/* ** ----------------------------------------------------------------------------- ** ** Perle Specialix driver for Linux ** Ported from existing RIO Driver for SCO sources. * * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. ** ** Module : rioboot.c ** SID : 1.3 ** Last Modified : 11/6/98 10:33:36 ** Retrieved : 11/6/98 10:33:48 ** ** ident @(#)rioboot.c 1.3 ** ** ----------------------------------------------------------------------------- */ #ifdef SCCS_LABELS static char *_rioboot_c_sccs_ = "@(#)rioboot.c 1.3"; #endif #define __NO_VERSION__ #include #include #include #include #include #include #include #include #include #include #include #include "linux_compat.h" #include "rio_linux.h" #include "typdef.h" #include "pkt.h" #include "daemon.h" #include "rio.h" #include "riospace.h" #include "top.h" #include "cmdpkt.h" #include "map.h" #include "riotypes.h" #include "rup.h" #include "port.h" #include "riodrvr.h" #include "rioinfo.h" #include "func.h" #include "errors.h" #include "pci.h" #include "parmmap.h" #include "unixrup.h" #include "board.h" #include "host.h" #include "error.h" #include "phb.h" #include "link.h" #include "cmdblk.h" #include "route.h" static uchar RIOAtVec2Ctrl[] = { /* 0 */ INTERRUPT_DISABLE, /* 1 */ INTERRUPT_DISABLE, /* 2 */ INTERRUPT_DISABLE, /* 3 */ INTERRUPT_DISABLE, /* 4 */ INTERRUPT_DISABLE, /* 5 */ INTERRUPT_DISABLE, /* 6 */ INTERRUPT_DISABLE, /* 7 */ INTERRUPT_DISABLE, /* 8 */ INTERRUPT_DISABLE, /* 9 */ IRQ_9|INTERRUPT_ENABLE, /* 10 */ INTERRUPT_DISABLE, /* 11 */ IRQ_11|INTERRUPT_ENABLE, /* 12 */ IRQ_12|INTERRUPT_ENABLE, /* 13 */ INTERRUPT_DISABLE, /* 14 */ INTERRUPT_DISABLE, /* 15 */ IRQ_15|INTERRUPT_ENABLE }; /* ** Load in the RTA boot code. */ int RIOBootCodeRTA(p, rbp) struct rio_info * p; struct DownLoad * rbp; { int offset; /* Linux doesn't allow you to disable interrupts during a "copyin". (Crash when a pagefault occurs). */ /* disable(oldspl); */ rio_dprint(RIO_DEBUG_BOOT, ("Data at user address 0x%x\n",(int)rbp->DataP)); /* ** Check that we have set asside enough memory for this */ if ( rbp->Count > SIXTY_FOUR_K ) { rio_dprint(RIO_DEBUG_BOOT, ("RTA Boot Code Too Large!\n")); p->RIOError.Error = HOST_FILE_TOO_LARGE; /* restore(oldspl); */ return ENOMEM; } if ( p->RIOBooting ) { rio_dprint(RIO_DEBUG_BOOT, ("RTA Boot Code : BUSY BUSY BUSY!\n")); p->RIOError.Error = BOOT_IN_PROGRESS; /* restore(oldspl); */ return EBUSY; } /* ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary, ** so calculate how far we have to move the data up the buffer ** to achieve this. */ offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE; /* ** Be clean, and clear the 'unused' portion of the boot buffer, ** because it will (eventually) be part of the Rta run time environment ** and so should be zeroed. */ bzero( (caddr_t)p->RIOBootPackets, offset ); /* ** Copy the data from user space. */ if ( copyin((int)rbp->DataP,((caddr_t)(p->RIOBootPackets))+offset, rbp->Count) ==COPYFAIL ) { rio_dprint(RIO_DEBUG_BOOT, ("Bad data copy from user space\n")); p->RIOError.Error = COPYIN_FAILED; /* restore(oldspl); */ return EFAULT; } /* ** Make sure that our copy of the size includes that offset we discussed ** earlier. */ p->RIONumBootPkts = (rbp->Count+offset)/RTA_BOOT_DATA_SIZE; p->RIOBootCount = rbp->Count; /* restore(oldspl); */ return 0; } /* ** Load in the host boot code - load it directly onto all halted hosts ** of the correct type. ** ** Put your rubber pants on before messing with this code - even the magic ** numbers have trouble understanding what they are doing here. */ int RIOBootCodeHOST(p, rbp) struct rio_info * p; register struct DownLoad *rbp; { register struct Host *HostP; register caddr_t Cad; register PARM_MAP *ParmMapP; register int RupN; int PortN; uint host; caddr_t StartP; BYTE *DestP; int wait_count; ushort OldParmMap; ushort offset; /* It is very important that this is a ushort */ /* uint byte; */ caddr_t DownCode = NULL; unsigned long flags; HostP = NULL; /* Assure the compiler we've initialized it */ for ( host=0; hostRIONumHosts; host++ ) { rio_dprint(RIO_DEBUG_BOOT, ("Attempt to boot host %d\n",host)); HostP = &p->RIOHosts[host]; if ( (HostP->Flags & RUN_STATE) != RC_WAITING ) { rio_dprint(RIO_DEBUG_BOOT, ("%s %d already running\n","Host",host)); continue; } /* ** Grab a 32 bit pointer to the card. */ Cad = HostP->Caddr; /* ** We are going to (try) and load in rbp->Count bytes. ** The last byte will reside