s): [%x] refc=%d, serc=%d, ttyc=%d -> %s\n", \ kdevname(tty->device), (info->flags), serial_refcount,info->count,tty->count,s) #else #define DBG_CNT(s) #endif static struct esp_struct *IRQ_ports[16]; static void change_speed(struct esp_struct *info); static void rs_wait_until_sent(struct tty_struct *, int); /* * The ESP card has a clock rate of 14.7456 MHz (that is, 2**ESPC_SCALE * times the normal 1.8432 Mhz clock of most serial boards). */ #define BASE_BAUD ((1843200 / 16) * (1 << ESPC_SCALE)) /* Standard COM flags (except for COM4, because of the 8514 problem) */ #define STD_COM_FLAGS (ASYNC_BOOT_AUTOCONF | ASYNC_SKIP_TEST) static struct tty_struct *serial_table[NR_PORTS]; static struct termios *serial_termios[NR_PORTS]; static struct termios *serial_termios_locked[NR_PORTS]; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the memcpy_fromfs blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char *tmp_buf = 0; static struct semaphore tmp_buf_sem = MUTEX; static inline int serial_paranoia_check(struct esp_struct *info, kdev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%s) in %s\n"; static const char *badinfo = "Warning: null esp_struct for (%s) in %s\n"; if (!info) { printk(badinfo, kdevname(device), routine); return 1; } if (info->magic != ESP_MAGIC) { printk(badmagic, kdevname(device), routine); return 1; } #endif return 0; } static inline unsigned int serial_in(struct esp_struct *info, int offset) { return inb(info->port + offset); } static inline void serial_out(struct esp_struct *info, int offset, unsigned char value) { outb(value, info->port+offset); } static inline int __get_order(unsigned long size) { int order; size = (size + PAGE_SIZE -1) >> PAGE_SHIFT; order = -1; do { size >>= 1; order++; } while (size); return order; } /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; save_flags(flags); cli(); if (info->IER & UART_IER_THRI) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); } restore_flags(flags); } static void rs_start(struct tty_struct *tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_start")) return; save_flags(flags); cli(); if (info->xmit_cnt && info->xmit_buf && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); } restore_flags(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(struct esp_struct *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_esp); mark_bh(ESP_BH); } static void receive_chars_dma(struct esp_struct *info) { info->stat_flags &= ~(ESP_STAT_RX_TIMEOUT | ESP_STAT_NEED_DMA_RX); serial_out(info, UART_ESI_CMD1, ESI_NO_COMMAND); serial_out(info, UART_ESI_CMD1, ESI_GET_RX_AVAIL); dma_bytes = serial_in(info, UART_ESI_STAT1) << 8; dma_bytes |= serial_in(info, UART_ESI_STAT2); if (!dma_bytes) return; info->stat_flags |= ESP_STAT_DMA_RX; disable_dma(dma); clear_dma_ff(dma); set_dma_mode(dma, DMA_MODE_READ); set_dma_addr(dma, virt_to_bus(dma_buffer)); set_dma_count(dma, dma_bytes); enable_dma(dma); serial_out(info, UART_ESI_CMD1, ESI_START_DMA_RX); } static void do_ttybuf(void *private_) { struct esp_struct *info = (struct esp_struct *) private_; struct tty_struct *tty; int avail_bytes, x_bytes; unsigned long int flags; save_flags(flags); cli(); tty = info->tty; if (!tty) { restore_flags(flags); return; } avail_bytes = TTY_FLIPBUF_SIZE - tty->flip.count; if (avail_bytes) { if (info->tty_buf->count < avail_bytes) x_bytes = info->tty_buf->count; else x_bytes = avail_bytes; tty->flip.count += x_bytes; memcpy(tty->flip.char_buf_ptr, info->tty_buf->char_buf, x_bytes); memcpy(tty->flip.flag_buf_ptr, info->tty_buf->flag_buf, x_bytes); tty->flip.char_buf_ptr += x_bytes; tty->flip.flag_buf_ptr += x_bytes; info->tty_buf->count -= x_bytes; info->tty_buf->char_buf_ptr -= x_bytes; info->tty_buf->flag_buf_ptr -= x_bytes; if (info->tty_buf->count) { memmove(info->tty_buf->char_buf, info->tty_buf->char_buf + x_bytes, info->tty_buf->count); queue_task(&info->tty_buf->tqueue, &tq_timer); } queue_task(&tty->flip.tqueue, &tq_timer); } else { queue_task(&info->tty_buf->tqueue, &tq_timer); } restore_flags(flags); } static _INLINE_ void receive_chars_dma_done(struct esp_struct *info, int status) { struct tty_struct *tty = info->tty; int num_bytes, bytes_left, x_bytes; struct tty_flip_buffer *buffer; if (!(info->stat_flags & ESP_STAT_DMA_RX)) return; disable_dma(dma); clear_dma_ff(dma); info->stat_flags &= ~ESP_STAT_DMA_RX; bytes_left = num_bytes = dma_bytes - get_dma_residue(dma); info->icount.rx += num_bytes; buffer = &(tty->flip); if (info->tty_buf->count && (tty->flip.count < TTY_FLIPBUF_SIZE)) do_ttybuf(info); while (bytes_left > 0) { if ((buffer->count + bytes_left) > TTY_FLIPBUF_SIZE) x_bytes = TTY_FLIPBUF_SIZE - buffer->count; else x_bytes = bytes_left; memcpy(buffer->char_buf_ptr, dma_buffer + (num_bytes - bytes_left), x_bytes); buffer->char_buf_ptr += x_bytes; buffer->count += x_bytes; memset(buffer->flag_buf_ptr, 0, x_bytes); buffer->flag_buf_ptr += x_bytes; bytes_left -= x_bytes; if (bytes_left > 0) { if (buffer == info->tty_buf) break; else buffer = info->tty_buf; } } if (num_bytes > 0) { buffer->flag_buf_ptr--; status &= (0x1c & info->read_status_mask); if (status & info->ignore_status_mask) { buffer->count--; buffer->char_buf_ptr--; buffer->flag_buf_ptr--; } else if (status & 0x10) { *buffer->flag_buf_ptr = TTY_BREAK; (info->icount.brk)++; if (info->flags & ASYNC_SAK) do_SAK(tty); } else if (status & 0x08) { *buffer->flag_buf_ptr = TTY_FRAME; (info->icount.frame)++; } else if (status & 0x04) { *buffer->flag_buf_ptr = TTY_PARITY; (info->icount.parity)++; } buffer->flag_buf_ptr++; if (buffer == info->tty_buf) queue_task(&info->tty_buf->tqueue, &tq_timer); queue_task(&tty->flip.tqueue, &tq_timer); } if (dma_bytes != num_bytes) { dma_bytes = 0; receive_chars_dma(info); } else dma_bytes = 0; } static void transmit_chars_dma(struct esp_struct *info) { info->stat_flags &= ~ESP_STAT_NEED_DMA_TX; if ((info->xmit_cnt <= 0) || info->tty->stopped) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); return; } serial_out(info, UART_ESI_CMD1, ESI_NO_COMMAND); serial_out(info, UART_ESI_CMD1, ESI_GET_TX_AVAIL); dma_bytes = serial_in(info, UART_ESI_STAT1) << 8; dma_bytes |= serial_in(info, UART_ESI_STAT2); if (!dma_bytes) return; if (dma_bytes > info->xmit_cnt) dma_bytes = info->xmit_cnt; if (info->xmit_tail + dma_bytes <= ESP_XMIT_SIZE) { memcpy(dma_buffer, &(info->xmit_buf[info->xmit_tail]), dma_bytes); } else { int i = ESP_XMIT_SIZE - info->xmit_tail; memcpy(dma_buffer, &(info->xmit_buf[info->xmit_tail]), i); memcpy(&(dma_buffer[i]), info->xmit_buf, dma_bytes - i); } info->xmit_cnt -= dma_bytes; info->xmit_tail = (info->xmit_tail + dma_bytes) & (ESP_XMIT_SIZE - 1); if (info->xmit_cnt < WAKEUP_CHARS) { rs_sched_event(info, ESP_EVENT_WRITE_WAKEUP); #ifdef SERIAL_DEBUG_INTR printk("THRE..."); #endif if (info->xmit_cnt <= 0) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); } } info->stat_flags |= ESP_STAT_DMA_TX; disable_dma(dma); clear_dma_ff(dma); set_dma_mode(dma, DMA_MODE_WRITE); set_dma_addr(dma, virt_to_bus(dma_buffer)); set_dma_count(dma, dma_bytes); enable_dma(dma); serial_out(info, UART_ESI_CMD1, ESI_START_DMA_TX); } static _INLINE_ void transmit_chars_dma_done(struct esp_struct *info) { int num_bytes; if (!(info->stat_flags & ESP_STAT_DMA_TX)) return; disable_dma(dma); clear_dma_ff(dma); num_bytes = dma_bytes - get_dma_residue(dma); info->icount.tx += dma_bytes; if (dma_bytes != num_bytes) { dma_bytes -= num_bytes; memmove(dma_buffer, dma_buffer + num_bytes, dma_bytes); disable_dma(dma); clear_dma_ff(dma); set_dma_mode(dma, DMA_MODE_WRITE); set_dma_addr(dma, virt_to_bus(dma_buffer)); set_dma_count(dma, dma_bytes); enable_dma(dma); serial_out(info, UART_ESI_CMD1, ESI_START_DMA_TX); } else { dma_bytes = 0; info->stat_flags &= ~ESP_STAT_DMA_TX; } } static _INLINE_ void check_modem_status(struct esp_struct *info) { int status; serial_out(info, UART_ESI_CMD1, ESI_GET_UART_STAT); status = serial_in(info, UART_ESI_STAT2); if (status & UART_MSR_ANY_DELTA) { /* update input line counters */ if (status & UART_MSR_TERI) info->icount.rng++; if (status & UART_MSR_DDSR) info->icount.dsr++; if (status & UART_MSR_DDCD) info->icount.dcd++; if (status & UART_MSR_DCTS) info->icount.cts++; wake_up_interruptible(&info->delta_msr_wait); } if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) { #if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR)) printk("ttys%d CD now %s...", info->line, (status & UART_MSR_DCD) ? "on" : "off"); #endif if (status & UART_MSR_DCD) wake_up_interruptible(&info->open_wait); else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_CALLOUT_NOHUP))) { #ifdef SERIAL_DEBUG_OPEN printk("scheduling hangup..."); #endif queue_task(&info->tqueue_hangup, &tq_scheduler); } } } /* * This is the serial driver's interrupt routine */ static void rs_interrupt_single(int irq, void *dev_id, struct pt_regs * regs) { struct esp_struct * info, *stop_port = 0; unsigned err_status; unsigned int scratch; int pre_bytes; #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt_single(%d)...", irq); #endif /* This routine will currently check ALL ports when an interrupt */ /* is received from ANY port */ info = IRQ_ports[irq]; if (!info) return; do { if (!info->tty) { info = info->next_port; continue; } pre_bytes = dma_bytes; err_status = 0; scratch = serial_in(info, UART_ESI_SID); if (scratch & 0x04) { /* error - check for rx timeout */ serial_out(info, UART_ESI_CMD1, ESI_GET_ERR_STAT); err_status = serial_in(info, UART_ESI_STAT1); serial_in(info, UART_ESI_STAT2); if (err_status & 0x01) info->stat_flags |= ESP_STAT_RX_TIMEOUT; if (err_status & 0x20) /* UART status */ check_modem_status(info); if (err_status & 0x80) /* Start break */ wake_up_interruptible(&info->break_wait); } if ((scratch & 0x88) || /* DMA completed or timed out */ (err_status & 0x1c) /* receive error */) { receive_chars_dma_done(info, err_status); transmit_chars_dma_done(info); } if (((scratch & 0x01) || (info->stat_flags & ESP_STAT_RX_TIMEOUT)) && (info->IER & UART_IER_RDI)) if (dma_bytes) info->stat_flags |= ESP_STAT_NEED_DMA_RX; else receive_chars_dma(info); if ((scratch & 0x02) && (info->IER & UART_IER_THRI)) if (dma_bytes) info->stat_flags |= ESP_STAT_NEED_DMA_TX; else transmit_chars_dma(info); info->last_active = jiffies; if (pre_bytes && !dma_bytes) /* released DMA */ stop_port = info; info = info->next_port; } while ((info->irq == irq) && (info != IRQ_ports[irq])); if (stop_port) { while ((info != stop_port) && (!dma_bytes)) { if (info->tty) { if (info->stat_flags & ESP_STAT_NEED_DMA_RX) receive_chars_dma(info); if ((info->stat_flags & ESP_STAT_NEED_DMA_TX) && !dma_bytes) transmit_chars_dma(info); } info = info->next_port; } } #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_esp); } static void do_softint(void *private_) { struct esp_struct *info = (struct esp_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(ESP_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } /* * This routine is called from the scheduler tqueue when the interrupt * routine has signalled that a hangup has occurred. The path of * hangup processing is: * * serial interrupt routine -> (scheduler tqueue) -> * do_serial_hangup() -> tty->hangup() -> esp_hangup() * */ static void do_serial_hangup(void *private_) { struct esp_struct *info = (struct esp_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; tty_hangup(tty); } /* * --------------------------------------------------------------- * Low level utility subroutines for the serial driver: routines to * figure out the appropriate timeout for an interrupt chain, routines * to initialize and startup a serial port, and routines to shutdown a * serial port. Useful stuff like that. * --------------------------------------------------------------- */ static _INLINE_ void esp_basic_init(struct esp_struct * info) { /* put ESPC in enhanced mode */ serial_out(info, UART_ESI_CMD1, ESI_SET_MODE); serial_out(info, UART_ESI_CMD2, 0x31); /* disable interrupts for now */ serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, 