/* * linux/drivers/char/serial.c * * Copyright (C) 1991, 1992 Linus Torvalds * Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, * 1998, 1999 Theodore Ts'o * * Extensively rewritten by Theodore Ts'o, 8/16/92 -- 9/14/92. Now * much more extensible to support other serial cards based on the * 16450/16550A UART's. Added support for the AST FourPort and the * Accent Async board. * * set_serial_info fixed to set the flags, custom divisor, and uart * type fields. Fix suggested by Michael K. Johnson 12/12/92. * * 11/95: TIOCMIWAIT, TIOCGICOUNT by Angelo Haritsis * * 03/96: Modularised by Angelo Haritsis * * rs_set_termios fixed to look also for changes of the input * flags INPCK, BRKINT, PARMRK, IGNPAR and IGNBRK. * Bernd Anhäupl 05/17/96. * * 1/97: Extended dumb serial ports are a config option now. * Saves 4k. Michael A. Griffith * * 8/97: Fix bug in rs_set_termios with RTS * Stanislav V. Voronyi * * 3/98: Change the IRQ detection, use of probe_irq_o*(), * supress TIOCSERGWILD and TIOCSERSWILD * Etienne Lorrain * * 4/98: Added changes to support the ARM architecture proposed by * Russell King * * 5/99: Updated to include support for the XR16C850 and ST16C654 * uarts. Stuart MacDonald * * 8/99: Generalized PCI support added. Theodore Ts'o * * 3/00: Rid circular buffer of redundant xmit_cnt. Fix a * few races on freeing buffers too. * Alan Modra * * 5/00: Support for the RSA-DV II/S card added. * Kiyokazu SUTO * * 6/00: Remove old-style timer, use timer_list * Andrew Morton * * 7/00: Support Timedia/Sunix/Exsys PCI cards * * This module exports the following rs232 io functions: * * int rs_init(void); */ static char *serial_version = "5.01"; static char *serial_revdate = "2000-05-29"; /* * Serial driver configuration section. Here are the various options: * * CONFIG_HUB6 * Enables support for the venerable Bell Technologies * HUB6 card. * * CONFIG_SERIAL_MANY_PORTS * Enables support for ports beyond the standard, stupid * COM 1/2/3/4. * * CONFIG_SERIAL_MULTIPORT * Enables support for special multiport board support. * * CONFIG_SERIAL_SHARE_IRQ * Enables support for multiple serial ports on one IRQ * * CONFIG_SERIAL_DETECT_IRQ * Enable the autodetection of IRQ on standart ports * * SERIAL_PARANOIA_CHECK * Check the magic number for the async_structure where * ever possible. */ #include #include #undef SERIAL_PARANOIA_CHECK #define CONFIG_SERIAL_NOPAUSE_IO #define SERIAL_DO_RESTART #if 0 /* These defines are normally controlled by the autoconf.h */ #define CONFIG_SERIAL_MANY_PORTS #define CONFIG_SERIAL_SHARE_IRQ #define CONFIG_SERIAL_DETECT_IRQ #define CONFIG_SERIAL_MULTIPORT #define CONFIG_HUB6 #endif #ifdef CONFIG_PCI #define ENABLE_SERIAL_PCI #ifndef CONFIG_SERIAL_SHARE_IRQ #define CONFIG_SERIAL_SHARE_IRQ #endif #ifndef CONFIG_SERIAL_MANY_PORTS #define CONFIG_SERIAL_MANY_PORTS #endif #endif #if defined(CONFIG_ISAPNP)|| (defined(CONFIG_ISAPNP_MODULE) && defined(MODULE)) #ifndef ENABLE_SERIAL_PNP #define ENABLE_SERIAL_PNP #endif #endif /* Set of debugging defines */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT #undef SERIAL_DEBUG_PCI #undef SERIAL_DEBUG_AUTOCONF /* Sanity checks */ #ifdef CONFIG_SERIAL_MULTIPORT #ifndef CONFIG_SERIAL_SHARE_IRQ #define CONFIG_SERIAL_SHARE_IRQ #endif #endif #ifdef CONFIG_HUB6 #ifndef CONFIG_SERIAL_MANY_PORTS #define CONFIG_SERIAL_MANY_PORTS #endif #ifndef CONFIG_SERIAL_SHARE_IRQ #define CONFIG_SERIAL_SHARE_IRQ #endif #endif #define CONFIG_SERIAL_RSA #define RS_STROBE_TIME (10*HZ) #define RS_ISR_PASS_LIMIT 256 #if defined(__i386__) && (defined(CONFIG_M386) || defined(CONFIG_M486)) #define SERIAL_INLINE #endif /* * End of serial driver configuration section. */ #ifdef MODVERSIONS #include #endif #include #include #ifdef LOCAL_HEADERS #include "serial_local.h" #else #include #include #include #include #define LOCAL_VERSTRING "" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if (LINUX_VERSION_CODE >= 131343) #include #endif #if (LINUX_VERSION_CODE >= 131336) #include #endif #include #ifdef CONFIG_SERIAL_CONSOLE #include #endif #ifdef ENABLE_SERIAL_PCI #include #endif #ifdef ENABLE_SERIAL_PNP #include #endif #ifdef CONFIG_MAGIC_SYSRQ #include #endif /* * All of the compatibilty code so we can compile serial.c against * older kernels is hidden in serial_compat.h */ #if defined(LOCAL_HEADERS) || (LINUX_VERSION_CODE < 0x020317) /* 2.3.23 */ #include "serial_compat.h" #endif #include #include #include #include #ifdef CONFIG_MAC_SERIAL #define SERIAL_DEV_OFFSET 2 #else #define SERIAL_DEV_OFFSET 0 #endif #ifdef SERIAL_INLINE #define _INLINE_ inline #else #define _INLINE_ #endif static char *serial_name = "Serial driver"; static DECLARE_TASK_QUEUE(tq_serial); static struct tty_driver serial_driver, callout_driver; static int serial_refcount; static struct timer_list serial_timer; /* serial subtype definitions */ #ifndef SERIAL_TYPE_NORMAL #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 #endif /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* * IRQ_timeout - How long the timeout should be for each IRQ * should be after the IRQ has been active. */ static struct async_struct *IRQ_ports[NR_IRQS]; #ifdef CONFIG_SERIAL_MULTIPORT static struct rs_multiport_struct rs_multiport[NR_IRQS]; #endif static int IRQ_timeout[NR_IRQS]; #ifdef CONFIG_SERIAL_CONSOLE static struct console sercons; #endif #if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && !defined(MODULE) static unsigned long break_pressed; /* break, really ... */ #endif static unsigned detect_uart_irq (struct serial_state * state); static void autoconfig(struct serial_state * state); static void change_speed(struct async_struct *info, struct termios *old); static void rs_wait_until_sent(struct tty_struct *tty, int timeout); /* * Here we define the default xmit fifo size used for each type of * UART */ static struct serial_uart_config uart_config[] = { { "unknown", 1, 0 }, { "8250", 1, 0 }, { "16450", 1, 0 }, { "16550", 1, 0 }, { "16550A", 16, UART_CLEAR_FIFO | UART_USE_FIFO }, { "cirrus", 1, 0 }, /* usurped by cyclades.c */ { "ST16650", 1, UART_CLEAR_FIFO |UART_STARTECH }, { "ST16650V2", 32, UART_CLEAR_FIFO | UART_USE_FIFO | UART_STARTECH }, { "TI16750", 64, UART_CLEAR_FIFO | UART_USE_FIFO}, { "Startech", 1, 0}, /* usurped by cyclades.c */ { "16C950/954", 128, UART_CLEAR_FIFO | UART_USE_FIFO}, { "ST16654", 64, UART_CLEAR_FIFO | UART_USE_FIFO | UART_STARTECH }, { "XR16850", 128, UART_CLEAR_FIFO | UART_USE_FIFO | UART_STARTECH }, { "RSA", 2048, UART_CLEAR_FIFO | UART_USE_FIFO }, { 0, 0} }; #if defined(CONFIG_SERIAL_RSA) && defined(MODULE) #define PORT_RSA_MAX 4 static int probe_rsa[PORT_RSA_MAX]; static int force_rsa[PORT_RSA_MAX]; MODULE_PARM(probe_rsa, "1-" __MODULE_STRING(PORT_RSA_MAX) "i"); MODULE_PARM(force_rsa, "1-" __MODULE_STRING(PORT_RSA_MAX) "i"); #endif /* CONFIG_SERIAL_RSA */ static struct serial_state rs_table[RS_TABLE_SIZE] = { SERIAL_PORT_DFNS /* Defined in serial.h */ }; #define NR_PORTS (sizeof(rs_table)/sizeof(struct serial_state)) #if (defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP)) #define NR_PCI_BOARDS 8 /* We don't unregister PCI boards right now */ static struct pci_board_inst serial_pci_board[NR_PCI_BOARDS]; static int serial_pci_board_idx = 0; #ifndef IS_PCI_REGION_IOPORT #define IS_PCI_REGION_IOPORT(dev, r) (pci_resource_flags((dev), (r)) & \ IORESOURCE_IO) #endif #ifndef PCI_IRQ_RESOURCE #define PCI_IRQ_RESOURCE(dev, r) ((dev)->irq_resource[r].start) #endif #ifndef pci_get_subvendor #define pci_get_subvendor(dev) ((dev)->subsystem_vendor) #define pci_get_subdevice(dev) ((dev)->subsystem_device) #endif #endif /* ENABLE_SERIAL_PCI || ENABLE_SERIAL_PNP */ #ifndef PREPARE_FUNC #define PREPARE_FUNC(dev) (dev->prepare) #define ACTIVATE_FUNC(dev) (dev->activate) #define DEACTIVATE_FUNC(dev) (dev->deactivate) #endif #define HIGH_BITS_OFFSET ((sizeof(long)-sizeof(int))*8) static struct tty_struct *serial_table[NR_PORTS]; static struct termios *serial_termios[NR_PORTS]; static struct termios *serial_termios_locked[NR_PORTS]; #if defined(MODULE) && defined(SERIAL_DEBUG_MCOUNT) #define DBG_CNT(s) printk("(%s): [%x] refc=%d, serc=%d, ttyc=%d -> %s\n", \ kdevname(tty->device), (info->flags), serial_refcount,info->count,tty->count,s) #else #define DBG_CNT(s) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the copy_from_user blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char *tmp_buf; #ifdef DECLARE_MUTEX static DECLARE_MUTEX(tmp_buf_sem); #else static struct semaphore tmp_buf_sem = MUTEX; #endif static inline int serial_paranoia_check(struct async_struct *info, kdev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%s) in %s\n"; static const char *badinfo = "Warning: null async_struct for (%s) in %s\n"; if (!info) { printk(badinfo, kdevname(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, kdevname(device), routine); return 1; } #endif return 0; } static _INLINE_ unsigned int serial_in(struct async_struct *info, int offset) { switch (info->io_type) { #ifdef CONFIG_HUB6 case SERIAL_IO_HUB6: outb(info->hub6 - 1 + offset, info->port); return inb(info->port+1); #endif case SERIAL_IO_MEM: return readb((unsigned long) info->iomem_base + (offset<iomem_reg_shift)); #ifdef CONFIG_SERIAL_GSC case SERIAL_IO_GSC: return gsc_readb(info->iomem_base + offset); #endif default: return inb(info->port + offset); } } static _INLINE_ void serial_out(struct async_struct *info, int offset, int value) { switch (info->io_type) { #ifdef CONFIG_HUB6 case SERIAL_IO_HUB6: outb(info->hub6 - 1 + offset, info->port); outb(value, info->port+1); break; #endif case SERIAL_IO_MEM: writeb(value, (unsigned long) info->iomem_base + (offset<iomem_reg_shift)); break; #ifdef CONFIG_SERIAL_GSC case SERIAL_IO_GSC: gsc_writeb(value, info->iomem_base + offset); break; #endif default: outb(value, info->port+offset); } } /* * We used to support using pause I/O for certain machines. We * haven't supported this for a while, but just in case it's badly * needed for certain old 386 machines, I've left these #define's * in.... */ #define serial_inp(info, offset) serial_in(info, offset) #define serial_outp(info, offset, value) serial_out(info, offset, value) /* * For the 16C950 */ void serial_icr_write(struct async_struct *info, int offset, int value) { serial_out(info, UART_SCR, offset); serial_out(info, UART_ICR, value); } unsigned int serial_icr_read(struct async_struct *info, int offset) { int value; serial_icr_write(info, UART_ACR, info->ACR | UART_ACR_ICRRD); serial_out(info, UART_SCR, offset); value = serial_in(info, UART_ICR); serial_icr_write(info, UART_ACR, info->ACR); return value; } /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * They enable or disable transmitter interrupts, as necessary. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; save_flags(flags); cli(); if (info->IER & UART_IER_THRI) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } if (info->state->type == PORT_16C950) { info->ACR |= UART_ACR_TXDIS; serial_icr_write(info, UART_ACR, info->ACR); } restore_flags(flags); } static void rs_start(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_start")) return; save_flags(flags); cli(); if (info->xmit.head != info->xmit.tail && info->xmit.buf && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } if (info->state->type == PORT_16C950) { info->ACR &= ~UART_ACR_TXDIS; serial_icr_write(info, UART_ACR, info->ACR); } restore_flags(flags); } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * Note: rs_interrupt() is a "fast" interrupt, which means that it * runs with interrupts turned off. People who may want to modify * rs_interrupt() should try to keep the interrupt handler as fast as * possible. After you are done making modifications, it is not a bad * idea to do: * * gcc -S -DKERNEL -Wall -Wstrict-prototypes -O6 -fomit-frame-pointer serial.c * * and look at the resulting assemble code in serial.s. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(struct async_struct *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } static _INLINE_ void receive_chars(struct async_struct *info, int *status, struct pt_regs * regs) { struct tty_struct *tty = info->tty; unsigned char ch; int ignored = 0; struct async_icount *icount; icount = &info->state->icount; do { ch = serial_inp(info, UART_RX); if (tty->flip.count >= TTY_FLIPBUF_SIZE) goto ignore_char; *tty->flip.char_buf_ptr = ch; icount->rx++; #ifdef SERIAL_DEBUG_INTR printk("DR%02x:%02x...", ch, *status); #endif *tty->flip.flag_buf_ptr = 0; if (*status & (UART_LSR_BI | UART_LSR_PE | UART_LSR_FE | UART_LSR_OE)) { /* * For statistics only */ if (*status & UART_LSR_BI) { *status &= ~(UART_LSR_FE | UART_LSR_PE); icount->brk++; } else if (*status & UART_LSR_PE) icount->parity++; else if (*status & UART_LSR_FE) icount->frame++; if (*status & UART_LSR_OE) icount->overrun++; /* * Now check to see if character should be * ignored, and mask off conditions which * should be ignored. */ if (*status & info->ignore_status_mask) { if (++ignored > 100) break; goto ignore_char; } *status &= info->read_status_mask; if (*status & (UART_LSR_BI)) { #ifdef SERIAL_DEBUG_INTR printk("handling break...."); #endif #if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && !defined(MODULE) if (info->line == sercons.index) { if (!break_pressed) { break_pressed = jiffies; goto ignore_char; } break_pressed = 0; } #endif *tty->flip.flag_buf_ptr = TTY_BREAK; if (info->flags & ASYNC_SAK) do_SAK(tty); } else if (*status & UART_LSR_PE) *tty->flip.flag_buf_ptr = TTY_PARITY; else if (*status & UART_LSR_FE) *tty->flip.flag_buf_ptr = TTY_FRAME; if (*status & UART_LSR_OE) { /* * Overrun is special, since it's * reported immediately, and doesn't * affect the current character */ tty->flip.count++; tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; *tty->flip.flag_buf_ptr = TTY_OVERRUN; if (tty->flip.count >= TTY_FLIPBUF_SIZE) goto ignore_char; } } #if defined(CONFIG_SERIAL_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ) && !defined(MODULE) if (break_pressed && info->line == sercons.index) { if (ch != 0 && time_before(jiffies, break_pressed + HZ*5)) { handle_sysrq(ch, regs, NULL, NULL); break_pressed = 0; goto ignore_char; } break_pressed = 0; } #endif tty->flip.flag_buf_ptr++; tty->flip.char_buf_ptr++; tty->flip.count++; ignore_char: *status = serial_inp(info, UART_LSR); } while (*status & UART_LSR_DR); #if (LINUX_VERSION_CODE > 131394) /* 2.1.66 */ tty_flip_buffer_push(tty); #else queue_task_irq_off(&tty->flip.tqueue, &tq_timer); #endif } static _INLINE_ void transmit_chars(struct async_struct *info, int *intr_done) { int count; if (info->x_char) { serial_outp(info, UART_TX, info->x_char); info->state->icount.tx++; info->x_char = 0; if (intr_done) *intr_done = 0; return; } if (info->xmit.head == info->xmit.tail || info->tty->stopped || info->tty->hw_stopped) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); return; } count = info->xmit_fifo_size; do { serial_out(info, UART_TX, info->xmit.buf[info->xmit.tail]); info->xmit.tail = (info->xmit.tail + 1) & (SERIAL_XMIT_SIZE-1); info->state->icount.tx++; if (info->xmit.head == info->xmit.tail) break; } while (--count > 0); if (CIRC_CNT(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE) < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); #ifdef SERIAL_DEBUG_INTR printk("THRE..."); #endif if (intr_done) *intr_done = 0; if (info->xmit.head == info->xmit.tail) { info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } static _INLINE_ void check_modem_status(struct async_struct *info) { int status; struct async_icount *icount; status = serial_in(info, UART_MSR); if (status & UART_MSR_ANY_DELTA) { icount = &info->state->icount; /* update input line counters */ if (status & UART_MSR_TERI) icount->rng++; if (status & UART_MSR_DDSR) icount->dsr++; if (status & UART_MSR_DDCD) { icount->dcd++; #ifdef CONFIG_HARD_PPS if ((info->flags & ASYNC_HARDPPS_CD) && (status & UART_MSR_DCD)) hardpps(); #endif } if (status & UART_MSR_DCTS) icount->cts++; wake_up_interruptible(&info->delta_msr_wait); } if ((info->flags & ASYNC_CHECK_CD) && (status & UART_MSR_DDCD)) { #if (defined(SERIAL_DEBUG_OPEN) || defined(SERIAL_DEBUG_INTR)) printk("ttys%d CD now %s...", info->line, (status & UART_MSR_DCD) ? "on" : "off"); #endif if (status & UART_MSR_DCD) wake_up_interruptible(&info->open_wait); else if (!((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_CALLOUT_NOHUP))) { #ifdef SERIAL_DEBUG_OPEN printk("doing serial hangup..."); #endif if (info->tty) tty_hangup(info->tty); } } if (info->flags & ASYNC_CTS_FLOW) { if (info->tty->hw_stopped) { if (status & UART_MSR_CTS) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx start..."); #endif info->tty->hw_stopped = 0; info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); return; } } else { if (!(status & UART_MSR_CTS)) { #if (defined(SERIAL_DEBUG_INTR) || defined(SERIAL_DEBUG_FLOW)) printk("CTS tx stop..."); #endif info->tty->hw_stopped = 1; info->IER &= ~UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } } } #ifdef CONFIG_SERIAL_SHARE_IRQ /* * This is the serial driver's generic interrupt routine */ static void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs) { int status; struct async_struct * info; int pass_counter = 0; struct async_struct *end_mark = 0; #ifdef CONFIG_SERIAL_MULTIPORT int first_multi = 0; struct rs_multiport_struct *multi; #endif #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt(%d)...", irq); #endif info = IRQ_ports[irq]; if (!info) return; #ifdef CONFIG_SERIAL_MULTIPORT multi = &rs_multiport[irq]; if (multi->port_monitor) first_multi = inb(multi->port_monitor); #endif do { if (!info->tty || (serial_in(info, UART_IIR) & UART_IIR_NO_INT)) { if (!end_mark) end_mark = info; goto next; } end_mark = 0; info->last_active = jiffies; status = serial_inp(info, UART_LSR); #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_chars(info, &status, regs); check_modem_status(info); if (status & UART_LSR_THRE) transmit_chars(info, 0); next: info = info->next_port; if (!info) { info = IRQ_ports[irq]; if (pass_counter++ > RS_ISR_PASS_LIMIT) { #if 0 printk("rs loop break\n"); #endif break; /* Prevent infinite loops */ } continue; } } while (end_mark != info); #ifdef CONFIG_SERIAL_MULTIPORT if (multi->port_monitor) printk("rs port monitor (normal) irq %d: 0x%x, 0x%x\n", info->state->irq, first_multi, inb(multi->port_monitor)); #endif #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } #endif /* #ifdef CONFIG_SERIAL_SHARE_IRQ */ /* * This is the serial driver's interrupt routine for a single port */ static void rs_interrupt_single(int irq, void *dev_id, struct pt_regs * regs) { int status; int pass_counter = 0; struct async_struct * info; #ifdef CONFIG_SERIAL_MULTIPORT int first_multi = 0; struct rs_multiport_struct *multi; #endif #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt_single(%d)...", irq); #endif info = IRQ_ports[irq]; if (!info || !info->tty) return; #ifdef CONFIG_SERIAL_MULTIPORT multi = &rs_multiport[irq]; if (multi->port_monitor) first_multi = inb(multi->port_monitor); #endif do { status = serial_inp(info, UART_LSR); #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_chars(info, &status, regs); check_modem_status(info); if (status & UART_LSR_THRE) transmit_chars(info, 0); if (pass_counter++ > RS_ISR_PASS_LIMIT) { #if 0 printk("rs_single loop break.\n"); #endif break; } } while (!