at p->RIOConf.HostLoadBase-1; ** Therefore, we need to start copying at address ** (caddr+p->RIOConf.HostLoadBase-rbp->Count) */ StartP = (caddr_t)&Cad[p->RIOConf.HostLoadBase-rbp->Count]; rio_dprint(RIO_DEBUG_BOOT, ("kernel virtual address for host is 0x%x\n", (int)Cad ) ); rio_dprint(RIO_DEBUG_BOOT, ("kernel virtual address for download is 0x%x\n", (int)StartP ) ); rio_dprint(RIO_DEBUG_BOOT, ("host loadbase is 0x%x\n",p->RIOConf.HostLoadBase)); rio_dprint(RIO_DEBUG_BOOT, ("size of download is 0x%x\n", rbp->Count ) ); if ( p->RIOConf.HostLoadBase < rbp->Count ) { rio_dprint(RIO_DEBUG_BOOT, ("Bin too large\n")); p->RIOError.Error = HOST_FILE_TOO_LARGE; return EFBIG; } /* ** Ensure that the host really is stopped. ** Disable it's external bus & twang its reset line. */ RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot ); /* ** Copy the data directly from user space to the SRAM. ** This ain't going to be none too clever if the download ** code is bigger than this segment. */ rio_dprint(RIO_DEBUG_BOOT, ("Copy in code\n")); /* ** PCI hostcard can't cope with 32 bit accesses and so need to copy ** data to a local buffer, and then dripfeed the card. */ if ( HostP->Type == RIO_PCI ) { /* int offset; */ DownCode = sysbrk(rbp->Count); if ( !DownCode ) { rio_dprint(RIO_DEBUG_BOOT, ("No system memory available\n")); p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY; return ENOMEM; } bzero(DownCode, rbp->Count); if ( copyin((int)rbp->DataP,DownCode,rbp->Count)==COPYFAIL ) { rio_dprint(RIO_DEBUG_BOOT, ("Bad copyin of host data\n")); p->RIOError.Error = COPYIN_FAILED; return EFAULT; } HostP->Copy( DownCode, StartP, rbp->Count ); sysfree( DownCode, rbp->Count ); } else if ( copyin((int)rbp->DataP,StartP,rbp->Count)==COPYFAIL ) { rio_dprint(RIO_DEBUG_BOOT, ("Bad copyin of host data\n")); p->RIOError.Error = COPYIN_FAILED; return EFAULT; } rio_dprint(RIO_DEBUG_BOOT, ("Copy completed\n")); /* ** S T O P ! ** ** Upto this point the code has been fairly rational, and possibly ** even straight forward. What follows is a pile of crud that will ** magically turn into six bytes of transputer assembler. Normally ** you would expect an array or something, but, being me, I have ** chosen [been told] to use a technique whereby the startup code ** will be correct if we change the loadbase for the code. Which ** brings us onto another issue - the loadbase is the *end* of the ** code, not the start. ** ** If I were you I wouldn't start from here. */ /* ** We now need to insert a short boot section into ** the memory at the end of Sram2. This is normally (de)composed ** of the last eight bytes of the download code. The ** download has been assembled/compiled to expect to be ** loaded from 0x7FFF downwards. We have loaded it ** at some other address. The startup code goes into the small ** ram window at Sram2, in the last 8 bytes, which are really ** at addresses 0x7FF8-0x7FFF. ** ** If the loadbase is, say, 0x7C00, then we need to branch to ** address 0x7BFE to run the host.bin startup code. We assemble ** this jump manually. ** ** The two byte sequence 60 08 is loaded into memory at address ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0, ** which adds '0' to the .O register, complements .O, and then shifts ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new ** location. Now, the branch starts from the value of .PC (or .IP or ** whatever the bloody register is called on this chip), and the .PC ** will be pointing to the location AFTER the branch, in this case ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8. ** ** A long branch is coded at 0x7FF8. This consists of loading a four ** byte offset into .O using nfix (as above) and pfix operators. The ** pfix operates in exactly the same way as the nfix operator, but ** without the complement operation. The offset, of course, must be ** relative to the address of the byte AFTER the branch instruction, ** which will be (urm) 0x7FFC, so, our final destination of the branch ** (loadbase-2), has to be reached from here. Imagine that the loadbase ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which ** is the first byte of the initial two byte short local branch of the ** download code). ** ** To code a jump from 0x7FFC (which is where the branch will start ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)= ** 0x7BFE. ** This will be coded as four bytes: ** 60 2C 20 02 ** being nfix .O+0 ** pfix .O+C ** pfix .O+0 ** jump .O+2 ** ** The nfix operator is used, so that the startup code will be ** compatible with the whole Tp family. (lies, damn lies, it'll never ** work in a month of Sundays). ** ** The nfix nyble is the 1s compliment of the nyble value you ** want to load - in this case we wanted 'F' so we nfix loaded '0'. */ /* ** Dest points to the top 8 bytes of Sram2. The Tp jumps ** to 0x7FFE at reset time, and starts executing. This is ** a short branch to 0x7FF8, where a long branch is coded. */ DestP = (BYTE *)&Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */ #define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */ #define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */ #define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */ /* ** 0x7FFC is the address of the location following the last byte of ** the four byte jump instruction. ** READ THE ABOVE COMMENTS ** ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about. ** Memsize is 64K for this range of Tp, so offset is a short (unsigned, ** cos I don't understand 2's complement). */ offset = (p->RIOConf.HostLoadBase-2)-0x7FFC; WBYTE( DestP[0] , NFIX(((ushort)(~offset) >> (ushort)12) & 0xF) ); WBYTE( DestP[1] , PFIX(( offset >> 8) & 0xF) ); WBYTE( DestP[2] , PFIX(( offset >> 4) & 0xF) ); WBYTE( DestP[3] , JUMP( offset & 0xF) ); WBYTE( DestP[6] , NFIX(0) ); WBYTE( DestP[7] , JUMP(8) ); rio_dprint(RIO_DEBUG_BOOT, ("host loadbase is 0x%x\n",p->RIOConf.HostLoadBase)); rio_dprint(RIO_DEBUG_BOOT, ("startup offset is 0x%x\n",offset)); /* ** Flag what is going on */ HostP->Flags &= ~RUN_STATE; HostP->Flags |= RC_STARTUP; /* ** Grab a copy of the current ParmMap pointer, so we ** can tell when it has changed. */ OldParmMap = RWORD(HostP->__ParmMapR); rio_dprint(RIO_DEBUG_BOOT, ("Original parmmap is 0x%x\n",OldParmMap)); /* ** And start it running (I hope). ** As there is nothing dodgy or obscure about the ** above code, this is guaranteed to work every time. */ rio_dprint(RIO_DEBUG_BOOT, ("Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec ) ); switch ( HostP->Type ) { case RIO_AT: rio_dprint(RIO_DEBUG_BOOT, ("Start ISA card running\n")); WBYTE(HostP->Control, BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF] ); break; #ifdef FUTURE_RELEASE case RIO_MCA: /* ** MCA handles IRQ vectors differently, so we don't write ** them to this register. */ rio_dprint(RIO_DEBUG_BOOT, ("Start MCA card running\n")); WBYTE(HostP->Control, McaTpBootFromRam | McaTpBusEnable | HostP->Mode); break; case RIO_EISA: /* ** EISA is totally different and expects OUTBZs to turn it on. */ rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_DAEMON,"Start EISA card running\n"); OUTBZ( HostP->Slot, EISA_CONTROL_PORT, HostP->Mode | RIOEisaVec2Ctrl[HostP->Ivec] | EISA_TP_RUN | EISA_TP_BUS_ENABLE | EISA_TP_BOOT_FROM_RAM ); break; #endif case RIO_PCI: /* ** PCI is much the same as MCA. Everything is once again memory ** mapped, so we are writing to memory registers instead of io ** ports. */ rio_dprint(RIO_DEBUG_BOOT, ("Start PCI card running\n")); WBYTE(HostP->Control, PCITpBootFromRam | PCITpBusEnable | HostP->Mode); break; default: rio_dprint(RIO_DEBUG_BOOT, ("Unknown host type %d\n",HostP->Type)); break; } rio_dprint(RIO_DEBUG_BOOT, ("Set control port\n")); /* ** Now, wait for upto five seconds for the Tp to setup the parmmap ** pointer: */ for ( wait_count=0; (wait_countRIOConf.StartupTime)&& (RWORD(HostP->__ParmMapR)==OldParmMap); wait_count++ ) { rio_dprint(RIO_DEBUG_BOOT, ("Checkout %d, 0x%x\n",wait_count,RWORD(HostP->__ParmMapR))); delay(HostP, HUNDRED_MS); } /* ** If the parmmap pointer is unchanged, then the host code ** has crashed & burned in a really spectacular way */ if ( RWORD(HostP->__ParmMapR) == OldParmMap ) { rio_dprint(RIO_DEBUG_BOOT, ("parmmap 0x%x\n", RWORD(HostP->__ParmMapR))); rio_dprint(RIO_DEBUG_BOOT, ("RIO Mesg Run Fail\n")); #define HOST_DISABLE \ HostP->Flags &= ~RUN_STATE; \ HostP->Flags |= RC_STUFFED; \ RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot );\ continue HOST_DISABLE; } rio_dprint(RIO_DEBUG_BOOT, ("Running 0x%x\n",RWORD(HostP->__ParmMapR))); /* ** Well, the board thought it was OK, and setup its parmmap ** pointer. For the time being, we will pretend that this ** board is running, and check out what the error flag says. */ /* ** Grab a 32 bit pointer to the parmmap structure */ ParmMapP = (PARM_MAP *)RIO_PTR(Cad,RWORD(HostP->__ParmMapR)); rio_dprint(RIO_DEBUG_BOOT, ("ParmMapP : %x\n", (int)ParmMapP)); ParmMapP = (PARM_MAP *)((unsigned long)Cad + (unsigned long)((RWORD((HostP->__ParmMapR))) & 0xFFFF)); rio_dprint(RIO_DEBUG_BOOT, ("ParmMapP : %x\n", (int)ParmMapP)); /* ** The links entry should be 0xFFFF; we set it up ** with a mask to say how many PHBs to use, and ** which links to use. */ if ( (RWORD(ParmMapP->links) & 0xFFFF) != 0xFFFF ) { rio_dprint(RIO_DEBUG_BOOT, ("RIO Mesg Run Fail %s\n", HostP->Name)); rio_dprint(RIO_DEBUG_BOOT, ("Links = 0x%x\n",RWORD(ParmMapP->links))); HOST_DISABLE; } WWORD(ParmMapP->links , RIO_LINK_ENABLE); /* ** now wait for the card to set all the parmmap->XXX stuff ** this is a wait of upto two seconds.... */ rio_dprint(RIO_DEBUG_BOOT, ("Looking for init_done - %d ticks\n",p->RIOConf.StartupTime)); HostP->timeout_id = 0; for ( wait_count=0; (wait_countRIOConf.StartupTime) && !RWORD(ParmMapP->init_done); wait_count++ ) { rio_dprint(RIO_DEBUG_BOOT, ("Waiting for init_done\n")); delay(HostP, HUNDRED_MS); } rio_dprint(RIO_DEBUG_BOOT, ("OK! init_done!\n")); if (RWORD(ParmMapP->error) != E_NO_ERROR || !RWORD(ParmMapP->init_done) ) { rio_dprint(RIO_DEBUG_BOOT, ("RIO Mesg Run Fail %s\n", HostP->Name)); rio_dprint(RIO_DEBUG_BOOT, ("Timedout waiting for init_done\n")); HOST_DISABLE; } rio_dprint(RIO_DEBUG_BOOT, ("Got init_done\n")); /* ** It runs! It runs! */ rio_dprint(RIO_DEBUG_BOOT, ("Host ID %x Running\n",HostP->UniqueNum)); /* ** set the time period between interrupts. */ WWORD(ParmMapP->timer, (short)p->RIOConf.Timer ); /* ** Translate all the 16 bit pointers in the __ParmMapR into ** 32 bit pointers for the driver. */ HostP->ParmMapP = ParmMapP; HostP->PhbP = (PHB*)RIO_PTR(Cad,RWORD(ParmMapP->phb_ptr)); HostP->RupP = (RUP*)RIO_PTR(Cad,RWORD(ParmMapP->rups)); HostP->PhbNumP = (ushort*)RIO_PTR(Cad,RWORD(ParmMapP->phb_num_ptr)); HostP->LinkStrP = (LPB*)RIO_PTR(Cad,RWORD(ParmMapP->link_str_ptr)); /* ** point the UnixRups at the real Rups */ for ( RupN = 0; RupNUnixRups[RupN].RupP = &HostP->RupP[RupN]; HostP->UnixRups[RupN].Id = RupN+1; HostP->UnixRups[RupN].BaseSysPort = NO_PORT; } for ( RupN = 0; RupNUnixRups[RupN+MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup; HostP->UnixRups[RupN+MAX_RUP].Id = 0; HostP->UnixRups[RupN+MAX_RUP].BaseSysPort = NO_PORT; } /* ** point the PortP->Phbs at the real Phbs */ for ( PortN=p->RIOFirstPortsMapped; PortNRIOLastPortsMapped+PORTS_PER_RTA; PortN++ ) { if ( p->RIOPortp[PortN]->HostP == HostP ) { struct Port *PortP = p->RIOPortp[PortN]; struct PHB *PhbP; /* int oldspl; */ if ( !PortP->Mapped ) continue; PhbP = &HostP->PhbP[PortP->HostPort]; rio_spin_lock_irqsave(&PortP->portSem, flags); PortP->PhbP = PhbP; PortP->TxAdd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_add)); PortP->TxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_start)); PortP->TxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->tx_end)); PortP->RxRemove = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_remove)); PortP->RxStart = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_start)); PortP->RxEnd = (WORD *)RIO_PTR(Cad,RWORD(PhbP->rx_end)); rio_spin_unlock_irqrestore(&PortP->portSem, flags); /* ** point the UnixRup at the base SysPort */ if ( !(PortN % PORTS_PER_RTA) ) HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN; } } rio_dprint(RIO_DEBUG_BOOT, ("Set the card running... \n")); /* ** last thing - show the world that everything is in place */ HostP->Flags &= ~RUN_STATE; HostP->Flags |= RC_RUNNING; } /* ** MPX always uses a poller. This is actually patched into the system ** configuration and called directly from each clock tick. ** */ p->RIOPolling = 1; p->RIOSystemUp++; rio_dprint(RIO_DEBUG_BOOT, ("Done everything %x\n", HostP->Ivec)); return 0; } /* ** Boot an RTA. If we have successfully processed this boot, then ** return 1. If we havent, then return 0. */ int RIOBootRup( p, Rup, HostP, PacketP) struct rio_info * p; uint Rup; struct Host *HostP; struct PKT *PacketP; { struct PktCmd *PktCmdP = (struct PktCmd *)PacketP->data; struct PktCmd_M *PktReplyP; struct CmdBlk *CmdBlkP; uint sequence; #ifdef CHECK CheckHost(Host); CheckRup(Rup); CheckHostP(HostP); CheckPacketP(PacketP); #endif /* ** If we haven't been told what to boot, we can't boot it. */ if ( p->RIONumBootPkts == 0 ) { rio_dprint(RIO_DEBUG_BOOT, ("No RTA code to download yet\n")); return 0; } /* rio_dprint(RIO_DEBUG_BOOT, NULL,DBG_BOOT,"Incoming command packet\n"); */ /* ShowPacket( DBG_BOOT, PacketP ); */ /* ** Special case of boot completed - if we get one of these then we ** don't need a command block. For all other cases we do, so handle ** this first and then get a command block, then handle every other ** case, relinquishing the command block if disaster strikes! */ if ( (RBYTE(PacketP->len) & PKT_CMD_BIT) && (RBYTE(PktCmdP->Command)==BOOT_COMPLETED) ) return RIOBootComplete(p, HostP, Rup, PktCmdP ); /* ** try to unhook a command block from the command free list. */ if ( !