0x00); /* set interrupt and DMA channel */ serial_out(info, UART_ESI_CMD1, ESI_SET_IRQ); serial_out(info, UART_ESI_CMD2, (dma << 4) | 0x01); serial_out(info, UART_ESI_CMD1, ESI_SET_ENH_IRQ); if (info->line % 8) /* secondary port */ serial_out(info, UART_ESI_CMD2, 0x0d); /* shared */ else if (info->irq == 9) serial_out(info, UART_ESI_CMD2, 0x02); else serial_out(info, UART_ESI_CMD2, info->irq); /* set error status mask (check this) */ serial_out(info, UART_ESI_CMD1, ESI_SET_ERR_MASK); serial_out(info, UART_ESI_CMD2, 0xbd); serial_out(info, UART_ESI_CMD2, 0x00); /* set DMA timeout */ serial_out(info, UART_ESI_CMD1, ESI_SET_DMA_TMOUT); serial_out(info, UART_ESI_CMD2, 0xff); /* set FIFO trigger levels */ serial_out(info, UART_ESI_CMD1, ESI_SET_TRIGGER); serial_out(info, UART_ESI_CMD2, rx_trigger >> 8); serial_out(info, UART_ESI_CMD2, rx_trigger); serial_out(info, UART_ESI_CMD2, tx_trigger >> 8); serial_out(info, UART_ESI_CMD2, tx_trigger); /* Set clock scaling */ serial_out(info, UART_ESI_CMD1, ESI_SET_PRESCALAR); serial_out(info, UART_ESI_CMD2, ESPC_SCALE); /* set reinterrupt pacing */ serial_out(info, UART_ESI_CMD1, ESI_SET_REINTR); serial_out(info, UART_ESI_CMD2, 0xff); } static int startup(struct esp_struct * info) { unsigned long flags; int retval=0; int next_irq; struct esp_struct *next_info = 0; unsigned int num_chars; save_flags(flags); cli(); if (info->flags & ASYNC_INITIALIZED) goto errout; if (!info->xmit_buf) { info->xmit_buf = (unsigned char *)get_free_page(GFP_KERNEL); if (!info->xmit_buf) { retval = -ENOMEM; goto errout; } } if (!info->tty_buf) { info->tty_buf = (struct tty_flip_buffer *)kmalloc( sizeof(struct tty_flip_buffer), GFP_KERNEL); if (!info->tty_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; retval = -ENOMEM; goto errout; } memset(info->tty_buf, 0, sizeof(struct tty_flip_buffer)); info->tty_buf->tqueue.routine = do_ttybuf; info->tty_buf->tqueue.data = info; } info->tty_buf->count = 0; info->tty_buf->char_buf_ptr = info->tty_buf->char_buf; info->tty_buf->flag_buf_ptr = info->tty_buf->flag_buf; #ifdef SERIAL_DEBUG_OPEN printk("starting up ttys%d (irq %d)...", info->line, info->irq); #endif /* Flush the RX buffer. Using the ESI flush command may cause */ /* wild interrupts, so read all the data instead. */ serial_out(info, UART_ESI_CMD1, ESI_NO_COMMAND); serial_out(info, UART_ESI_CMD1, ESI_GET_RX_AVAIL); num_chars = serial_in(info, UART_ESI_STAT1) << 8; num_chars |= serial_in(info, UART_ESI_STAT2); while (num_chars > 1) { inw(info->port + UART_ESI_RX); num_chars -= 2; } if (num_chars) serial_in(info, UART_ESI_RX); /* set receive character timeout */ serial_out(info, UART_ESI_CMD1, ESI_SET_RX_TIMEOUT); serial_out(info, UART_ESI_CMD2, rx_timeout); info->stat_flags = 0; /* * Allocate the IRQ if necessary */ if (!IRQ_ports[info->irq]) { retval = request_irq(info->irq, rs_interrupt_single, SA_INTERRUPT, "esp serial", NULL); if (!retval) { int i = 1; while ((i < 16) && !IRQ_ports[i]) i++; if (i == 16) { dma_buffer = (char *)__get_dma_pages(GFP_KERNEL, __get_order(DMA_BUFFER_SZ)); if (!dma_buffer) retval = -ENOMEM; else retval = request_dma(dma, "esp serial"); if (retval) free_irq(info->irq, NULL); } } if (retval) { if (suser()) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); retval = 0; } goto errout; } } info->MCR = UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2; serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); serial_out(info, UART_ESI_CMD2, info->MCR); /* * Finally, enable interrupts */ /* info->IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI; */ info->IER = UART_IER_RLSI | UART_IER_RDI | UART_IER_DMA_TMOUT | UART_IER_DMA_TC; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* Remove port from "closed" chain */ if (info->next_port) info->next_port->prev_port = info->prev_port; if (info->prev_port) info->prev_port->next_port = info->next_port; else IRQ_ports[0] = info->next_port; /* * Insert serial port into IRQ chain. */ next_irq = info->irq; do { next_info = IRQ_ports[next_irq]; if (++next_irq > 15) next_irq = 1; } while (!next_info && (next_irq != info->irq)); if (!next_info) { info->next_port = info; info->prev_port = info; } else { info->next_port = next_info; info->prev_port = next_info->prev_port; next_info->prev_port->next_port = info; next_info->prev_port = info; } IRQ_ports[info->irq] = info; /* * set the speed of the serial port */ change_speed(info); info->flags |= ASYNC_INITIALIZED; restore_flags(flags); return 0; errout: restore_flags(flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct esp_struct * info) { unsigned long flags; if (!(info->flags & ASYNC_INITIALIZED)) return; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, info->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ /* * clear delta_msr_wait queue to avoid mem leaks: we may free the irq * here so the queue might never be waken up */ wake_up_interruptible(&info->delta_msr_wait); wake_up_interruptible(&info->break_wait); /* stop a DMA transfer on the port being closed, and start the next one */ if (info->stat_flags & (ESP_STAT_DMA_RX | ESP_STAT_DMA_TX)) { struct esp_struct *curr = info->next_port; disable_dma(dma); clear_dma_ff(dma); dma_bytes = 0; while ((curr != info) && (!dma_bytes)) { if (curr->tty) { if (curr->stat_flags & ESP_STAT_NEED_DMA_RX) receive_chars_dma(curr); if ((curr->stat_flags & ESP_STAT_NEED_DMA_TX) && !dma_bytes) transmit_chars_dma(curr); } curr = curr->next_port; } } /* * First unlink the serial port from the IRQ chain... */ info->next_port->prev_port = info->prev_port; info->prev_port->next_port = info->next_port; if (IRQ_ports[info->irq] == info) { if ((info->next_port == info) || (info->next_port->irq != info->irq)) IRQ_ports[info->irq] = 0; else IRQ_ports[info->irq] = info->next_port; } /* Stick it on the "closed" chain */ info->next_port = IRQ_ports[0]; if (info->next_port) info->next_port->prev_port = info; info->prev_port = 0; IRQ_ports[0] = info; /* * Free the IRQ, if necessary */ if (!IRQ_ports[info->irq]) { int