(serial_in(info, UART_IIR) & UART_IIR_NO_INT)); info->last_active = jiffies; #ifdef CONFIG_SERIAL_MULTIPORT if (multi->port_monitor) printk("rs port monitor (single) irq %d: 0x%x, 0x%x\n", info->state->irq, first_multi, inb(multi->port_monitor)); #endif #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } #ifdef CONFIG_SERIAL_MULTIPORT /* * This is the serial driver's for multiport boards */ static void rs_interrupt_multi(int irq, void *dev_id, struct pt_regs * regs) { int status; struct async_struct * info; int pass_counter = 0; int first_multi= 0; struct rs_multiport_struct *multi; #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt_multi(%d)...", irq); #endif info = IRQ_ports[irq]; if (!info) return; multi = &rs_multiport[irq]; if (!multi->port1) { /* Should never happen */ printk("rs_interrupt_multi: NULL port1!\n"); return; } if (multi->port_monitor) first_multi = inb(multi->port_monitor); while (1) { if (!info->tty || (serial_in(info, UART_IIR) & UART_IIR_NO_INT)) goto next; info->last_active = jiffies; status = serial_inp(info, UART_LSR); #ifdef SERIAL_DEBUG_INTR printk("status = %x...", status); #endif if (status & UART_LSR_DR) receive_chars(info, &status, regs); check_modem_status(info); if (status & UART_LSR_THRE) transmit_chars(info, 0); next: info = info->next_port; if (info) continue; info = IRQ_ports[irq]; /* * The user was a bonehead, and misconfigured their * multiport info. Rather than lock up the kernel * in an infinite loop, if we loop too many times, * print a message and break out of the loop. */ if (pass_counter++ > RS_ISR_PASS_LIMIT) { printk("Misconfigured multiport serial info " "for irq %d. Breaking out irq loop\n", irq); break; } if (multi->port_monitor) printk("rs port monitor irq %d: 0x%x, 0x%x\n", info->state->irq, first_multi, inb(multi->port_monitor)); if ((inb(multi->port1) & multi->mask1) != multi->match1) continue; if (!multi->port2) break; if ((inb(multi->port2) & multi->mask2) != multi->match2) continue; if (!multi->port3) break; if ((inb(multi->port3) & multi->mask3) != multi->match3) continue; if (!multi->port4) break; if ((inb(multi->port4) & multi->mask4) != multi->match4) continue; break; } #ifdef SERIAL_DEBUG_INTR printk("end.\n"); #endif } #endif /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct async_struct *info = (struct async_struct *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); #ifdef SERIAL_HAVE_POLL_WAIT wake_up_interruptible(&tty->poll_wait); #endif } } /* * This subroutine is called when the RS_TIMER goes off. It is used * by the serial driver to handle ports that do not have an interrupt * (irq=0). This doesn't work very well for 16450's, but gives barely * passable results for a 16550A. (Although at the expense of much * CPU overhead). */ static void rs_timer(unsigned long dummy) { static unsigned long last_strobe = 0; struct async_struct *info; unsigned int i; unsigned long flags; if ((jiffies - last_strobe) >= RS_STROBE_TIME) { for (i=0; i < NR_IRQS; i++) { info = IRQ_ports[i]; if (!info) continue; save_flags(flags); cli(); #ifdef CONFIG_SERIAL_SHARE_IRQ if (info->next_port) { do { serial_out(info, UART_IER, 0); info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); info = info->next_port; } while (info); #ifdef CONFIG_SERIAL_MULTIPORT if (rs_multiport[i].port1) rs_interrupt_multi(i, NULL, NULL); else #endif rs_interrupt(i, NULL, NULL); } else #endif /* CONFIG_SERIAL_SHARE_IRQ */ rs_interrupt_single(i, NULL, NULL); restore_flags(flags); } } last_strobe = jiffies; mod_timer(&serial_timer, jiffies + RS_STROBE_TIME); if (IRQ_ports[0]) { unsigned long next; save_flags(flags); cli(); #ifdef CONFIG_SERIAL_SHARE_IRQ rs_interrupt(0, NULL, NULL); #else rs_interrupt_single(0, NULL, NULL); #endif next = jiffies + IRQ_timeout[0] - 2; if (next < jiffies + 1) next = jiffies + 1; mod_timer(&serial_timer, next); restore_flags(flags); } } /* * --------------------------------------------------------------- * Low level utility subroutines for the serial driver: routines to * figure out the appropriate timeout for an interrupt chain, routines * to initialize and startup a serial port, and routines to shutdown a * serial port. Useful stuff like that. * --------------------------------------------------------------- */ /* * This routine figures out the correct timeout for a particular IRQ. * It uses the smallest timeout of all of the serial ports in a * particular interrupt chain. Now only used for IRQ 0.... */ static void figure_IRQ_timeout(int irq) { struct async_struct *info; int timeout = 60*HZ; /* 60 seconds === a long time :-) */ info = IRQ_ports[irq]; if (!info) { IRQ_timeout[irq] = 60*HZ; return; } while (info) { if (info->timeout < timeout) timeout = info->timeout; info = info->next_port; } if (!irq) timeout = timeout / 2; IRQ_timeout[irq] = timeout ? timeout : 1; } #ifdef CONFIG_SERIAL_RSA /* Attempts to turn on the RSA FIFO. Returns zero on failure */ static int enable_rsa(struct async_struct *info) { unsigned char mode; int result; unsigned long flags; save_flags(flags); cli(); mode = serial_inp(info, UART_RSA_MSR); result = mode & UART_RSA_MSR_FIFO; if (!result) { serial_outp(info, UART_RSA_MSR, mode | UART_RSA_MSR_FIFO); mode = serial_inp(info, UART_RSA_MSR); result = mode & UART_RSA_MSR_FIFO; } restore_flags(flags); return result; } /* Attempts to turn off the RSA FIFO. Returns zero on failure */ static int disable_rsa(struct async_struct *info) { unsigned char mode; int result; unsigned long flags; save_flags(flags); cli(); mode = serial_inp(info, UART_RSA_MSR); result = !(mode & UART_RSA_MSR_FIFO); if (!result) { serial_outp(info, UART_RSA_MSR, mode & ~UART_RSA_MSR_FIFO); mode = serial_inp(info, UART_RSA_MSR); result = !(mode & UART_RSA_MSR_FIFO); } restore_flags(flags); return result; } #endif /* CONFIG_SERIAL_RSA */ static int startup(struct async_struct * info) { unsigned long flags; int retval=0; void (*handler)(int, void *, struct pt_regs *); struct serial_state *state= info->state; unsigned long page; #ifdef CONFIG_SERIAL_MANY_PORTS unsigned short ICP; #endif page = get_zeroed_page(GFP_KERNEL); if (!page) return -ENOMEM; save_flags(flags); cli(); if (info->flags & ASYNC_INITIALIZED) { free_page(page); goto errout; } if (!CONFIGURED_SERIAL_PORT(state) || !state->type) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); free_page(page); goto errout; } if (info->xmit.buf) free_page(page); else info->xmit.buf = (unsigned char *) page; #ifdef SERIAL_DEBUG_OPEN printk("starting up ttys%d (irq %d)...", info->line, state->irq); #endif if (uart_config[state->type].flags & UART_STARTECH) { /* Wake up UART */ serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, UART_EFR_ECB); /* * Turn off LCR == 0xBF so we actually set the IER * register on the XR16C850 */ serial_outp(info, UART_LCR, 0); serial_outp(info, UART_IER, 0); /* * Now reset LCR so we can turn off the ECB bit */ serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, 0); /* * For a XR16C850, we need to set the trigger levels */ if (state->type == PORT_16850) { serial_outp(info, UART_FCTR, UART_FCTR_TRGD | UART_FCTR_RX); serial_outp(info, UART_TRG, UART_TRG_96); serial_outp(info, UART_FCTR, UART_FCTR_TRGD | UART_FCTR_TX); serial_outp(info, UART_TRG, UART_TRG_96); } serial_outp(info, UART_LCR, 0); } if (state->type == PORT_16750) { /* Wake up UART */ serial_outp(info, UART_IER, 0); } if (state->type == PORT_16C950) { /* Wake up and initialize UART */ info->ACR = 0; serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, UART_EFR_ECB); serial_outp(info, UART_IER, 0); serial_outp(info, UART_LCR, 0); serial_icr_write(info, UART_CSR, 0); /* Reset the UART */ serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, UART_EFR_ECB); serial_outp(info, UART_LCR, 0); } #ifdef CONFIG_SERIAL_RSA /* * If this is an RSA port, see if we can kick it up to the * higher speed clock. */ if (state->type == PORT_RSA) { if (state->baud_base != SERIAL_RSA_BAUD_BASE && enable_rsa(info)) state->baud_base = SERIAL_RSA_BAUD_BASE; if (state->baud_base == SERIAL_RSA_BAUD_BASE) serial_outp(info, UART_RSA_FRR, 0); } #endif /* * Clear the FIFO buffers and disable them * (they will be reenabled in change_speed()) */ if (uart_config[state->type].flags & UART_CLEAR_FIFO) { serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); serial_outp(info, UART_FCR, (UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); serial_outp(info, UART_FCR, 0); } /* * Clear the interrupt registers. */ (void) serial_inp(info, UART_LSR); (void) serial_inp(info, UART_RX); (void) serial_inp(info, UART_IIR); (void) serial_inp(info, UART_MSR); /* * At this point there's no way the LSR could still be 0xFF; * if it is, then bail out, because there's likely no UART * here. */ if (!(info->flags & ASYNC_BUGGY_UART) && (serial_inp(info, UART_LSR) == 0xff)) { printk("LSR safety check engaged!