/* * Real Time Clock interface for Linux * * Copyright (C) 1996 Paul Gortmaker * * This driver allows use of the real time clock (built into * nearly all computers) from user space. It exports the /dev/rtc * interface supporting various ioctl() and also the /proc/rtc * pseudo-file for status information. * * The ioctls can be used to set the interrupt behaviour and * generation rate from the RTC via IRQ 8. Then the /dev/rtc * interface can be used to make use of these timer interrupts, * be they interval or alarm based. * * The /dev/rtc interface will block on reads until an interrupt * has been received. If a RTC interrupt has already happened, * it will output an unsigned long and then block. The output value * contains the interrupt status in the low byte and the number of * interrupts since the last read in the remaining high bytes. The * /dev/rtc interface can also be used with the select(2) call. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Based on other minimal char device drivers, like Alan's * watchdog, Ted's random, etc. etc. * * 1.07 Paul Gortmaker. * 1.08 Miquel van Smoorenburg: disallow certain things on the * DEC Alpha as the CMOS clock is also used for other things. * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup. * */ #define RTC_VERSION "1.09" #define RTC_IRQ 8 /* Can't see this changing soon. */ #define RTC_IO_EXTENT 0x10 /* Only really two ports, but... */ /* * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with * interrupts disabled. Due to the index-port/data-port (0x70/0x71) * design of the RTC, we don't want two different things trying to * get to it at once. (e.g. the periodic 11 min sync from time.c vs. * this driver.) */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * We sponge a minor off of the misc major. No need slurping * up another valuable major dev number for this. If you add * an ioctl, make sure you don't conflict with SPARC's RTC * ioctls. */ static struct wait_queue *rtc_wait; static struct timer_list rtc_irq_timer; static long long rtc_llseek(struct file *file, loff_t offset, int origin); static ssize_t rtc_read(struct file *file, char *buf, size_t count, loff_t *ppos); static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg); static unsigned int rtc_poll(struct file *file, poll_table *wait); void get_rtc_time (struct rtc_time *rtc_tm); void get_rtc_alm_time (struct rtc_time *alm_tm); void rtc_dropped_irq(unsigned long data); void set_rtc_irq_bit(unsigned char bit); void mask_rtc_irq_bit(unsigned char bit); static inline unsigned char rtc_is_updating(void); /* * Bits in rtc_status. (6 bits of room for future expansion) */ #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ #define RTC_TIMER_ON 0x02 /* missed irq timer active */ unsigned char rtc_status = 0; /* bitmapped status byte. */ unsigned long rtc_freq = 0; /* Current periodic IRQ rate */ unsigned long rtc_irq_data = 0; /* our output to the world */ /* * If this driver ever becomes modularised, it will be really nice * to make the epoch retain its value across module reload... */ static unsigned long epoch = 1900; /* year corresponding to 0x00 */ unsigned char days_in_mo[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}; /* * A very tiny interrupt handler. It runs with SA_INTERRUPT set, * so that there is no possibility of conflicting with the * set_rtc_mmss() call that happens during some timer interrupts. * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.) */ static void rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) { /* * Can be an alarm interrupt, update complete interrupt, * or a periodic interrupt. We store the status in the * low byte and the number of interrupts received since * the last read in the remainder of rtc_irq_data. */ rtc_irq_data += 0x100; rtc_irq_data &= ~0xff; rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); wake_up_interruptible(&rtc_wait); if (rtc_status & RTC_TIMER_ON) mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); } /* * Now all the various file operations that we export. */ static long long rtc_llseek(struct file *file, loff_t offset, int origin) { return -ESPIPE; } static ssize_t rtc_read(struct file *file, char *buf, size_t count, loff_t *ppos) { struct wait_queue wait = { current, NULL }; unsigned long data; ssize_t retval; if (count < sizeof(unsigned long)) return -EINVAL; add_wait_queue(&rtc_wait, &wait); current->state = TASK_INTERRUPTIBLE; while ((data = xchg(&rtc_irq_data, 0)) == 0) { if (file->f_flags & O_NONBLOCK) { retval = -EAGAIN; goto out; } if (signal_pending(current)) { retval = -ERESTARTSYS; goto out; } schedule(); } retval = put_user(data, (unsigned long *)buf); if (!retval) retval = sizeof(unsigned long); out: current->state = TASK_RUNNING; remove_wait_queue(&rtc_wait, &wait); return retval; } static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) { unsigned long flags; struct rtc_time wtime; switch (cmd) { case RTC_AIE_OFF: /* Mask alarm int. enab. bit */ { mask_rtc_irq_bit(RTC_AIE); return 0; } case RTC_AIE_ON: /* Allow alarm interrupts. */ { set_rtc_irq_bit(RTC_AIE); return 0; } case RTC_PIE_OFF: /* Mask periodic int. enab. bit */ { mask_rtc_irq_bit(RTC_PIE); if (rtc_status & RTC_TIMER_ON) { del_timer(&rtc_irq_timer); rtc_status &= ~RTC_TIMER_ON; } return 0; } case RTC_PIE_ON: /* Allow periodic ints */ { /* * We don't really want Joe User enabling more * than 64Hz of interrupts on a multi-user machine. */ if ((rtc_freq > 64) && (!capable(CAP_SYS_RESOURCE))) return -EACCES; if (!(rtc_status & RTC_TIMER_ON)) { rtc_status |= RTC_TIMER_ON; rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100; add_timer(&rtc_irq_timer); } set_rtc_irq_bit(RTC_PIE); return 0; } case RTC_UIE_OFF: /* Mask ints from RTC updates. */ { mask_rtc_irq_bit(RTC_UIE); return 0; } case RTC_UIE_ON: /* Allow ints for RTC updates. */ { set_rtc_irq_bit(RTC_UIE); return 0; } case RTC_ALM_READ: /* Read the present alarm time */ { /* * This returns a struct rtc_time. Reading >= 0xc0 * means "don't care" or "match all". Only the tm_hour, * tm_min, and tm_sec values are filled in. */ get_rtc_alm_time(&wtime); break; } case RTC_ALM_SET: /* Store a time into the alarm */ { /* * This expects a struct rtc_time. Writing 0xff means * "don't care" or "match all". Only the tm_hour, * tm_min and tm_sec are used. */ unsigned char hrs, min, sec; struct rtc_time alm_tm; if (copy_from_user(&alm_tm, (struct rtc_time*)arg, sizeof(struct rtc_time))) return -EFAULT; hrs = alm_tm.tm_hour; min = alm_tm.tm_min; sec = alm_tm.tm_sec; if (hrs >= 24) hrs = 0xff; if (min >= 60) min = 0xff; if (sec >= 60) sec = 0xff; save_flags(flags); cli(); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BIN_TO_BCD(sec); BIN_TO_BCD(min); BIN_TO_BCD(hrs); } CMOS_WRITE(hrs, RTC_HOURS_ALARM); CMOS_WRITE(min, RTC_MINUTES_ALARM); CMOS_WRITE(sec, RTC_SECONDS_ALARM); restore_flags(flags); return 0; } case RTC_RD_TIME: /* Read the time/date from RTC */ { get_rtc_time(&wtime); break; } case RTC_SET_TIME: /* Set the RTC */ { struct rtc_time rtc_tm; unsigned char mon, day, hrs, min, sec, leap_yr; unsigned char save_control, save_freq_select; unsigned int yrs; unsigned long flags; if (!capable(CAP_SYS_TIME)) return -EACCES; if (copy_from_user(&rtc_tm, (struct rtc_time*)arg, sizeof(struct rtc_time))) return -EFAULT; yrs = rtc_tm.tm_year + 1900; mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */ day = rtc_tm.tm_mday; hrs = rtc_tm.tm_hour; min = rtc_tm.tm_min; sec = rtc_tm.tm_sec; if (yrs < 1970) return -EINVAL; leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400)); if ((mon > 12) || (day == 0)) return -EINVAL; if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr))) return -EINVAL; if ((hrs >= 24) || (min >= 60) || (sec >= 60)) return -EINVAL; if ((yrs -= epoch) > 255) /* They are unsigned */ return -EINVAL; save_flags(flags); cli(); if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { if (yrs > 169) { restore_flags(flags); return -EINVAL; } if (yrs >= 100) yrs -= 100; BIN_TO_BCD(sec); BIN_TO_BCD(min); BIN_TO_BCD(hrs); BIN_TO_BCD(day); BIN_TO_BCD(mon); BIN_TO_BCD(yrs); } save_control = CMOS_READ(RTC_CONTROL); CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); save_freq_select = CMOS_READ(RTC_FREQ_SELECT); CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); CMOS_WRITE(yrs, RTC_YEAR); CMOS_WRITE(mon, RTC_MONTH); CMOS_WRITE(day, RTC_DAY_OF_MONTH); CMOS_WRITE(hrs, RTC_HOURS); CMOS_WRITE(min, RTC_MINUTES); CMOS_WRITE(sec, RTC_SECONDS); CMOS_WRITE(save_control, RTC_CONTROL); CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); restore_flags(flags); return 0; } case RTC_IRQP_READ: /* Read the periodic IRQ rate. */ { return put_user(rtc_freq, (unsigned long *)arg); } case RTC_IRQP_SET: /* Set periodic IRQ rate. */ { int tmp = 0; unsigned char val; /* * The max we can do is 8192Hz. */ if ((arg < 2) || (arg > 8192)) return -EINVAL; /* * We don't really want Joe User generating more * than 64Hz of interrupts on a multi-user machine. */ if ((arg > 64) && (!capable(CAP_SYS_RESOURCE))) return -EACCES; while (arg > (1< 10 && year < 44) { epoch = 1980; guess = "ARC console"; } else if (year < 96) { epoch = 1952; guess = "Digital UNIX"; } if (guess) printk("rtc: %s epoch (%lu) detected\n", guess, epoch); #endif #ifdef CONFIG_MIPS_JAZZ epoch = 1980; #endif init_timer(&rtc_irq_timer); rtc_irq_timer.function = rtc_dropped_irq; rtc_wait = NULL; save_flags(flags); cli(); /* Initialize periodic freq. to CMOS reset default, which is 1024Hz */ CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT); restore_flags(flags); rtc_freq = 1024; return 0; } /* * At IRQ rates >= 4096Hz, an interrupt may get lost altogether. * (usually during an IDE disk interrupt, with IRQ unmasking off) * Since the interrupt handler doesn't get called, the IRQ status * byte doesn't get read, and the RTC stops generating interrupts. * A timer is set, and will call this function if/when that happens. * To get it out of this stalled state, we just read the status. * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost. * (You *really* shouldn't be trying to use a non-realtime system * for something that requires a steady > 1KHz signal anyways.) */ void rtc_dropped_irq(unsigned long data) { unsigned long flags; printk(KERN_INFO "rtc: lost some interrupts at %ldHz.\n", rtc_freq); mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100); save_flags(flags); cli(); rtc_irq_data += ((rtc_freq/HZ)<<8); rtc_irq_data &= ~0xff; rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */ restore_flags(flags); } /* * Info exported via "/proc/rtc". */ int get_rtc_status(char *buf) { char *p; struct rtc_time tm; unsigned char batt, ctrl; unsigned long flags; save_flags(flags); cli(); batt = CMOS_READ(RTC_VALID) & RTC_VRT; ctrl = CMOS_READ(RTC_CONTROL); restore_flags(flags); p = buf; get_rtc_time(&tm); /* * There is no way to tell if the luser has the RTC set for local * time or for Universal Standard Time (GMT). Probably local though. */ p += sprintf(p, "rtc_time\t: %02d:%02d:%02d\n" "rtc_date\t: %04d-%02d-%02d\n" "rtc_epoch\t: %04lu\n", tm.tm_hour, tm.tm_min, tm.tm_sec, tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch); get_rtc_alm_time(&tm); /* * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will * match any value for that particular field. Values that are * greater than a valid time, but less than 0xc0 shouldn't appear. */ p += sprintf(p, "alarm\t\t: "); if (tm.tm_hour <= 24) p += sprintf(p, "%02d:", tm.tm_hour); else p += sprintf(p, "**:"); if (tm.tm_min <= 59) p += sprintf(p, "%02d:", tm.tm_min); else p += sprintf(p, "**:"); if (tm.tm_sec <= 59) p += sprintf(p, "%02d\n", tm.tm_sec); else p += sprintf(p, "**\n"); p += sprintf(p, "DST_enable\t: %s\n" "BCD\t\t: %s\n" "24hr\t\t: %s\n" "square_wave\t: %s\n" "alarm_IRQ\t: %s\n" "update_IRQ\t: %s\n" "periodic_IRQ\t: %s\n" "periodic_freq\t: %ld\n" "batt_status\t: %s\n", (ctrl & RTC_DST_EN) ? "yes" : "no", (ctrl & RTC_DM_BINARY) ? "no" : "yes", (ctrl & RTC_24H) ? "yes" : "no", (ctrl & RTC_SQWE) ? "yes" : "no", (ctrl & RTC_AIE) ? "yes" : "no", (ctrl & RTC_UIE) ? "yes" : "no", (ctrl & RTC_PIE) ? "yes" : "no", rtc_freq, batt ? "okay" : "dead"); return p - buf; } /* * Returns true if a clock update is in progress */ static inline unsigned char rtc_is_updating(void) { unsigned long flags; unsigned char uip; save_flags(flags); cli(); uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP); restore_flags(flags); return uip; } void get_rtc_time(struct rtc_time *rtc_tm) { unsigned long flags, uip_watchdog = jiffies; unsigned char ctrl; /* * read RTC once any update in progress is done. The update * can take just over 2ms. We wait 10 to 20ms. There is no need to * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP. * If you need to know *exactly* when a second has started, enable * periodic update complete interrupts, (via ioctl) and then * immediately read /dev/rtc which will block until you get the IRQ. * Once the read clears, read the RTC time (again via ioctl). Easy. */ if (rtc_is_updating() != 0) while (jiffies - uip_watchdog < 2*HZ/100) barrier(); /* * Only the values that we read from the RTC are set. We leave * tm_wday, tm_yday and tm_isdst untouched. Even though the * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated * by the RTC when initially set to a non-zero value. */ save_flags(flags); cli(); rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS); rtc_tm->tm_min = CMOS_READ(RTC_MINUTES); rtc_tm->tm_hour = CMOS_READ(RTC_HOURS); rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH); rtc_tm->tm_mon = CMOS_READ(RTC_MONTH); rtc_tm->tm_year = CMOS_READ(RTC_YEAR); ctrl = CMOS_READ(RTC_CONTROL); restore_flags(flags); if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(rtc_tm->tm_sec); BCD_TO_BIN(rtc_tm->tm_min); BCD_TO_BIN(rtc_tm->tm_hour); BCD_TO_BIN(rtc_tm->tm_mday); BCD_TO_BIN(rtc_tm->tm_mon); BCD_TO_BIN(rtc_tm->tm_year); } /* * Account for differences between how the RTC uses the values * and how they are defined in a struct rtc_time; */ if ((rtc_tm->tm_year += (epoch - 1900)) <= 69) rtc_tm->tm_year += 100; rtc_tm->tm_mon--; } void get_rtc_alm_time(struct rtc_time *alm_tm) { unsigned long flags; unsigned char ctrl; /* * Only the values that we read from the RTC are set. That * means only tm_hour, tm_min, and tm_sec. */ save_flags(flags); cli(); alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM); alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM); alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM); ctrl = CMOS_READ(RTC_CONTROL); restore_flags(flags); if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { BCD_TO_BIN(alm_tm->tm_sec); BCD_TO_BIN(alm_tm->tm_min); BCD_TO_BIN(alm_tm->tm_hour); } } /* * Used to disable/enable interrupts for any one of UIE, AIE, PIE. * Rumour has it that if you frob the interrupt enable/disable * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to * ensure you actually start getting interrupts. Probably for * compatibility with older/broken chipset RTC implementations. * We also clear out any old irq data after an ioctl() that * meddles with the interrupt enable/disable bits. */ void mask_rtc_irq_bit(unsigned char bit) { unsigned char val; unsigned long flags; save_flags(flags); cli(); val = CMOS_READ(RTC_CONTROL); val &= ~bit; CMOS_WRITE(val, RTC_CONTROL); CMOS_READ(RTC_INTR_FLAGS); restore_flags(flags); rtc_irq_data = 0; } void set_rtc_irq_bit(unsigned char bit) { unsigned char val; unsigned long flags; save_flags(flags); cli(); val = CMOS_READ(RTC_CONTROL); val |= bit; CMOS_WRITE(val, RTC_CONTROL); CMOS_READ(RTC_INTR_FLAGS); rtc_irq_data = 0; restore_flags(flags); }