i = 1; while ((i < 16) && !IRQ_ports[i]) i++; if (i == 16) { free_dma(dma); free_pages((unsigned int)dma_buffer, __get_order(DMA_BUFFER_SZ)); dma_buffer = 0; } free_irq(info->irq, NULL); } if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } if (info->tty_buf) { /* code borrowed from tty_io.c */ if (info->tty_buf->tqueue.sync) { struct tq_struct *tq, *prev; for (tq=tq_timer, prev=0; tq; prev=tq, tq=tq->next) { if (tq == &info->tty_buf->tqueue) { if (prev) prev->next = tq->next; else tq_timer = tq->next; break; } } } kfree(info->tty_buf); info->tty_buf = 0; } info->IER = 0; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, 0x00); if (!info->tty || (info->tty->termios->c_cflag & HUPCL)) info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); info->MCR &= ~UART_MCR_OUT2; serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); serial_out(info, UART_ESI_CMD2, info->MCR); if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ASYNC_INITIALIZED; restore_flags(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct esp_struct *info) { unsigned short port; int quot = 0; unsigned cflag,cval; int baud, bits; unsigned char flow1 = 0, flow2 = 0; unsigned long flags; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; port = info->port; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: cval = 0x00; bits = 7; break; case CS6: cval = 0x01; bits = 8; break; case CS7: cval = 0x02; bits = 9; break; case CS8: cval = 0x03; bits = 10; break; default: cval = 0x00; bits = 7; break; } if (cflag & CSTOPB) { cval |= 0x04; bits++; } if (cflag & PARENB) { cval |= UART_LCR_PARITY; bits++; } if (!(cflag & PARODD)) cval |= UART_LCR_EPAR; #ifdef CMSPAR if (cflag & CMSPAR) cval |= UART_LCR_SPAR; #endif baud = tty_get_baud_rate(info->tty); if (baud == 38400) quot = info->custom_divisor; else { if (baud == 134) /* Special case since 134 is really 134.5 */ quot = (2*BASE_BAUD / 269); else if (baud) quot = BASE_BAUD / baud; } /* If the quotient is ever zero, default to 9600 bps */ if (!quot) quot = BASE_BAUD / 9600; info->timeout = ((1024 * HZ * bits * quot) / BASE_BAUD) + (HZ / 50); /* CTS flow control flag and modem status interrupts */ /* info->IER &= ~UART_IER_MSI; */ if (cflag & CRTSCTS) { info->flags |= ASYNC_CTS_FLOW; /* info->IER |= UART_IER_MSI; */ flow1 = 0x04; flow2 = 0x10; } else info->flags &= ~ASYNC_CTS_FLOW; if (cflag & CLOCAL) info->flags &= ~ASYNC_CHECK_CD; else { info->flags |= ASYNC_CHECK_CD; /* info->IER |= UART_IER_MSI; */ } /* * Set up parity check flag */ #define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK)) info->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR; if (I_INPCK(info->tty)) info->read_status_mask |= UART_LSR_FE | UART_LSR_PE; if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) info->read_status_mask |= UART_LSR_BI; info->ignore_status_mask = 0; #if 0 /* This should be safe, but for some broken bits of hardware... */ if (I_IGNPAR(info->tty)) { info->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE; info->read_status_mask |= UART_LSR_PE | UART_LSR_FE; } #endif if (I_IGNBRK(info->tty)) { info->ignore_status_mask |= UART_LSR_BI; info->read_status_mask |= UART_LSR_BI; /* * If we're ignore parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->tty)) { info->ignore_status_mask |= UART_LSR_OE | \ UART_LSR_PE | UART_LSR_FE; info->read_status_mask |= UART_LSR_OE | \ UART_LSR_PE | UART_LSR_FE; } } if (I_IXOFF(info->tty)) flow1 |= 0x81; save_flags(flags); cli(); /* set baud */ serial_out(info, UART_ESI_CMD1, ESI_SET_BAUD); serial_out(info, UART_ESI_CMD2, quot >> 8); serial_out(info, UART_ESI_CMD2, quot & 0xff); /* set data bits, parity, etc. */ serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_LCR); serial_out(info, UART_ESI_CMD2, cval); /* Enable flow control */ serial_out(info, UART_ESI_CMD1, ESI_SET_FLOW_CNTL); serial_out(info, UART_ESI_CMD2, flow1); serial_out(info, UART_ESI_CMD2, flow2); /* set flow control characters (XON/XOFF only) */ if (I_IXOFF(info->tty)) { serial_out(info, UART_ESI_CMD1, ESI_SET_FLOW_CHARS); serial_out(info, UART_ESI_CMD2, START_CHAR(info->tty)); serial_out(info, UART_ESI_CMD2, STOP_CHAR(info->tty)); serial_out(info, UART_ESI_CMD2, 0x10); serial_out(info, UART_ESI_CMD2, 0x21); switch (cflag & CSIZE) { case CS5: serial_out(info, UART_ESI_CMD2, 0x1f); break; case CS6: serial_out(info, UART_ESI_CMD2, 0x3f); break; case CS7: case CS8: serial_out(info, UART_ESI_CMD2, 0x7f); break; default: serial_out(info, UART_ESI_CMD2, 0xff); break; } } /* Set high/low water */ serial_out(info, UART_ESI_CMD1, ESI_SET_FLOW_LVL); serial_out(info, UART_ESI_CMD2, flow_off >> 8); serial_out(info, UART_ESI_CMD2, flow_off); serial_out(info, UART_ESI_CMD2, flow_on >> 8); serial_out(info, UART_ESI_CMD2, flow_on); restore_flags(flags); } static void rs_put_char(struct tty_struct *tty, unsigned char ch) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_put_char")) return; if (!tty || !info->xmit_buf) return; save_flags(flags); cli(); if (info->xmit_cnt >= ESP_XMIT_SIZE - 1) { restore_flags(flags); return; } info->xmit_buf[info->xmit_head++] = ch; info->xmit_head &= ESP_XMIT_SIZE-1; info->xmit_cnt++; restore_flags(flags); } static void rs_flush_chars(struct tty_struct *tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || !info->xmit_buf) return; save_flags(flags); cli(); if (!