\n"); if (capable(CAP_SYS_ADMIN)) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); } else retval = -ENODEV; goto errout; } /* * Allocate the IRQ if necessary */ if (state->irq && (!IRQ_ports[state->irq] || !IRQ_ports[state->irq]->next_port)) { if (IRQ_ports[state->irq]) { #ifdef CONFIG_SERIAL_SHARE_IRQ free_irq(state->irq, &IRQ_ports[state->irq]); #ifdef CONFIG_SERIAL_MULTIPORT if (rs_multiport[state->irq].port1) handler = rs_interrupt_multi; else #endif handler = rs_interrupt; #else retval = -EBUSY; goto errout; #endif /* CONFIG_SERIAL_SHARE_IRQ */ } else handler = rs_interrupt_single; retval = request_irq(state->irq, handler, SA_SHIRQ, "serial", &IRQ_ports[state->irq]); if (retval) { if (capable(CAP_SYS_ADMIN)) { if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); retval = 0; } goto errout; } } /* * Insert serial port into IRQ chain. */ info->prev_port = 0; info->next_port = IRQ_ports[state->irq]; if (info->next_port) info->next_port->prev_port = info; IRQ_ports[state->irq] = info; figure_IRQ_timeout(state->irq); /* * Now, initialize the UART */ serial_outp(info, UART_LCR, UART_LCR_WLEN8); /* reset DLAB */ info->MCR = 0; if (info->tty->termios->c_cflag & CBAUD) info->MCR = UART_MCR_DTR | UART_MCR_RTS; #ifdef CONFIG_SERIAL_MANY_PORTS if (info->flags & ASYNC_FOURPORT) { if (state->irq == 0) info->MCR |= UART_MCR_OUT1; } else #endif { if (state->irq != 0) info->MCR |= UART_MCR_OUT2; } info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */ serial_outp(info, UART_MCR, info->MCR); /* * Finally, enable interrupts */ info->IER = UART_IER_MSI | UART_IER_RLSI | UART_IER_RDI; serial_outp(info, UART_IER, info->IER); /* enable interrupts */ #ifdef CONFIG_SERIAL_MANY_PORTS if (info->flags & ASYNC_FOURPORT) { /* Enable interrupts on the AST Fourport board */ ICP = (info->port & 0xFE0) | 0x01F; outb_p(0x80, ICP); (void) inb_p(ICP); } #endif /* * And clear the interrupt registers again for luck. */ (void)serial_inp(info, UART_LSR); (void)serial_inp(info, UART_RX); (void)serial_inp(info, UART_IIR); (void)serial_inp(info, UART_MSR); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit.head = info->xmit.tail = 0; /* * Set up serial timers... */ mod_timer(&serial_timer, jiffies + 2*HZ/100); /* * Set up the tty->alt_speed kludge */ #if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */ if (info->tty) { if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) info->tty->alt_speed = 57600; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) info->tty->alt_speed = 115200; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) info->tty->alt_speed = 230400; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) info->tty->alt_speed = 460800; } #endif /* * and set the speed of the serial port */ change_speed(info, 0); info->flags |= ASYNC_INITIALIZED; restore_flags(flags); return 0; errout: restore_flags(flags); return retval; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct async_struct * info) { unsigned long flags; struct serial_state *state; int retval; if (!(info->flags & ASYNC_INITIALIZED)) return; state = info->state; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, state->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ /* * clear delta_msr_wait queue to avoid mem leaks: we may free the irq * here so the queue might never be waken up */ wake_up_interruptible(&info->delta_msr_wait); /* * First unlink the serial port from the IRQ chain... */ if (info->next_port) info->next_port->prev_port = info->prev_port; if (info->prev_port) info->prev_port->next_port = info->next_port; else IRQ_ports[state->irq] = info->next_port; figure_IRQ_timeout(state->irq); /* * Free the IRQ, if necessary */ if (state->irq && (!IRQ_ports[state->irq] || !IRQ_ports[state->irq]->next_port)) { if (IRQ_ports[state->irq]) { free_irq(state->irq, &IRQ_ports[state->irq]); retval = request_irq(state->irq, rs_interrupt_single, SA_SHIRQ, "serial", &IRQ_ports[state->irq]); if (retval) printk("serial shutdown: request_irq: error %d" " Couldn't reacquire IRQ.\n", retval); } else free_irq(state->irq, &IRQ_ports[state->irq]); } if (info->xmit.buf) { unsigned long pg = (unsigned long) info->xmit.buf; info->xmit.buf = 0; free_page(pg); } info->IER = 0; serial_outp(info, UART_IER, 0x00); /* disable all intrs */ #ifdef CONFIG_SERIAL_MANY_PORTS if (info->flags & ASYNC_FOURPORT) { /* reset interrupts on the AST Fourport board */ (void) inb((info->port & 0xFE0) | 0x01F); info->MCR |= UART_MCR_OUT1; } else #endif info->MCR &= ~UART_MCR_OUT2; info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */ /* disable break condition */ serial_out(info, UART_LCR, serial_inp(info, UART_LCR) & ~UART_LCR_SBC); if (!info->tty || (info->tty->termios->c_cflag & HUPCL)) info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); serial_outp(info, UART_MCR, info->MCR); /* disable FIFO's */ serial_outp(info, UART_FCR, (UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); serial_outp(info, UART_FCR, 0); #ifdef CONFIG_SERIAL_RSA /* * Reset the RSA board back to 115kbps compat mode. */ if ((state->type == PORT_RSA) && (state->baud_base == SERIAL_RSA_BAUD_BASE && disable_rsa(info))) state->baud_base = SERIAL_RSA_BAUD_BASE_LO; #endif (void)serial_in(info, UART_RX); /* read data port to reset things */ if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); if (uart_config[info->state->type].flags & UART_STARTECH) { /* Arrange to enter sleep mode */ serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, UART_EFR_ECB); serial_outp(info, UART_IER, UART_IERX_SLEEP); serial_outp(info, UART_LCR, 0); } if (info->state->type == PORT_16750) { /* Arrange to enter sleep mode */ serial_outp(info, UART_IER, UART_IERX_SLEEP); } info->flags &= ~ASYNC_INITIALIZED; restore_flags(flags); } #if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 0 }; static int tty_get_baud_rate(struct tty_struct *tty) { struct async_struct * info = (struct async_struct *)tty->driver_data; unsigned int cflag, i; cflag = tty->termios->c_cflag; i = cflag & CBAUD; if (i & CBAUDEX) { i &= ~CBAUDEX; if (i < 1 || i > 2) tty->termios->c_cflag &= ~CBAUDEX; else i += 15; } if (i == 15) { if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) i += 1; if ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) i += 2; } return baud_table[i]; } #endif /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct async_struct *info, struct termios *old_termios) { int quot = 0, baud_base, baud; unsigned cflag, cval, fcr = 0; int bits; unsigned long flags; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (!CONFIGURED_SERIAL_PORT(info)) return; /* byte size and parity */ switch (cflag & CSIZE) { case CS5: cval = 0x00; bits = 7; break; case CS6: cval = 0x01; bits = 8; break; case CS7: cval = 0x02; bits = 9; break; case CS8: cval = 0x03; bits = 10; break; /* Never happens, but GCC is too dumb to figure it out */ default: cval = 0x00; bits = 7; break; } if (cflag & CSTOPB) { cval |= 0x04; bits++; } if (cflag & PARENB) { cval |= UART_LCR_PARITY; bits++; } if (!(cflag & PARODD)) cval |= UART_LCR_EPAR; #ifdef CMSPAR if (cflag & CMSPAR) cval |= UART_LCR_SPAR; #endif /* Determine divisor based on baud rate */ baud = tty_get_baud_rate(info->tty); if (!baud) baud = 9600; /* B0 transition handled in rs_set_termios */ #ifdef CONFIG_SERIAL_RSA if ((info->state->type == PORT_RSA) && (info->state->baud_base != SERIAL_RSA_BAUD_BASE) && enable_rsa(info)) info->state->baud_base = SERIAL_RSA_BAUD_BASE; #endif baud_base = info->state->baud_base; if (info->state->type == PORT_16C950) { if (baud <= baud_base) serial_icr_write(info, UART_TCR, 0); else if (baud <= 2*baud_base) { serial_icr_write(info, UART_TCR, 0x8); baud_base = baud_base * 2; } else if (baud <= 4*baud_base) { serial_icr_write(info, UART_TCR, 0x4); baud_base = baud_base * 4; } else serial_icr_write(info, UART_TCR, 0); } if (baud == 38400 && ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)) quot = info->state->custom_divisor; else { if (baud == 134) /* Special case since 134 is really 134.5 */ quot = (2*baud_base / 269); else if (baud) quot = baud_base / baud; } /* If the quotient is zero refuse the change */ if (!quot && old_termios) { info->tty->termios->c_cflag &= ~CBAUD; info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD); baud = tty_get_baud_rate(info->tty); if (!baud) baud = 9600; if (baud == 38400 && ((info->flags & ASYNC_SPD_MASK) == ASYNC_SPD_CUST)) quot = info->state->custom_divisor; else { if (baud == 134) /* Special case since 134 is really 134.5 */ quot = (2*baud_base / 269); else if (baud) quot = baud_base / baud; } } /* As a last resort, if the quotient is zero, default to 9600 bps */ if (!quot) quot = baud_base / 9600; /* * Work around a bug in the Oxford Semiconductor 952 rev B * chip which causes it to seriously miscalculate baud rates * when DLL is 0. */ if (((quot & 0xFF) == 0) && (info->state->type == PORT_16C950) && (info->state->revision == 0x5201)) quot++; info->quot = quot; info->timeout = ((info->xmit_fifo_size*HZ*bits*quot) / baud_base); info->timeout += HZ/50; /* Add .02 seconds of slop */ /* Set up FIFO's */ if (uart_config[info->state->type].flags & UART_USE_FIFO) { if ((info->state->baud_base / quot) < 2400) fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_1; #ifdef CONFIG_SERIAL_RSA else if (info->state->type == PORT_RSA) fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_14; #endif else fcr = UART_FCR_ENABLE_FIFO | UART_FCR_TRIGGER_8; } if (info->state->type == PORT_16750) fcr |= UART_FCR7_64BYTE; /* CTS flow control flag and modem status interrupts */ info->IER &= ~UART_IER_MSI; if (info->flags & ASYNC_HARDPPS_CD) info->IER |= UART_IER_MSI; if (cflag & CRTSCTS) { info->flags |= ASYNC_CTS_FLOW; info->IER |= UART_IER_MSI; } else info->flags &= ~ASYNC_CTS_FLOW; if (cflag & CLOCAL) info->flags &= ~ASYNC_CHECK_CD; else { info->flags |= ASYNC_CHECK_CD; info->IER |= UART_IER_MSI; } serial_out(info, UART_IER, info->IER); /* * Set up parity check flag */ #define RELEVANT_IFLAG(iflag) (iflag & (IGNBRK|BRKINT|IGNPAR|PARMRK|INPCK)) info->read_status_mask = UART_LSR_OE | UART_LSR_THRE | UART_LSR_DR; if (I_INPCK(info->tty)) info->read_status_mask |= UART_LSR_FE | UART_LSR_PE; if (I_BRKINT(info->tty) || I_PARMRK(info->tty)) info->read_status_mask |= UART_LSR_BI; /* * Characters to ignore */ info->ignore_status_mask = 0; if (I_IGNPAR(info->tty)) info->ignore_status_mask |= UART_LSR_PE | UART_LSR_FE; if (I_IGNBRK(info->tty)) { info->ignore_status_mask |= UART_LSR_BI; /* * If we're ignore parity and break indicators, ignore * overruns too. (For real raw support). */ if (I_IGNPAR(info->tty)) info->ignore_status_mask |= UART_LSR_OE; } /* * !!! ignore all characters if CREAD is not set */ if ((cflag & CREAD) == 0) info->ignore_status_mask |= UART_LSR_DR; save_flags(flags); cli(); if (uart_config[info->state->type].flags & UART_STARTECH) { serial_outp(info, UART_LCR, 0xBF); serial_outp(info, UART_EFR, (cflag & CRTSCTS) ? UART_EFR_CTS : 0); } serial_outp(info, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */ serial_outp(info, UART_DLL, quot & 0xff); /* LS of divisor */ serial_outp(info, UART_DLM, quot >> 8); /* MS of divisor */ if (info->state->type == PORT_16750) serial_outp(info, UART_FCR, fcr); /* set fcr */ serial_outp(info, UART_LCR, cval); /* reset DLAB */ info->LCR = cval; /* Save LCR */ if (info->state->type != PORT_16750) { if (fcr & UART_FCR_ENABLE_FIFO) { /* emulated UARTs (Lucent Venus 167x) need two steps */ serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); } serial_outp(info, UART_FCR, fcr); /* set fcr */ } restore_flags(flags); } static void rs_put_char(struct tty_struct *tty, unsigned char ch) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_put_char")) return; if (!tty || !info->xmit.buf) return; save_flags(flags); cli(); if (CIRC_SPACE(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE) == 0) { restore_flags(flags); return; } info->xmit.buf[info->xmit.head] = ch; info->xmit.head = (info->xmit.head + 1) & (SERIAL_XMIT_SIZE-1); restore_flags(flags); } static void rs_flush_chars(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_chars")) return; if (info->xmit.head == info->xmit.tail || tty->stopped || tty->hw_stopped || !info->xmit.buf) return; save_flags(flags); cli(); info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); restore_flags(flags); } static int rs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, ret = 0; struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty || !info->xmit.buf || !tmp_buf) return 0; save_flags(flags); if (from_user) { down(&tmp_buf_sem); while (1) { int c1; c = CIRC_SPACE_TO_END(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE); if (count < c) c = count; if (c <= 0) break; c -= copy_from_user(tmp_buf, buf, c); if (!c) { if (!ret) ret = -EFAULT; break; } cli(); c1 = CIRC_SPACE_TO_END(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE); if (c1 < c) c = c1; memcpy(info->xmit.buf + info->xmit.head, tmp_buf, c); info->xmit.head = ((info->xmit.head + c) & (SERIAL_XMIT_SIZE-1)); restore_flags(flags); buf += c; count -= c; ret += c; } up(&tmp_buf_sem); } else { cli(); while (1) { c = CIRC_SPACE_TO_END(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE); if (count < c) c = count; if (c <= 0) { break; } memcpy(info->xmit.buf + info->xmit.head, buf, c); info->xmit.head = ((info->xmit.head + c) & (SERIAL_XMIT_SIZE-1)); buf += c; count -= c; ret += c; } restore_flags(flags); } if (info->xmit.head != info->xmit.tail && !tty->stopped && !tty->hw_stopped && !(info->IER & UART_IER_THRI)) { info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } return ret; } static int rs_write_room(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; return CIRC_SPACE(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE); } static int rs_chars_in_buffer(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return CIRC_CNT(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE); } static void rs_flush_buffer(struct tty_struct *tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; save_flags(flags); cli(); info->xmit.head = info->xmit.tail = 0; restore_flags(flags); wake_up_interruptible(&tty->write_wait); #ifdef SERIAL_HAVE_POLL_WAIT wake_up_interruptible(&tty->poll_wait); #endif if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * This function is used to send a high-priority XON/XOFF character to * the device */ static void rs_send_xchar(struct tty_struct *tty, char ch) { struct async_struct *info = (struct async_struct *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_send_char")) return; info->x_char = ch; if (ch) { /* Make sure transmit interrupts are on */ info->IER |= UART_IER_THRI; serial_out(info, UART_IER, info->IER); } } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; if (I_IXOFF(tty)) rs_send_xchar(tty, STOP_CHAR(tty)); if (tty->termios->c_cflag & CRTSCTS) info->MCR &= ~UART_MCR_RTS; save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } static void rs_unthrottle(struct tty_struct * tty) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; if (I_IXOFF(tty)) { if (info->x_char) info->x_char = 0; else rs_send_xchar(tty, START_CHAR(tty)); } if (tty->termios->c_cflag & CRTSCTS) info->MCR |= UART_MCR_RTS; save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct async_struct * info, struct serial_struct * retinfo) { struct serial_struct tmp; struct serial_state *state = info->state; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = state->type; tmp.line = state->line; tmp.port = state->port; if (HIGH_BITS_OFFSET) tmp.port_high = state->port >> HIGH_BITS_OFFSET; else tmp.port_high = 0; tmp.irq = state->irq; tmp.flags = state->flags; tmp.xmit_fifo_size = state->xmit_fifo_size; tmp.baud_base = state->baud_base; tmp.close_delay = state->close_delay; tmp.closing_wait = state->closing_wait; tmp.custom_divisor = state->custom_divisor; tmp.hub6 = state->hub6; tmp.io_type = state->io_type; if (copy_to_user(retinfo,&tmp,sizeof(*retinfo))) return -EFAULT; return 0; } static int set_serial_info(struct async_struct * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct serial_state old_state, *state; unsigned int i,change_irq,change_port; int retval = 0; unsigned long new_port; if (copy_from_user(&new_serial,new_info,sizeof(new_serial))) return -EFAULT; state = info->state; old_state = *state; new_port = new_serial.port; if (HIGH_BITS_OFFSET) new_port += (unsigned long) new_serial.port_high << HIGH_BITS_OFFSET; change_irq = new_serial.irq != state->irq; change_port = (new_port != ((int) state->port)) || (new_serial.hub6 != state->hub6); if (!capable(CAP_SYS_ADMIN)) { if (change_irq || change_port || (new_serial.baud_base != state->baud_base) || (new_serial.type != state->type) || (new_serial.close_delay != state->close_delay) || (new_serial.xmit_fifo_size != state->xmit_fifo_size) || ((new_serial.flags & ~ASYNC_USR_MASK) != (state->flags & ~ASYNC_USR_MASK))) return -EPERM; state->flags = ((state->flags & ~ASYNC_USR_MASK) | (new_serial.flags & ASYNC_USR_MASK)); info->flags = ((info->flags & ~ASYNC_USR_MASK) | (new_serial.flags & ASYNC_USR_MASK)); state->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } new_serial.irq = irq_cannonicalize(new_serial.irq); if ((new_serial.irq >= NR_IRQS) || (new_serial.baud_base < 9600)|| (new_serial.type < PORT_UNKNOWN) || (new_serial.type > PORT_MAX) || (new_serial.type == PORT_CIRRUS) || (new_serial.type == PORT_STARTECH)) { return -EINVAL; } if ((new_serial.type != state->type) || (new_serial.xmit_fifo_size <= 0)) new_serial.xmit_fifo_size = uart_config[new_serial.type].dfl_xmit_fifo_size; /* Make sure address is not already in use */ if (new_serial.type) { for (i = 0 ; i < NR_PORTS; i++) if ((state != &rs_table[i]) && (rs_table[i].port == new_port) && rs_table[i].type) return -EADDRINUSE; } if ((change_port || change_irq) && (state->count > 1)) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ state->baud_base = new_serial.baud_base; state->flags = ((state->flags & ~ASYNC_FLAGS) | (new_serial.flags & ASYNC_FLAGS)); info->flags = ((state->flags & ~ASYNC_INTERNAL_FLAGS) | (info->flags & ASYNC_INTERNAL_FLAGS)); state->custom_divisor = new_serial.custom_divisor; state->close_delay = new_serial.close_delay * HZ/100; state->closing_wait = new_serial.closing_wait * HZ/100; #if (LINUX_VERSION_CODE > 0x20100) info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0; #endif info->xmit_fifo_size = state->xmit_fifo_size = new_serial.xmit_fifo_size; if ((state->type != PORT_UNKNOWN) && state->port) { #ifdef CONFIG_SERIAL_RSA if (old_state.type == PORT_RSA) release_region(state->port + UART_RSA_BASE, 16); else #endif release_region(state->port,8); } state->type = new_serial.type; if (change_port || change_irq) { /* * We need to shutdown the serial port at the old * port/irq combination. */ shutdown(info); state->irq = new_serial.irq; info->port = state->port = new_port; info->hub6 = state->hub6 = new_serial.hub6; if (info->hub6) info->io_type = state->io_type = SERIAL_IO_HUB6; else if (info->io_type == SERIAL_IO_HUB6) info->io_type = state->io_type = SERIAL_IO_PORT; } if ((state->type != PORT_UNKNOWN) && state->port) { #ifdef CONFIG_SERIAL_RSA if (state->type == PORT_RSA) request_region(state->port + UART_RSA_BASE, 16, "serial_rsa(set)"); else #endif request_region(state->port,8,"serial(set)"); } check_and_exit: if (!state->port || !state->type) return 0; if (info->flags & ASYNC_INITIALIZED) { if (((old_state.flags & ASYNC_SPD_MASK) != (state->flags & ASYNC_SPD_MASK)) || (old_state.custom_divisor != state->custom_divisor)) { #if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */ if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_HI) info->tty->alt_speed = 57600; if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_VHI) info->tty->alt_speed = 115200; if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_SHI) info->tty->alt_speed = 230400; if ((state->flags & ASYNC_SPD_MASK) == ASYNC_SPD_WARP) info->tty->alt_speed = 460800; #endif change_speed(info, 0); } } else retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct async_struct * info, unsigned int *value) { unsigned char status; unsigned int result; unsigned long flags; save_flags(flags); cli(); status = serial_in(info, UART_LSR); restore_flags(flags); result = ((status & UART_LSR_TEMT) ? TIOCSER_TEMT : 0); /* * If we're about to load something