(CmdBlkP = RIOGetCmdBlk()) ) { rio_dprint(RIO_DEBUG_BOOT, ("No command blocks to boot RTA! come back later.\n")); return 0; } /* ** Fill in the default info on the command block */ CmdBlkP->Packet.dest_unit = Rup < (ushort)MAX_RUP ? Rup : 0; CmdBlkP->Packet.dest_port = BOOT_RUP; CmdBlkP->Packet.src_unit = 0; CmdBlkP->Packet.src_port = BOOT_RUP; CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; PktReplyP = (struct PktCmd_M *)CmdBlkP->Packet.data; /* ** process COMMANDS on the boot rup! */ if ( RBYTE(PacketP->len) & PKT_CMD_BIT ) { /* ** We only expect one type of command - a BOOT_REQUEST! */ if ( RBYTE(PktCmdP->Command) != BOOT_REQUEST ) { rio_dprint(RIO_DEBUG_BOOT, ("Unexpected command %d on BOOT RUP %d of host %d\n", PktCmdP->Command,Rup,HostP-p->RIOHosts)); ShowPacket( DBG_BOOT, PacketP ); RIOFreeCmdBlk( CmdBlkP ); return 1; } /* ** Build a Boot Sequence command block ** ** 02.03.1999 ARG - ESIL 0820 fix ** We no longer need to use "Boot Mode", we'll always allow ** boot requests - the boot will not complete if the device ** appears in the bindings table. ** So, this conditional is not required ... ** if (p->RIOBootMode == RC_BOOT_NONE) ** ** If the system is in slave mode, and a boot request is ** received, set command to BOOT_ABORT so that the boot ** will not complete. ** PktReplyP->Command = BOOT_ABORT; else ** ** We'll just (always) set the command field in packet reply ** to allow an attempted boot sequence : */ PktReplyP->Command = BOOT_SEQUENCE; PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts; PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase; PktReplyP->BootSequence.CodeSize = p->RIOBootCount; CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT; bcopy("BOOT",(void *)&CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN],4); rio_dprint(RIO_DEBUG_BOOT, ("Boot RTA on Host %d Rup %d - %d (0x%x) packets to 0x%x\n", HostP-p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase)); /* ** If this host is in slave mode, send the RTA an invalid boot ** sequence command block to force it to kill the boot. We wait ** for half a second before sending this packet to prevent the RTA ** attempting to boot too often. The master host should then grab ** the RTA and make it its own. */ p->RIOBooting++; RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); return 1; } /* ** It is a request for boot data. */ sequence = RWORD(PktCmdP->Sequence); rio_dprint(RIO_DEBUG_BOOT, ("Boot block %d on Host %d Rup%d\n",sequence,HostP-p->RIOHosts,Rup)); if ( sequence >= p->RIONumBootPkts ) { rio_dprint(RIO_DEBUG_BOOT, ("Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts)); ShowPacket( DBG_BOOT, PacketP ); } PktReplyP->Sequence = sequence; bcopy( p->RIOBootPackets[ p->RIONumBootPkts - sequence - 1 ], PktReplyP->BootData, RTA_BOOT_DATA_SIZE ); CmdBlkP->Packet.len = PKT_MAX_DATA_LEN; ShowPacket( DBG_BOOT, &CmdBlkP->Packet ); RIOQueueCmdBlk( HostP, Rup, CmdBlkP ); return 1; } /* ** This function is called when an RTA been booted. ** If booted by a host, HostP->HostUniqueNum is the booting host. ** If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA. ** RtaUniq is the booted RTA. */ int RIOBootComplete( struct rio_info *p, struct Host *HostP, uint Rup, struct PktCmd *PktCmdP ) { struct Map *MapP = NULL; struct Map *MapP2 = NULL; int Flag; int found; int host, rta; int EmptySlot = -1; int entry, entry2; char *MyType, *MyName; uint MyLink; ushort RtaType; uint RtaUniq = (RBYTE(PktCmdP->UniqNum[0])) + (RBYTE(PktCmdP->UniqNum[1]) << 8) + (RBYTE(PktCmdP->UniqNum[2]) << 16) + (RBYTE(PktCmdP->UniqNum[3]) << 24); /* Was RIOBooting-- . That's bad. If an RTA sends two of them, the driver will never think that the RTA has booted... -- REW */ p->RIOBooting = 0; rio_dprint(RIO_DEBUG_BOOT, ("RTA Boot completed - BootInProgress now %d\n", p->RIOBooting)); /* ** Determine type of unit (16/8 port RTA). */ RtaType = GetUnitType(RtaUniq); if ( Rup >= (ushort)MAX_RUP ) { rio_dprint(RIO_DEBUG_BOOT, ("RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A' )); } else { rio_dprint(RIO_DEBUG_BOOT, ("RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, RBYTE(PktCmdP->LinkNum)+'A')); } rio_dprint(RIO_DEBUG_BOOT, ("UniqNum is 0x%x\n",RtaUniq)); if ( ( RtaUniq == 0x00000000 ) || ( RtaUniq == 0xffffffff ) ) { rio_dprint(RIO_DEBUG_BOOT, ( "Illegal RTA Uniq Number\n")); return TRUE; } /* ** If this RTA has just booted an RTA which doesn't belong to this ** system, or the system is in slave mode, do not attempt to create ** a new table entry for it. */ if (!RIOBootOk(p, HostP, RtaUniq)) { MyLink = RBYTE(PktCmdP->LinkNum); if (Rup < (ushort) MAX_RUP) { /* ** RtaUniq was clone booted (by this RTA). Instruct this RTA ** to hold off further attempts to boot on this link for 30 ** seconds. */ if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) { rio_dprint(RIO_DEBUG_BOOT, ("RTA failed to suspend booting on link %c\n", 'A' + MyLink)); } } else { /* ** RtaUniq was booted by this host. Set the booting link ** to hold off for 30 seconds to give another unit a ** chance to boot it. */ WWORD(HostP->LinkStrP[MyLink].WaitNoBoot, 30); } rio_dprint(RIO_DEBUG_BOOT, ("RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum)); return TRUE; } /* ** Check for a SLOT_IN_USE entry for this RTA attached to the ** current host card in the driver table. ** ** If it exists, make a note that we have booted it. Other parts of ** the driver are interested in this information at a later date, ** in particular when the booting RTA asks for an ID for this unit, ** we must have set the BOOTED flag, and the NEWBOOT flag is used ** to force an open on any ports that where previously open on this ** unit. */ for ( entry=0; entryMapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum==RtaUniq)) { HostP->Mapping[entry].Flags |= RTA_BOOTED|RTA_NEWBOOT; #if NEED_TO_FIX RIO_SV_BROADCAST(HostP->svFlags[entry]); #endif if ( (sysport=HostP->Mapping[entry].SysPort) != NO_PORT ) { if ( sysport < p->RIOFirstPortsBooted ) p->RIOFirstPortsBooted = sysport; if ( sysport > p->RIOLastPortsBooted ) p->RIOLastPortsBooted = sysport; /* ** For a 16 port RTA, check the second bank of 8 ports */ if (RtaType == TYPE_RTA16) { entry2 = HostP->Mapping[entry].ID2 - 1; HostP->Mapping[entry2].Flags |= RTA_BOOTED|RTA_NEWBOOT; #if NEED_TO_FIX RIO_SV_BROADCAST(HostP->svFlags[entry2]); #endif sysport = HostP->Mapping[entry2].SysPort; if ( sysport < p->RIOFirstPortsBooted ) p->RIOFirstPortsBooted = sysport; if ( sysport > p->RIOLastPortsBooted ) p->RIOLastPortsBooted = sysport; } } if (RtaType == TYPE_RTA16) { rio_dprint(RIO_DEBUG_BOOT, ("RTA will be given IDs %d+%d\n", entry+1, entry2+1)); } else { rio_dprint(RIO_DEBUG_BOOT, ("RTA will be given ID %d\n",entry+1)); } return TRUE; } } rio_dprint(RIO_DEBUG_BOOT, ("RTA not configured for this host\n")); if ( Rup >= (ushort)MAX_RUP ) { /* ** It was a host that did the booting */ MyType = "Host"; MyName = HostP->Name; } else { /* ** It was an RTA that did the booting */ MyType = "RTA"; MyName = HostP->Mapping[Rup].Name; } #ifdef CHECK CheckString(MyType); CheckString(MyName); #endif MyLink = RBYTE(PktCmdP->LinkNum); /* ** There is no SLOT_IN_USE entry for this RTA attached to the current ** host card in the driver table. ** ** Check for a SLOT_TENTATIVE entry for this RTA attached to the ** current host card in the driver table. ** ** If we find one, then we re-use that slot. */ for ( entry=0; entryMapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq) ) { if (RtaType == TYPE_RTA16) { entry2 = HostP->Mapping[entry].ID2 - 1; if ( (HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq) ) rio_dprint(RIO_DEBUG_BOOT, ("Found previous tentative slots (%d+%d)\n", entry, entry2)); else continue; } else rio_dprint(RIO_DEBUG_BOOT, ("Found previous tentative slot (%d)\n",entry)); if (! p->RIONoMessage) cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A'); return TRUE; } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another ** host for this RTA in the driver table. ** ** For a SLOT_IN_USE entry on another host, we need to delete the RTA ** entry from the other host and add it to this host (using some of ** the functions from table.c which do this). ** For a SLOT_TENTATIVE entry on another host, we must cope with the ** following scenario: ** ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry ** in table) ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE ** entries) ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE) ** + Unplug RTA and plug back into host A. ** + Configure RTA on host A. We now have the same RTA configured ** with different ports on two different hosts. */ rio_dprint(RIO_DEBUG_BOOT, ("Have we seen RTA %x before?