(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); } restore_flags(flags); } static int rs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, ret = 0; struct esp_struct *info = (struct esp_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty || !info->xmit_buf || !tmp_buf) return 0; if (from_user) down(&tmp_buf_sem); save_flags(flags); while (1) { cli(); c = MIN(count, MIN(ESP_XMIT_SIZE - info->xmit_cnt - 1, ESP_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; if (from_user) { c -= copy_from_user(tmp_buf, buf, c); if (!c) { if (!ret) ret = -EFAULT; break; } c = MIN(c, MIN(ESP_XMIT_SIZE - info->xmit_cnt - 1, ESP_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); } else memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = (info->xmit_head + c) & (ESP_XMIT_SIZE-1); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; ret += c; } if (from_user) up(&tmp_buf_sem); if (info->xmit_cnt && !tty->stopped && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); } restore_flags(flags); return ret; } static int rs_write_room(struct tty_struct *tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; ret = ESP_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int rs_chars_in_buffer(struct tty_struct *tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void rs_flush_buffer(struct tty_struct *tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; sti(); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; cli(); info->IER &= ~UART_IER_RDI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); serial_out(info, UART_ESI_CMD1, ESI_SET_RX_TIMEOUT); serial_out(info, UART_ESI_CMD2, 0x00); sti(); } static void rs_unthrottle(struct tty_struct * tty) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; cli(); info->IER |= UART_IER_RDI; serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); serial_out(info, UART_ESI_CMD1, ESI_SET_RX_TIMEOUT); serial_out(info, UART_ESI_CMD2, rx_timeout); sti(); } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct esp_struct * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = PORT_16550A; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.xmit_fifo_size = 1024; tmp.baud_base = BASE_BAUD; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; tmp.hub6 = 0; tmp.reserved_char[0] = 'E'; tmp.reserved_char[1] = rx_timeout; tmp.reserved[0] = rx_trigger; tmp.reserved[1] = tx_trigger; tmp.reserved[2] = flow_off; tmp.reserved[3] = flow_on; if (copy_to_user(retinfo,&tmp,sizeof(*retinfo))) return -EFAULT; return 0; } static int set_serial_info(struct esp_struct * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct esp_struct old_info; unsigned int change_irq; unsigned int change_flow; int i, retval = 0; struct esp_struct *current_async; if (copy_from_user(&new_serial,new_info,sizeof(new_serial))) return -EFAULT; old_info = *info; if ((new_serial.type != PORT_16550A) || (new_serial.hub6) || (info->port != new_serial.port) || (new_serial.baud_base != BASE_BAUD) || (new_serial.irq > 15) || (new_serial.irq < 2) || (new_serial.irq == 6) || (new_serial.irq == 8) || (new_serial.irq == 13) || (new_serial.reserved[3] >= new_serial.reserved[2]) || (new_serial.reserved[0] < 1) || (new_serial.reserved[1] < 1) || (new_serial.reserved[2] < 1) || (new_serial.reserved[3] < 1) || (new_serial.reserved[0] > 1023) || (new_serial.reserved[1] > 1023) || (new_serial.reserved[2] > 1023) || (new_serial.reserved[3] > 1023)) return -EINVAL; change_irq = new_serial.irq != info->irq; change_flow = ((new_serial.reserved[2] != flow_off) || (new_serial.reserved[3] != flow_on)); if (change_irq && (info->line % 8)) return -EINVAL; if (!suser()) { if (change_irq || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ASYNC_USR_MASK) != (info->flags & ~ASYNC_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ASYNC_USR_MASK) | (new_serial.flags & ASYNC_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } if (new_serial.irq == 2) new_serial.irq = 9; if (change_irq) { i = 1; while ((i < 16) && !IRQ_ports[i]) i++; if (i < 16) { current_async = IRQ_ports[i]; do { if ((current_async->line >= info->line) && (current_async->line < (info->line + 8))) { if (current_async == info) { if (current_async->count > 1) return -EBUSY; } else return -EBUSY; } current_async = current_async->next_port; } while (current_async != IRQ_ports[i]); } } /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->flags = ((info->flags & ~ASYNC_FLAGS) | (new_serial.flags & ASYNC_FLAGS)); info->custom_divisor = new_serial.custom_divisor; info->close_delay = new_serial.close_delay * HZ/100; info->closing_wait = new_serial.closing_wait * HZ/100; flow_off = new_serial.reserved[2]; flow_on = new_serial.reserved[3]; if ((new_serial.reserved[0] != rx_trigger) || (new_serial.reserved[1] != tx_trigger)) { unsigned long flags; rx_trigger = new_serial.reserved[0]; tx_trigger = new_serial.reserved[1]; save_flags(flags); cli(); serial_out(info, UART_ESI_CMD1, ESI_SET_TRIGGER); serial_out(info, UART_ESI_CMD2, rx_trigger >> 8); serial_out(info, UART_ESI_CMD2, rx_trigger); serial_out(info, UART_ESI_CMD2, tx_trigger >> 8); serial_out(info, UART_ESI_CMD2, tx_trigger); restore_flags(flags); } if (((unsigned char)(new_serial.reserved_char[1]) != rx_timeout)) { unsigned long flags; rx_timeout = (unsigned char)(new_serial.reserved_char[1]); save_flags(flags); cli(); if (info->IER & UART_IER_RDI) { serial_out(info, UART_ESI_CMD1, ESI_SET_RX_TIMEOUT); serial_out(info, UART_ESI_CMD2, rx_timeout); } restore_flags(flags); } if (change_irq) { /* * We need to shutdown the serial port at the old * port/irq combination. */ shutdown(info); current_async = IRQ_ports[0]; while (current_async != 0) { if ((current_async->line >= info->line) && (current_async->line < (info->line + 8))) current_async->irq = new_serial.irq; current_async = current_async->next_port; } serial_out(info, UART_ESI_CMD1, ESI_SET_ENH_IRQ); if (info->irq == 9) serial_out(info, UART_ESI_CMD2, 0x02); else serial_out(info, UART_ESI_CMD2, info->irq); } check_and_exit: if (info->flags & ASYNC_INITIALIZED) { if (((old_info.flags & ASYNC_SPD_MASK) != (info->flags & ASYNC_SPD_MASK)) || (old_info.custom_divisor != info->custom_divisor) || change_flow) { if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) info->tty->alt_speed = 57600; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) info->tty->alt_speed = 115200; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) info->tty->alt_speed = 230400; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) info->tty->alt_speed = 460800; change_speed(info); } } else retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct esp_struct * info, unsigned int *value) { unsigned