into the transmit * register, we'll pretend the transmitter isn't empty to * avoid a race condition (depending on when the transmit * interrupt happens). */ if (info->x_char || ((CIRC_CNT(info->xmit.head, info->xmit.tail, SERIAL_XMIT_SIZE) > 0) && !info->tty->stopped && !info->tty->hw_stopped)) result &= TIOCSER_TEMT; if (copy_to_user(value, &result, sizeof(int))) return -EFAULT; return 0; } static int get_modem_info(struct async_struct * info, unsigned int *value) { unsigned char control, status; unsigned int result; unsigned long flags; control = info->MCR; save_flags(flags); cli(); status = serial_in(info, UART_MSR); restore_flags(flags); result = ((control & UART_MCR_RTS) ? TIOCM_RTS : 0) | ((control & UART_MCR_DTR) ? TIOCM_DTR : 0) #ifdef TIOCM_OUT1 | ((control & UART_MCR_OUT1) ? TIOCM_OUT1 : 0) | ((control & UART_MCR_OUT2) ? TIOCM_OUT2 : 0) #endif | ((status & UART_MSR_DCD) ? TIOCM_CAR : 0) | ((status & UART_MSR_RI) ? TIOCM_RNG : 0) | ((status & UART_MSR_DSR) ? TIOCM_DSR : 0) | ((status & UART_MSR_CTS) ? TIOCM_CTS : 0); if (copy_to_user(value, &result, sizeof(int))) return -EFAULT; return 0; } static int set_modem_info(struct async_struct * info, unsigned int cmd, unsigned int *value) { unsigned int arg; unsigned long flags; if (copy_from_user(&arg, value, sizeof(int))) return -EFAULT; switch (cmd) { case TIOCMBIS: if (arg & TIOCM_RTS) info->MCR |= UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR |= UART_MCR_DTR; #ifdef TIOCM_OUT1 if (arg & TIOCM_OUT1) info->MCR |= UART_MCR_OUT1; if (arg & TIOCM_OUT2) info->MCR |= UART_MCR_OUT2; #endif if (arg & TIOCM_LOOP) info->MCR |= UART_MCR_LOOP; break; case TIOCMBIC: if (arg & TIOCM_RTS) info->MCR &= ~UART_MCR_RTS; if (arg & TIOCM_DTR) info->MCR &= ~UART_MCR_DTR; #ifdef TIOCM_OUT1 if (arg & TIOCM_OUT1) info->MCR &= ~UART_MCR_OUT1; if (arg & TIOCM_OUT2) info->MCR &= ~UART_MCR_OUT2; #endif if (arg & TIOCM_LOOP) info->MCR &= ~UART_MCR_LOOP; break; case TIOCMSET: info->MCR = ((info->MCR & ~(UART_MCR_RTS | #ifdef TIOCM_OUT1 UART_MCR_OUT1 | UART_MCR_OUT2 | #endif UART_MCR_LOOP | UART_MCR_DTR)) | ((arg & TIOCM_RTS) ? UART_MCR_RTS : 0) #ifdef TIOCM_OUT1 | ((arg & TIOCM_OUT1) ? UART_MCR_OUT1 : 0) | ((arg & TIOCM_OUT2) ? UART_MCR_OUT2 : 0) #endif | ((arg & TIOCM_LOOP) ? UART_MCR_LOOP : 0) | ((arg & TIOCM_DTR) ? UART_MCR_DTR : 0)); break; default: return -EINVAL; } save_flags(flags); cli(); info->MCR |= ALPHA_KLUDGE_MCR; /* Don't ask */ serial_out(info, UART_MCR, info->MCR); restore_flags(flags); return 0; } static int do_autoconfig(struct async_struct * info) { int retval; if (!capable(CAP_SYS_ADMIN)) return -EPERM; if (info->state->count > 1) return -EBUSY; shutdown(info); autoconfig(info->state); if ((info->state->flags & ASYNC_AUTO_IRQ) && (info->state->port != 0) && (info->state->type != PORT_UNKNOWN)) info->state->irq = detect_uart_irq(info->state); retval = startup(info); if (retval) return retval; return 0; } /* * rs_break() --- routine which turns the break handling on or off */ #if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */ static void send_break( struct async_struct * info, int duration) { if (!CONFIGURED_SERIAL_PORT(info)) return; current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + duration; cli(); info->LCR |= UART_LCR_SBC; serial_out(info, UART_LCR, info->LCR); schedule(); info->LCR &= ~UART_LCR_SBC; serial_out(info, UART_LCR, info->LCR); sti(); } #else static void rs_break(struct tty_struct *tty, int break_state) { struct async_struct * info = (struct async_struct *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_break")) return; if (!CONFIGURED_SERIAL_PORT(info)) return; save_flags(flags); cli(); if (break_state == -1) info->LCR |= UART_LCR_SBC; else info->LCR &= ~UART_LCR_SBC; serial_out(info, UART_LCR, info->LCR); restore_flags(flags); } #endif #ifdef CONFIG_SERIAL_MULTIPORT static int get_multiport_struct(struct async_struct * info, struct serial_multiport_struct *retinfo) { struct serial_multiport_struct ret; struct rs_multiport_struct *multi; multi = &rs_multiport[info->state->irq]; ret.port_monitor = multi->port_monitor; ret.port1 = multi->port1; ret.mask1 = multi->mask1; ret.match1 = multi->match1; ret.port2 = multi->port2; ret.mask2 = multi->mask2; ret.match2 = multi->match2; ret.port3 = multi->port3; ret.mask3 = multi->mask3; ret.match3 = multi->match3; ret.port4 = multi->port4; ret.mask4 = multi->mask4; ret.match4 = multi->match4; ret.irq = info->state->irq; if (copy_to_user(retinfo,&ret,sizeof(*retinfo))) return -EFAULT; return 0; } static int set_multiport_struct(struct async_struct * info, struct serial_multiport_struct *in_multi) { struct serial_multiport_struct new_multi; struct rs_multiport_struct *multi; struct serial_state *state; int was_multi, now_multi; int retval; void (*handler)(int, void *, struct pt_regs *); if (!capable(CAP_SYS_ADMIN)) return -EPERM; state = info->state; if (copy_from_user(&new_multi, in_multi, sizeof(struct serial_multiport_struct))) return -EFAULT; if (new_multi.irq != state->irq || state->irq == 0 || !IRQ_ports[state->irq]) return -EINVAL; multi = &rs_multiport[state->irq]; was_multi = (multi->port1 != 0); multi->port_monitor = new_multi.port_monitor; if (multi->port1) release_region(multi->port1,1); multi->port1 = new_multi.port1; multi->mask1 = new_multi.mask1; multi->match1 = new_multi.match1; if (multi->port1) request_region(multi->port1,1,"serial(multiport1)"); if (multi->port2) release_region(multi->port2,1); multi->port2 = new_multi.port2; multi->mask2 = new_multi.mask2; multi->match2 = new_multi.match2; if (multi->port2) request_region(multi->port2,1,"serial(multiport2)"); if (multi->port3) release_region(multi->port3,1); multi->port3 = new_multi.port3; multi->mask3 = new_multi.mask3; multi->match3 = new_multi.match3; if (multi->port3) request_region(multi->port3,1,"serial(multiport3)"); if (multi->port4) release_region(multi->port4,1); multi->port4 = new_multi.port4; multi->mask4 = new_multi.mask4; multi->match4 = new_multi.match4; if (multi->port4) request_region(multi->port4,1,"serial(multiport4)"); now_multi = (multi->port1 != 0); if (IRQ_ports[state->irq]->next_port && (was_multi != now_multi)) { free_irq(state->irq, &IRQ_ports[state->irq]); if (now_multi) handler = rs_interrupt_multi; else handler = rs_interrupt; retval = request_irq(state->irq, handler, SA_SHIRQ, "serial", &IRQ_ports[state->irq]); if (retval) { printk("Couldn't reallocate serial interrupt " "driver!!\n"); } } return 0; } #endif static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { struct async_struct * info = (struct async_struct *)tty->driver_data; struct async_icount cprev, cnow; /* kernel counter temps */ struct serial_icounter_struct icount; unsigned long flags; #if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */ int retval, tmp; #endif if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT) && (cmd != TIOCMIWAIT) && (cmd != TIOCGICOUNT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { #if (LINUX_VERSION_CODE < 131394) /* Linux 2.1.66 */ case TCSBRK: /* SVID version: non-zero arg --> no break */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (signal_pending(current)) return -EINTR; if (!arg) { send_break(info, HZ/4); /* 1/4 second */ if (signal_pending(current)) return -EINTR; } return 0; case TCSBRKP: /* support for POSIX tcsendbreak() */ retval = tty_check_change(tty); if (retval) return retval; tty_wait_until_sent(tty, 0); if (signal_pending(current)) return -EINTR; send_break(info, arg ? arg*(HZ/10) : HZ/4); if (signal_pending(current)) return -EINTR; return 0; case TIOCGSOFTCAR: tmp = C_CLOCAL(tty) ? 1 : 0; if (copy_to_user((void *)arg, &tmp, sizeof(int))) return -EFAULT; return 0; case TIOCSSOFTCAR: if (copy_from_user(&tmp, (void *)arg, sizeof(int))) return -EFAULT; tty->termios->c_cflag = ((tty->termios->c_cflag & ~CLOCAL) | (tmp ? CLOCAL : 0)); return 0; #endif case TIOCMGET: return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERCONFIG: return do_autoconfig(info); case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); case TIOCSERGSTRUCT: if (copy_to_user((struct async_struct *) arg, info, sizeof(struct async_struct))) return -EFAULT; return 0; #ifdef CONFIG_SERIAL_MULTIPORT case TIOCSERGETMULTI: return get_multiport_struct(info, (struct serial_multiport_struct *) arg); case TIOCSERSETMULTI: return set_multiport_struct(info, (struct serial_multiport_struct *) arg); #endif /* * Wait for any of the 4 modem inputs (DCD,RI,DSR,CTS) to change * - mask passed in arg for lines of interest * (use |'ed TIOCM_RNG/DSR/CD/CTS for masking) * Caller should use TIOCGICOUNT to see which one it was */ case TIOCMIWAIT: save_flags(flags); cli(); /* note the counters on entry */ cprev = info->state->icount; restore_flags(flags); /* Force modem status interrupts on */ info->IER |= UART_IER_MSI; serial_out(info, UART_IER, info->IER); while (1) { interruptible_sleep_on(&info->delta_msr_wait); /* see if a signal did it */ if (signal_pending(current)) return -ERESTARTSYS; save_flags(flags); cli(); cnow = info->state->icount; /* atomic copy */ restore_flags(flags); if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr && cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) return -EIO; /* no change => error */ if ( ((arg & TIOCM_RNG) && (cnow.rng != cprev.rng)) || ((arg & TIOCM_DSR) && (cnow.dsr != cprev.dsr)) || ((arg & TIOCM_CD) && (cnow.dcd != cprev.dcd)) || ((arg & TIOCM_CTS) && (cnow.cts != cprev.cts)) ) { return 0; } cprev = cnow; } /* NOTREACHED */ /* * Get counter of input serial line interrupts (DCD,RI,DSR,CTS) * Return: write counters to the user passed counter struct * NB: both 1->0 and 0->1 transitions are counted except for * RI where only 0->1 is counted. */ case TIOCGICOUNT: save_flags(flags); cli(); cnow = info->state->icount; restore_flags(flags); icount.cts = cnow.cts; icount.dsr = cnow.dsr; icount.rng = cnow.rng; icount.dcd = cnow.dcd; icount.rx = cnow.rx; icount.tx = cnow.tx; icount.frame = cnow.frame; icount.overrun = cnow.overrun; icount.parity = cnow.parity; icount.brk = cnow.brk; icount.buf_overrun = cnow.buf_overrun; if (copy_to_user((void *)arg, &icount, sizeof(icount))) return -EFAULT; return 0; case TIOCSERGWILD: case TIOCSERSWILD: /* "setserial -W" is called in Debian boot */ printk ("TIOCSER?WILD ioctl obsolete, ignored.