\n", RtaUniq )); found = 0; Flag = 0; /* Convince the compiler this variable is initialized */ for ( host = 0; !found && (host < p->RIONumHosts); host++ ) { for ( rta=0; rtaRIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum==RtaUniq)) { Flag = p->RIOHosts[host].Mapping[rta].Flags; MapP = &p->RIOHosts[host].Mapping[rta]; if (RtaType == TYPE_RTA16) { MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1]; rio_dprint(RIO_DEBUG_BOOT, ("This RTA is units %d+%d from host %s\n", rta+1, MapP->ID2, p->RIOHosts[host].Name )); } else rio_dprint(RIO_DEBUG_BOOT, ("This RTA is unit %d from host %s\n", rta+1, p->RIOHosts[host].Name )); found = 1; break; } } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on ** another host for this RTA in the driver table... ** ** Check for a SLOT_IN_USE entry for this RTA in the config table. */ if ( !MapP ) { rio_dprint(RIO_DEBUG_BOOT, ("Look for RTA %x in RIOSavedTable\n",RtaUniq)); for ( rta=0; rta < TOTAL_MAP_ENTRIES; rta++ ) { rio_dprint(RIO_DEBUG_BOOT, ("Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum )); if ( (p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq) ) { MapP = &p->RIOSavedTable[rta]; Flag = p->RIOSavedTable[rta].Flags; if (RtaType == TYPE_RTA16) { for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) { if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq) break; } MapP2 = &p->RIOSavedTable[entry2]; rio_dprint(RIO_DEBUG_BOOT, ("This RTA is from table entries %d+%d\n", rta, entry2)); } else rio_dprint(RIO_DEBUG_BOOT, ("This RTA is from table entry %d\n", rta)); break; } } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** We may have found a SLOT_IN_USE entry on another host for this ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry ** on another host for this RTA in the driver table. ** ** Check the driver table for room to fit this newly discovered RTA. ** RIOFindFreeID() first looks for free slots and if it does not ** find any free slots it will then attempt to oust any ** tentative entry in the table. */ EmptySlot = 1; if (RtaType == TYPE_RTA16) { if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) { RIODefaultName(p, HostP, entry); FillSlot(entry, entry2, RtaUniq, HostP); EmptySlot = 0; } } else { if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) { RIODefaultName(p, HostP, entry); FillSlot(entry, 0, RtaUniq, HostP); EmptySlot = 0; } } /* ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA ** attached to the current host card in the driver table. ** ** If we found a SLOT_IN_USE entry on another host for this ** RTA in the config or driver table, and there are enough free ** slots in the driver table, then we need to move it over and ** delete it from the other host. ** If we found a SLOT_TENTATIVE entry on another host for this ** RTA in the driver table, just delete the other host entry. */ if (EmptySlot == 0) { if ( MapP ) { if (Flag & SLOT_IN_USE) { rio_dprint(RIO_DEBUG_BOOT, ( "This RTA configured on another host - move entry to current host (1)\n")); HostP->Mapping[entry].SysPort = MapP->SysPort; CCOPY( MapP->Name, HostP->Mapping[entry].Name, MAX_NAME_LEN ); HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT; #if NEED_TO_FIX RIO_SV_BROADCAST(HostP->svFlags[entry]); #endif RIOReMapPorts( p, HostP, &HostP->Mapping[entry] ); if ( HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted ) p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort; if ( HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted ) p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort; rio_dprint(RIO_DEBUG_BOOT, ("SysPort %d, Name %s\n",(int)MapP->SysPort,MapP->Name)); } else { rio_dprint(RIO_DEBUG_BOOT, ( "This RTA has a tentative entry on another host - delete that entry (1)\n")); HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT; #if NEED_TO_FIX RIO_SV_BROADCAST(HostP->svFlags[entry]); #endif } if (RtaType == TYPE_RTA16) { if (Flag & SLOT_IN_USE) { HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; #if NEED_TO_FIX RIO_SV_BROADCAST(HostP->svFlags[entry2]); #endif HostP->Mapping[entry2].SysPort = MapP2->SysPort; /* ** Map second block of ttys for 16 port RTA */ RIOReMapPorts( p, HostP, &HostP->Mapping[entry2] ); if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted) p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort; if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted) p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort; rio_dprint(RIO_DEBUG_BOOT, ("SysPort %d, Name %s\n", (int)HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name)); } else HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; #if NEED_TO_FIX RIO_SV_BROADCAST(HostP->svFlags[entry2]); #endif bzero( (caddr_t)MapP2, sizeof(struct Map) ); } bzero( (caddr_t)MapP, sizeof(struct Map) ); if (! p->RIONoMessage) cprintf("An orphaned RTA has been adopted by %s '%s' (%c).\n",MyType,MyName,MyLink+'A'); } else if (! p->RIONoMessage) cprintf("RTA connected to %s '%s' (%c) not configured.\n",MyType,MyName,MyLink+'A'); RIOSetChange(p); return TRUE; } /* ** There is no room in the driver table to make an entry for the ** booted RTA. Keep a note of its Uniq Num in the overflow table, ** so we can ignore it's ID requests. */ if (! p->RIONoMessage) cprintf("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n",MyType,MyName,MyLink+'A'); for ( entry=0; entryNumExtraBooted; entry++ ) { if ( HostP->ExtraUnits[entry] == RtaUniq ) { /* ** already got it! */ return TRUE; } } /* ** If there is room, add the unit to the list of extras */ if ( HostP->NumExtraBooted < MAX_EXTRA_UNITS ) HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq; return TRUE; } /* ** If the RTA or its host appears in the RIOBindTab[] structure then ** we mustn't boot the RTA and should return FALSE. ** This operation is slightly different from the other drivers for RIO ** in that this is designed to work with the new utilities ** not config.rio and is FAR SIMPLER. ** We no longer support the RIOBootMode variable. It is all done from the ** "boot/noboot" field in the rio.cf file. */ int RIOBootOk(p, HostP, RtaUniq) struct rio_info * p; struct Host * HostP; ulong RtaUniq; { int Entry; uint HostUniq = HostP->UniqueNum; /* ** Search bindings table for RTA or its parent. ** If it exists, return 0, else 1. */ for (Entry = 0; ( Entry < MAX_RTA_BINDINGS ) && ( p->RIOBindTab[Entry] != 0 ); Entry++) { if ( (p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq) ) return 0; } return 1; } /* ** Make an empty slot tentative. If this is a 16 port RTA, make both ** slots tentative, and the second one RTA_SECOND_SLOT as well. */ void FillSlot(entry, entry2, RtaUniq, HostP) int entry; int entry2; uint RtaUniq; struct Host *HostP; { int link; rio_dprint(RIO_DEBUG_BOOT, ("FillSlot(%d, %d, 0x%x...)\n", entry, entry2, RtaUniq)); HostP->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE); HostP->Mapping[entry].SysPort = NO_PORT; HostP->Mapping[entry].RtaUniqueNum = RtaUniq; HostP->Mapping[entry].HostUniqueNum = HostP->UniqueNum; HostP->Mapping[entry].ID = entry + 1; HostP->Mapping[entry].ID2 = 0; if (entry2) { HostP->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT); HostP->Mapping[entry2].SysPort = NO_PORT; HostP->Mapping[entry2].RtaUniqueNum = RtaUniq; HostP->Mapping[entry2].HostUniqueNum = HostP->UniqueNum; HostP->Mapping[entry2].Name[0] = '\0'; HostP->Mapping[entry2].ID = entry2 + 1; HostP->Mapping[entry2].ID2 = entry + 1; HostP->Mapping[entry].ID2 = entry2 + 1; } /* ** Must set these up, so that utilities show ** topology of 16 port RTAs correctly */ for ( link=0; linkMapping[entry].Topology[link].Unit = ROUTE_DISCONNECT; HostP->Mapping[entry].Topology[link].Link = NO_LINK; if (entry2) { HostP->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT; HostP->Mapping[entry2].Topology[link].Link = NO_LINK; } } } #if 0 /* Function: This function is to disable the disk interrupt Returns : Nothing */ void disable_interrupt(vector) int vector; { int ps; int val; disable(ps); if (vector > 40) { val = 1 << (vector - 40); __outb(S8259+1, __inb(S8259+1) | val); } else { val = 1 << (vector - 32); __outb(M8259+1, __inb(M8259+1) | val); } restore(ps); } /* Function: This function is to enable the disk interrupt Returns : Nothing */ void enable_interrupt(vector) int vector; { int ps; int val; disable(ps); if (vector > 40) { val = 1 << (vector - 40); val = ~val; __outb(S8259+1, __inb(S8259+1) & val); } else { val = 1 << (vector - 32); val = ~val; __outb(M8259+1, __inb(M8259+1) & val); } restore(ps); } #endif