char status; unsigned int result; cli(); serial_out(info, UART_ESI_CMD1, ESI_GET_UART_STAT); status = serial_in(info, UART_ESI_STAT1); sti(); result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0); return put_user(result,value); } static int get_modem_info(struct esp_struct * info, unsigned int *value) { unsigned char control, status; unsigned int result; control = info->MCR; cli(); serial_out(info, UART_ESI_CMD1, ESI_GET_UART_STAT); status = serial_in(info, UART_ESI_STAT2); sti(); result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0) | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0) | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0) | ((status & UART_MSR_RI) ? TIOCM_RNG : 0) | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0) | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0); return put_user(result,value); } static int set_modem_info(struct esp_struct * info, unsigned int cmd, unsigned int *value) { int error; unsigned int arg; error = get_user(arg, value); if (error) return error; switch (cmd) { case TIOCMBIS: if (arg & TIOCM_RTS) info->MCR |= UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR |= UART_MCR_DTR; break; case TIOCMBIC: if (arg & TIOCM_RTS) info->MCR &= ~UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR &= ~UART_MCR_DTR; break; case TIOCMSET: info->MCR = ((info->MCR & ~(UART_MCR_RTS | UART_MCR_DTR)) | ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0) | ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0)); break; default: return -EINVAL; } cli(); serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); serial_out(info, UART_ESI_CMD2, info->MCR); sti(); return 0; } /* * rs_break() --- routine which turns the break handling on or off */ static void esp_break(struct tty_struct *tty, int break_state) { struct esp_struct * info = (struct esp_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "esp_break")) return; save_flags(flags); cli(); if (break_state == -1) { serial_out(info, UART_ESI_CMD1, ESI_ISSUE_BREAK); serial_out(info, UART_ESI_CMD2, 0x01); interruptible_sleep_on(&info->break_wait); } else { serial_out(info, UART_ESI_CMD1, ESI_ISSUE_BREAK); serial_out(info, UART_ESI_CMD2, 0x00); } restore_flags(flags); } static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; struct esp_struct * info = (struct esp_struct *)tty->driver_data; struct async_icount cprev, cnow; /* kernel counter temps */ struct serial_icounter_struct *p_cuser; /* user space */ if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT) && (cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TIOCMGET: return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERCONFIG: /* do not reconfigure after initial configuration */ return 0; case TIOCSERGWILD: return put_user(0L, (unsigned long *) arg); case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); case TIOCSERSWILD: if (!suser()) return -EPERM; return 0; /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ case TIOCMIWAIT: cli(); cprev = info->icount; /* note the counters on entry */ sti(); while (1) { interruptible_sleep_on(&info->delta_msr_wait); /* see if a signal did it */ if (signal_pending(current)) return -ERESTARTSYS; cli(); cnow = info->icount; /* atomic copy */ sti(); if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) return -EIO; /* no change => error */ if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { return 0; } cprev = cnow; } /* NOTREACHED */ /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ case TIOCGICOUNT: cli(); cnow = info->icount; sti(); p_cuser = (struct serial_icounter_struct *) arg; if ((error = put_user(cnow.cts, &p_cuser->cts))) return error; if ((error = put_user(cnow.dsr, &p_cuser->dsr))) return error; if ((error = put_user(cnow.rng, &p_cuser->rng))) return error; if ((error = put_user(cnow.dcd, &p_cuser->dcd))) return error; return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; if ( (tty->termios->c_cflag == old_termios->c_cflag) && ( RELEVANT_IFLAG(tty->termios->c_iflag) == RELEVANT_IFLAG(old_termios->c_iflag))) return; change_speed(info); /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) { info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); cli(); serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); serial_out(info, UART_ESI_CMD2, info->MCR); sti(); } /* Handle transition away from B0 status */ if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) { info->MCR |= (UART_MCR_DTR | UART_MCR_RTS); cli(); serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); serial_out(info, UART_ESI_CMD2, info->MCR); sti(); } /* Handle turning of CRTSCTS */ if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { rs_start(tty); } #if 0 /* * No need to wake up processes in open wait, since they * sample the CLOCAL flag once, and don't recheck it. * XXX It's not clear whether the current behavior is correct * or not. Hence, this may change..... */ if (!(old_termios->c_cflag & CLOCAL) && (tty->termios->c_cflag & CLOCAL)) wake_up_interruptible(&info->open_wait); #endif } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * async structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct esp_struct * info = (struct esp_struct *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { DBG_CNT("before DEC-hung"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { DBG_CNT("before DEC-2"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } info->flags |= ASYNC_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ASYNC_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ASYNC_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ /* info->IER &= ~UART_IER_RLSI; */ info->IER &= ~UART_IER_RDI; info->read_status_mask &= ~UART_LSR_DR; if (info->flags & ASYNC_INITIALIZED) { serial_out(info, UART_ESI_CMD1, ESI_SET_SRV_MASK); serial_out(info, UART_ESI_CMD2, info->IER); /* disable receive timeout */ serial_out(info, UART_ESI_CMD1, ESI_SET_RX_TIMEOUT); serial_out(info, UART_ESI_CMD2, 0x00); /* * Before we drop DTR, make sure the UART