\n"); return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct async_struct *info = (struct async_struct *)tty->driver_data; unsigned long flags; unsigned int cflag = tty->termios->c_cflag; if ( (cflag == old_termios->c_cflag) && ( RELEVANT_IFLAG(tty->termios->c_iflag) == RELEVANT_IFLAG(old_termios->c_iflag))) return; change_speed(info, old_termios); /* Handle transition to B0 status */ if ((old_termios->c_cflag & CBAUD) && !(cflag & CBAUD)) { info->MCR &= ~(UART_MCR_DTR|UART_MCR_RTS); save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } /* Handle transition away from B0 status */ if (!(old_termios->c_cflag & CBAUD) && (cflag & CBAUD)) { info->MCR |= UART_MCR_DTR; if (!(tty->termios->c_cflag & CRTSCTS) || !test_bit(TTY_THROTTLED, &tty->flags)) { info->MCR |= UART_MCR_RTS; } save_flags(flags); cli(); serial_out(info, UART_MCR, info->MCR); restore_flags(flags); } /* Handle turning off CRTSCTS */ if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) { tty->hw_stopped = 0; rs_start(tty); } #if 0 /* * No need to wake up processes in open wait, since they * sample the CLOCAL flag once, and don't recheck it. * XXX It's not clear whether the current behavior is correct * or not. Hence, this may change..... */ if (!(old_termios->c_cflag & CLOCAL) && (tty->termios->c_cflag & CLOCAL)) wake_up_interruptible(&info->open_wait); #endif } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. First, we * wait for the last remaining data to be sent. Then, we unlink its * async structure from the interrupt chain if necessary, and we free * that IRQ if nothing is left in the chain. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct async_struct * info = (struct async_struct *)tty->driver_data; struct serial_state *state; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; state = info->state; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { DBG_CNT("before DEC-hung"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, state->count); #endif if ((tty->count == 1) && (state->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. state->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "state->count is %d\n", state->count); state->count = 1; } if (--state->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, state->count); state->count = 0; } if (state->count) { DBG_CNT("before DEC-2"); MOD_DEC_USE_COUNT; restore_flags(flags); return; } info->flags |= ASYNC_CLOSING; restore_flags(flags); /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ASYNC_NORMAL_ACTIVE) info->state->normal_termios = *tty->termios; if (info->flags & ASYNC_CALLOUT_ACTIVE) info->state->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ASYNC_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receive line status interrupts, and tell the * interrupt driver to stop checking the data ready bit in the * line status register. */ info->IER &= ~UART_IER_RLSI; info->read_status_mask &= ~UART_LSR_DR; if (info->flags & ASYNC_INITIALIZED) { serial_out(info, UART_IER, info->IER); /* * Before we drop DTR, make sure the UART transmitter * has completely drained; this is especially * important if there is a transmit FIFO! */ rs_wait_until_sent(tty, info->timeout); } shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(info->close_delay); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE| ASYNC_CLOSING); wake_up_interruptible(&info->close_wait); MOD_DEC_USE_COUNT; } /* * rs_wait_until_sent() --- wait until the transmitter is empty */ static void rs_wait_until_sent(struct tty_struct *tty, int timeout) { struct async_struct * info = (struct async_struct *)tty->driver_data; unsigned long orig_jiffies, char_time; int lsr; if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent")) return; if (info->state->type == PORT_UNKNOWN) return; if (info->xmit_fifo_size == 0) return; /* Just in case.... */ orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. * * Note: we have to use pretty tight timings here to satisfy * the NIST-PCTS. */ char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; char_time = char_time / 5; if (char_time == 0) char_time = 1; if (timeout && timeout < char_time) char_time = timeout; /* * If the transmitter hasn't cleared in twice the approximate * amount of time to send the entire FIFO, it probably won't * ever clear. This assumes the UART isn't doing flow * control, which is currently the case. Hence, if it ever * takes longer than info->timeout, this is probably due to a * UART bug of some kind. So, we clamp the timeout parameter at * 2*info->timeout. */ if (!timeout || timeout > 2*info->timeout) timeout = 2*info->timeout; #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("In rs_wait_until_sent(%d) check=%lu...", timeout, char_time); printk("jiff=%lu...", jiffies); #endif while (!((lsr = serial_inp(info, UART_LSR)) & UART_LSR_TEMT)) { #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...", lsr, jiffies); #endif set_current_state(TASK_INTERRUPTIBLE); schedule_timeout(char_time); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } set_current_state(TASK_RUNNING); #ifdef SERIAL_DEBUG_RS_WAIT_UNTIL_SENT printk("lsr = %d (jiff=%lu)...done\n", lsr, jiffies); #endif } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void rs_hangup(struct tty_struct *tty) { struct async_struct * info = (struct async_struct *)tty->driver_data; struct serial_state *state = info->state; if (serial_paranoia_check(info, tty->device, "rs_hangup")) return; state = info->state; rs_flush_buffer(tty); if (info->flags & ASYNC_CLOSING) return; shutdown(info); info->event = 0; state->count = 0; info->flags &= ~(ASYNC_NORMAL_ACTIVE|ASYNC_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct async_struct *info) { DECLARE_WAITQUEUE(wait, current); struct serial_state *state = info->state; int retval; int do_clocal = 0, extra_count = 0; unsigned long flags; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ASYNC_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ASYNC_CALLOUT_ACTIVE) && (info->flags & ASYNC_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ASYNC_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ASYNC_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } if (info->flags & ASYNC_CALLOUT_ACTIVE) { if (state->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, state->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", state->line, state->count); #endif save_flags(flags); cli(); if (!tty_hung_up_p(filp)) { extra_count = 1; state->count--; } restore_flags(flags); info->blocked_open++; while (1) { save_flags(flags); cli(); if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && (tty->termios->c_cflag & CBAUD)) serial_out(info, UART_MCR, serial_inp(info, UART_MCR) | (UART_MCR_DTR | UART_MCR_RTS)); restore_flags(flags); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(info->flags & ASYNC_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ASYNC_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ASYNC_CALLOUT_ACTIVE) && !(info->flags & ASYNC_CLOSING) && (do_clocal || (serial_in(info, UART_MSR) & UART_MSR_DCD))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, state->count); #endif schedule(); } set_current_state(TASK_RUNNING); remove_wait_queue(&info->open_wait, &wait); if (extra_count) state->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, state->count); #endif if (retval) return retval; info->flags |= ASYNC_NORMAL_ACTIVE; return 0; } static int get_async_struct(int line, struct async_struct **ret_info) { struct async_struct *info; struct serial_state *sstate; sstate = rs_table + line; sstate->count++; if (sstate->info) { *ret_info = sstate->info; return 0; } info = kmalloc(sizeof(struct async_struct), GFP_KERNEL); if (!info) { sstate->count--; return -ENOMEM; } memset(info, 0, sizeof(struct async_struct)); init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); init_waitqueue_head(&info->delta_msr_wait); info->magic = SERIAL_MAGIC; info->port = sstate->port; info->flags = sstate->flags; info->io_type = sstate->io_type; info->iomem_base = sstate->iomem_base; info->iomem_reg_shift = sstate->iomem_reg_shift; info->xmit_fifo_size = sstate->xmit_fifo_size; info->line = line; info->tqueue.routine = do_softint; info->tqueue.data = info; info->state = sstate; if (sstate->info) { kfree(info); *ret_info = sstate->info; return 0; } *ret_info = sstate->info = info; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its async structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int rs_open(struct tty_struct *tty, struct file * filp) { struct async_struct *info; int retval, line; unsigned long page; MOD_INC_USE_COUNT; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= NR_PORTS)) { MOD_DEC_USE_COUNT; return -ENODEV; } retval = get_async_struct(line, &info); if (retval) { MOD_DEC_USE_COUNT; return retval; } tty->driver_data = info; info->tty = tty; if (serial_paranoia_check(info, tty->device, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line, info->state->count); #endif #if (LINUX_VERSION_CODE > 0x20100) info->tty->low_latency = (info->flags & ASYNC_LOW_LATENCY) ? 