transmitter * has completely drained; this is especially * important if there is a transmit FIFO! */ rs_wait_until_sent(tty, info->timeout); } shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + info->close_delay; schedule(); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE| ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); MOD_DEC_USE_COUNT; restore_flags(flags); } static void rs_wait_until_sent(struct tty_struct *tty, int timeout) { struct esp_struct *info = (struct esp_struct *)tty->driver_data; unsigned long orig_jiffies, char_time; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent")) return; orig_jiffies = jiffies; char_time = ((info->timeout - HZ / 50) / 1024) / 5; if (!char_time) char_time = 1; save_flags(flags); cli(); serial_out(info, UART_ESI_CMD1, ESI_NO_COMMAND); serial_out(info, UART_ESI_CMD1, ESI_GET_TX_AVAIL); while ((serial_in(info, UART_ESI_STAT1) != 0x03) || (serial_in(info, UART_ESI_STAT2) != 0xff)) { current->state = TASK_INTERRUPTIBLE; current->counter = 0; current->timeout = jiffies + char_time; schedule(); if (signal_pending(current)) break; if (timeout && ((orig_jiffies + timeout) < jiffies)) break; serial_out(info, UART_ESI_CMD1, ESI_NO_COMMAND); serial_out(info, UART_ESI_CMD1, ESI_GET_TX_AVAIL); } restore_flags(flags); current->state = TASK_RUNNING; } /* * esp_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void esp_hangup(struct tty_struct *tty) { struct esp_struct * info = (struct esp_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "esp_hangup")) return; rs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * esp_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct esp_struct *info) { struct wait_queue wait = { current, NULL }; int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) return -EAGAIN; else return -ERESTARTSYS; #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ASYNC_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ASYNC_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ASYNC_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (info->flags & ASYNC_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", info->line, info->count); #endif cli(); if (!tty_hung_up_p(filp)) info->count--; sti(); info->blocked_open++; while (1) { cli(); if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && (tty->termios->c_cflag & CBAUD)) { unsigned int scratch; serial_out(info, UART_ESI_CMD1, ESI_READ_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); scratch = serial_in(info, UART_ESI_STAT1); serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); serial_out(info, UART_ESI_CMD2, scratch | UART_MCR_DTR | UART_MCR_RTS); } sti(); current->state = TASK_INTERRUPTIBLE; if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } serial_out(info, UART_ESI_CMD1, ESI_GET_UART_STAT); if (serial_in(info, UART_ESI_STAT2) & UART_MSR_DCD) do_clocal = 1; if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && !(info->flags & ASYNC_CLOSING) && (do_clocal)) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its async structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int esp_open(struct tty_struct *tty, struct file * filp) { struct esp_struct *info; int i, retval, line; unsigned long page; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= NR_PORTS)) return -ENODEV; /* check whether or not the port is on the closed chain */ info = IRQ_ports[0]; while (info && (info->line != line)) info = info->next_port; /* if the port is not on the closed chain, look for it on the */ /* open chain */ if (!info) { i = 1; while ((i < 16) && !IRQ_ports[i]) i++; if (i < 16) { info = IRQ_ports[i]; do { if (info->line == line) break; info = info->next_port; } while (info != IRQ_ports[i]); } } if (!info || (info->line != line) || serial_paranoia_check(info, tty->device, "esp_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("esp_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif MOD_INC_USE_COUNT; info->count++; tty->driver_data = info; info->tty = tty; if (!tmp_buf) { page = get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; if (tmp_buf) free_page(page); else tmp_buf = (unsigned char *) page; } /* * Start up serial port */ retval = startup(info); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("esp_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ASYNC_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; change_speed(info); } info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("esp_open ttys%d successful...", info->line); #endif return 0; } /* * --------------------------------------------------------------------- * espserial_init() and friends * * espserial_init() is called at boot-time to initialize the serial driver. * --------------------------------------------------------------------- */ /* * This routine prints out the appropriate serial driver version * number, and identifies which options were configured into this * driver. */ static _INLINE_ void show_serial_version(void) { printk(KERN_INFO "%s version %s (DMA %u)\n", serial_name, serial_version, dma); } /* * This routine is called by espserial_init() to initialize a specific serial * port. */ static _INLINE_ int autoconfig(struct esp_struct * info, int *region_start) { int port_detected = 0; unsigned long flags; save_flags(flags); cli(); /* * Check for ESP card */ if (!check_region(info->port, 8) && serial_in(info, UART_ESI_BASE) == 0xf3) { serial_out(info, UART_ESI_CMD1, 0x00); serial_out(info, UART_ESI_CMD1, 0x01); if ((serial_in(info, UART_ESI_STAT2) & 0x70) == 0x20) { port_detected = 1; if (!(info->irq)) { serial_out(info, UART_ESI_CMD1, 0x02); if (serial_in(info, UART_ESI_STAT1) & 0x01) info->irq = 3; else info->irq = 4; } if (IRQ_ports[0] && (IRQ_ports[0]->port == (info->port - 8))) { release_region(*region_start, info->port - *region_start); } else *region_start = info->port; request_region(*region_start, info->port - *region_start + 8, "esp serial"); /* put card in enhanced mode */ /* this prevents access through */ /* the "old" IO ports */ esp_basic_init(info); /* clear out MCR */ serial_out(info, UART_ESI_CMD1, ESI_WRITE_UART); serial_out(info, UART_ESI_CMD2, UART_MCR); serial_out(info, UART_ESI_CMD2, 0x00); } } restore_flags(flags); return (port_detected); } /* * The serial driver boot-time initialization code! */ __initfunc(int espserial_init(void)) { int i, offset; int region_start; struct esp_struct * info; int esp[] = {0x100,0x140,0x180,0x200,0x240,0x280,0x300,0x380}; init_bh(ESP_BH, do_serial_bh); for (i = 0; i < 16; i++) { IRQ_ports[i] = 0; } for (i = 0; i < NR_PRIMARY; i++) if (irq[i] != 0) if ((irq[i] < 2) || (irq[i] > 15) || (irq[i] == 6) || (irq[i] == 8) || (irq[i] == 13)) irq[i] = 0; else if (irq[i] == 2) irq[i] = 9; if ((dma != 1) && (dma != 3)) dma = 1; if ((rx_trigger < 1) || (rx_trigger > 1023)) rx_trigger = 768; if ((tx_trigger < 1) || (tx_trigger > 1023)) tx_trigger = 768; if ((flow_off < 1) || (flow_off > 1023)) flow_off = 1016; if ((flow_on < 1) || (flow_on > 1023)) flow_on = 944; if ((rx_timeout < 0) || (rx_timeout > 255)) rx_timeout = 128; if (flow_on >= flow_off) flow_on = flow_off - 1; show_serial_version(); /* Initialize the tty_driver structure */ memset(&esp_driver, 0, sizeof(struct tty_driver)); esp_driver.magic = TTY_DRIVER_MAGIC; esp_driver.name = "ttyP"; esp_driver.major = ESP_IN_MAJOR; esp_driver.minor_start = 0; esp_driver.num = NR_PORTS; esp_driver.type = TTY_DRIVER_TYPE_SERIAL; esp_driver.subtype = SERIAL_TYPE_NORMAL; esp_driver.init_termios = tty_std_termios; esp_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; esp_driver.flags = TTY_DRIVER_REAL_RAW; esp_driver.refcount = &serial_refcount; esp_driver.table = serial_table; esp_driver.termios = serial_termios; esp_driver.termios_locked = serial_termios_locked; esp_driver.open = esp_open; esp_driver.close = rs_close; esp_driver.write = rs_write; esp_driver.put_char = rs_put_char; esp_driver.flush_chars = rs_flush_chars; esp_driver.write_room = rs_write_room; esp_driver.chars_in_buffer = rs_chars_in_buffer; esp_driver.flush_buffer = rs_flush_buffer; esp_driver.ioctl = rs_ioctl; esp_driver.throttle = rs_throttle; esp_driver.unthrottle = rs_unthrottle; esp_driver.set_termios = rs_set_termios; esp_driver.stop = rs_stop; esp_driver.start = rs_start; esp_driver.hangup = esp_hangup; esp_driver.break_ctl = esp_break; esp_driver.wait_until_sent = rs_wait_until_sent; /* * The callout device is just like normal device except for * major number and the subtype code. */ esp_callout_driver = esp_driver; esp_callout_driver.name = "cup"; esp_callout_driver.major = ESP_OUT_MAJOR; esp_callout_driver.subtype = SERIAL_TYPE_CALLOUT; if (tty_register_driver(&esp_driver)) { printk(KERN_ERR "Couldn't register esp serial driver"); return 1; } if (tty_register_driver(&esp_callout_driver)) { printk(KERN_ERR "Couldn't register esp callout driver"); tty_unregister_driver(&esp_driver); return 1; } info = (struct esp_struct *)kmalloc(sizeof(struct esp_struct), GFP_KERNEL); if (!info) { printk(KERN_ERR "Couldn't allocate memory for esp serial device information\n"); tty_unregister_driver(&esp_driver); tty_unregister_driver(&esp_callout_driver); return 1; } memset((void *)info, 0, sizeof(struct esp_struct)); i = 0; offset = 0; do { info->port = esp[i] + offset; info->irq = irq[i]; info->line = (i * 8) + (offset / 8); if (!autoconfig(info, ®ion_start)) { i++; offset = 0; continue; } info->custom_divisor = (divisor[i] >> (offset / 2)) & 0xf; info->flags = STD_COM_FLAGS; if (info->custom_divisor) info->flags |= ASYNC_SPD_CUST; info->magic = ESP_MAGIC; info->close_delay = 5*HZ/10; info->closing_wait = 30*HZ; info->tqueue.routine = do_softint; info->tqueue.data = info; info->tqueue_hangup.routine = do_serial_hangup; info->tqueue_hangup.data = info; info->callout_termios = esp_callout_driver.init_termios; info->normal_termios = esp_driver.init_termios; if (IRQ_ports[0]) IRQ_ports[0]->prev_port = info; info->next_port = IRQ_ports[0]; info->prev_port = 0; IRQ_ports[0] = info; printk(KERN_INFO "ttyP%d at 0x%04x (irq = %d) is an ESP ", info->line, info->port, info->irq); if (info->line % 8) printk("secondary port\n"); else { printk("primary port\n"); irq[i] = info->irq; } info = (struct esp_struct *)kmalloc(sizeof(struct esp_struct), GFP_KERNEL); if (!info) { printk(KERN_ERR "Couldn't allocate memory for esp serial device information\n"); /* allow use of the already detected ports */ return 0; } memset((void *)info, 0, sizeof(struct esp_struct)); if (offset == 56) { i++; offset = 0; } else { offset += 8; } } while (i < NR_PRIMARY); /* free the last port memory allocation */ kfree(info); return 0; } #ifdef MODULE int init_module(void) { return espserial_init(); } void cleanup_module(void) { unsigned long flags; int e1, e2; unsigned int region_start, region_end; struct esp_struct *current_async, *temp_async; /* printk("Unloading %s: version %s\n", serial_name, serial_version); */ save_flags(flags); cli(); remove_bh(ESP_BH); if ((e1 = tty_unregister_driver(&esp_driver))) printk("SERIAL: failed to unregister serial driver (%d)\n", e1); if ((e2 = tty_unregister_driver(&esp_callout_driver))) printk("SERIAL: failed to unregister callout driver (%d)\n", e2); restore_flags(flags); current_async = IRQ_ports[0]; while (current_async != 0) { if (current_async->port != 0) { region_start = region_end = current_async->port; temp_async = current_async; while (temp_async != 0) { if ((region_start - temp_async->port) == 8) { region_start = temp_async->port; temp_async->port = 0; temp_async = current_async; } else if ((temp_async->port - region_end) == 8) { region_end = temp_async->port; temp_async->port = 0; temp_async = current_async; } else temp_async = temp_async->next_port; } release_region(region_start, region_end - region_start + 8); } temp_async = current_async->next_port; kfree(current_async); current_async = temp_async; } if (dma_buffer) free_pages((unsigned int)dma_buffer, __get_order(DMA_BUFFER_SZ)); if (tmp_buf) free_page((unsigned long)tmp_buf); } #endif /* MODULE */