1 : 0; #endif if (!tmp_buf) { page = get_zeroed_page(GFP_KERNEL); if (!page) { return -ENOMEM; } if (tmp_buf) free_page(page); else tmp_buf = (unsigned char *) page; } /* * If the port is the middle of closing, bail out now */ if (tty_hung_up_p(filp) || (info->flags & ASYNC_CLOSING)) { if (info->flags & ASYNC_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * Start up serial port */ retval = startup(info); if (retval) { return retval; } retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->state->count == 1) && (info->flags & ASYNC_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->state->normal_termios; else *tty->termios = info->state->callout_termios; change_speed(info, 0); } #ifdef CONFIG_SERIAL_CONSOLE if (sercons.cflag && sercons.index == line) { tty->termios->c_cflag = sercons.cflag; sercons.cflag = 0; change_speed(info, 0); } #endif info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("rs_open ttys%d successful...", info->line); #endif return 0; } /* * /proc fs routines.... */ static inline int line_info(char *buf, struct serial_state *state) { struct async_struct *info = state->info, scr_info; char stat_buf[30], control, status; int ret; unsigned long flags; ret = sprintf(buf, "%d: uart:%s port:%lX irq:%d", state->line, uart_config[state->type].name, state->port, state->irq); if (!state->port || (state->type == PORT_UNKNOWN)) { ret += sprintf(buf+ret, "\n"); return ret; } /* * Figure out the current RS-232 lines */ if (!info) { info = &scr_info; /* This is just for serial_{in,out} */ info->magic = SERIAL_MAGIC; info->port = state->port; info->flags = state->flags; info->quot = 0; info->tty = 0; } save_flags(flags); cli(); status = serial_in(info, UART_MSR); control = info != &scr_info ? info->MCR : serial_in(info, UART_MCR); restore_flags(flags); stat_buf[0] = 0; stat_buf[1] = 0; if (control & UART_MCR_RTS) strcat(stat_buf, "|RTS"); if (status & UART_MSR_CTS) strcat(stat_buf, "|CTS"); if (control & UART_MCR_DTR) strcat(stat_buf, "|DTR"); if (status & UART_MSR_DSR) strcat(stat_buf, "|DSR"); if (status & UART_MSR_DCD) strcat(stat_buf, "|CD"); if (status & UART_MSR_RI) strcat(stat_buf, "|RI"); if (info->quot) { ret += sprintf(buf+ret, " baud:%d", state->baud_base / info->quot); } ret += sprintf(buf+ret, " tx:%d rx:%d", state->icount.tx, state->icount.rx); if (state->icount.frame) ret += sprintf(buf+ret, " fe:%d", state->icount.frame); if (state->icount.parity) ret += sprintf(buf+ret, " pe:%d", state->icount.parity); if (state->icount.brk) ret += sprintf(buf+ret, " brk:%d", state->icount.brk); if (state->icount.overrun) ret += sprintf(buf+ret, " oe:%d", state->icount.overrun); /* * Last thing is the RS-232 status lines */ ret += sprintf(buf+ret, " %s\n", stat_buf+1); return ret; } int rs_read_proc(char *page, char **start, off_t off, int count, int *eof, void *data) { int i, len = 0, l; off_t begin = 0; len += sprintf(page, "serinfo:1.0 driver:%s%s revision:%s\n", serial_version, LOCAL_VERSTRING, serial_revdate); for (i = 0; i < NR_PORTS && len < 4000; i++) { l = line_info(page + len, &rs_table[i]); len += l; if (len+begin > off+count) goto done; if (len+begin < off) { begin += len; len = 0; } } *eof = 1; done: if (off >= len+begin) return 0; *start = page + (off-begin); return ((count < begin+len-off) ? count : begin+len-off); } /* * --------------------------------------------------------------------- * rs_init() and friends * * rs_init() is called at boot-time to initialize the serial driver. * --------------------------------------------------------------------- */ /* * This routine prints out the appropriate serial driver version * number, and identifies which options were configured into this * driver. */ static char serial_options[] __initdata = #ifdef CONFIG_HUB6 " HUB-6" #define SERIAL_OPT #endif #ifdef CONFIG_SERIAL_MANY_PORTS " MANY_PORTS" #define SERIAL_OPT #endif #ifdef CONFIG_SERIAL_MULTIPORT " MULTIPORT" #define SERIAL_OPT #endif #ifdef CONFIG_SERIAL_SHARE_IRQ " SHARE_IRQ" #define SERIAL_OPT #endif #ifdef CONFIG_SERIAL_DETECT_IRQ " DETECT_IRQ" #define SERIAL_OPT #endif #ifdef ENABLE_SERIAL_PCI " SERIAL_PCI" #define SERIAL_OPT #endif #ifdef ENABLE_SERIAL_PNP " ISAPNP" #define SERIAL_OPT #endif #ifdef SERIAL_OPT " enabled\n"; #else " no serial options enabled\n"; #endif #undef SERIAL_OPT static _INLINE_ void show_serial_version(void) { printk(KERN_INFO "%s version %s%s (%s) with%s", serial_name, serial_version, LOCAL_VERSTRING, serial_revdate, serial_options); } /* * This routine detect the IRQ of a serial port by clearing OUT2 when * no UART interrupt are requested (IER = 0) (*GPL*). This seems to work at * each time, as long as no other device permanently request the IRQ. * If no IRQ is detected, or multiple IRQ appear, this function returns 0. * The variable "state" and the field "state->port" should not be null. */ static unsigned detect_uart_irq (struct serial_state * state) { int irq; unsigned long irqs; unsigned char save_mcr, save_ier; struct async_struct scr_info; /* serial_{in,out} because HUB6 */ #ifdef CONFIG_SERIAL_MANY_PORTS unsigned char save_ICP=0; /* no warning */ unsigned short ICP=0; if (state->flags & ASYNC_FOURPORT) { ICP = (state->port & 0xFE0) | 0x01F; save_ICP = inb_p(ICP); outb_p(0x80, ICP); (void) inb_p(ICP); } #endif scr_info.magic = SERIAL_MAGIC; scr_info.state = state; scr_info.port = state->port; scr_info.flags = state->flags; #ifdef CONFIG_HUB6 scr_info.hub6 = state->hub6; #endif scr_info.io_type = state->io_type; scr_info.iomem_base = state->iomem_base; scr_info.iomem_reg_shift = state->iomem_reg_shift; /* forget possible initially masked and pending IRQ */ probe_irq_off(probe_irq_on()); save_mcr = serial_inp(&scr_info, UART_MCR); save_ier = serial_inp(&scr_info, UART_IER); serial_outp(&scr_info, UART_MCR, UART_MCR_OUT1 | UART_MCR_OUT2); irqs = probe_irq_on(); serial_outp(&scr_info, UART_MCR, 0); udelay (10); if (state->flags & ASYNC_FOURPORT) { serial_outp(&scr_info, UART_MCR, UART_MCR_DTR | UART_MCR_RTS); } else { serial_outp(&scr_info, UART_MCR, UART_MCR_DTR | UART_MCR_RTS | UART_MCR_OUT2); } serial_outp(&scr_info, UART_IER, 0x0f); /* enable all intrs */ (void)serial_inp(&scr_info, UART_LSR); (void)serial_inp(&scr_info, UART_RX); (void)serial_inp(&scr_info, UART_IIR); (void)serial_inp(&scr_info, UART_MSR); serial_outp(&scr_info, UART_TX, 0xFF); udelay (20); irq = probe_irq_off(irqs); serial_outp(&scr_info, UART_MCR, save_mcr); serial_outp(&scr_info, UART_IER, save_ier); #ifdef CONFIG_SERIAL_MANY_PORTS if (state->flags & ASYNC_FOURPORT) outb_p(save_ICP, ICP); #endif return (irq > 0)? irq : 0; } /* * This is a quickie test to see how big the FIFO is. * It doesn't work at all the time, more's the pity. */ static int size_fifo(struct async_struct *info) { unsigned char old_fcr, old_mcr, old_dll, old_dlm; int count; old_fcr = serial_inp(info, UART_FCR); old_mcr = serial_inp(info, UART_MCR); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT); serial_outp(info, UART_MCR, UART_MCR_LOOP); serial_outp(info, UART_LCR, UART_LCR_DLAB); old_dll = serial_inp(info, UART_DLL); old_dlm = serial_inp(info, UART_DLM); serial_outp(info, UART_DLL, 0x01); serial_outp(info, UART_DLM, 0x00); serial_outp(info, UART_LCR, 0x03); for (count = 0; count < 256; count++) serial_outp(info, UART_TX, count); mdelay(20); for (count = 0; (serial_inp(info, UART_LSR) & UART_LSR_DR) && (count < 256); count++) serial_inp(info, UART_RX); serial_outp(info, UART_FCR, old_fcr); serial_outp(info, UART_MCR, old_mcr); serial_outp(info, UART_LCR, UART_LCR_DLAB); serial_outp(info, UART_DLL, old_dll); serial_outp(info, UART_DLM, old_dlm); return count; } /* * This is a helper routine to autodetect StarTech/Exar/Oxsemi UART's. * When this function is called we know it is at least a StarTech * 16650 V2, but it might be one of several StarTech UARTs, or one of * its clones. (We treat the broken original StarTech 16650 V1 as a * 16550, and why not? Startech doesn't seem to even acknowledge its * existence.) * * What evil have men's minds wrought... */ static void autoconfig_startech_uarts(struct async_struct *info, struct serial_state *state, unsigned long flags) { unsigned char scratch, scratch2, scratch3; /* * First we check to see if it's an Oxford Semiconductor UART. * * If we have to do this here because some non-National * Semiconductor clone chips lock up if you try writing to the * LSR register (which serial_icr_read does) */ if (state->type == PORT_16550A) { /* * EFR [4] must be set else this test fails * * This shouldn't be necessary, but Mike Hudson * (Exoray@isys.ca) claims that it's needed for 952 * dual UART's (which are not recommended for new designs). */ serial_out(info, UART_LCR, 0xBF); serial_out(info, UART_EFR, 0x10); serial_out(info, UART_LCR, 0x00); /* Check for Oxford Semiconductor 16C950 */ scratch = serial_icr_read(info, UART_ID1); scratch2 = serial_icr_read(info, UART_ID2); scratch3 = serial_icr_read(info, UART_ID3); if (scratch == 0x16 && scratch2 == 0xC9 && (scratch3 == 0x50 || scratch3 == 0x52 || scratch3 == 0x54)) { state->type = PORT_16C950; state->revision = serial_icr_read(info, UART_REV) | (scratch3 << 8); return; } } /* * We check for a XR16C850 by setting DLL and DLM to 0, and * then reading back DLL and DLM. If DLM reads back 0x10, * then the UART is a XR16C850 and the DLL contains the chip * revision. If DLM reads back 0x14, then the UART is a * XR16C854. * */ serial_outp(info, UART_LCR, UART_LCR_DLAB); serial_outp(info, UART_DLL, 0); serial_outp(info, UART_DLM, 0); state->revision = serial_inp(info, UART_DLL); scratch = serial_inp(info, UART_DLM); serial_outp(info, UART_LCR, 0); if (scratch == 0x10 || scratch == 0x14) { state->type = PORT_16850; return; } /* * We distinguish between the '654 and the '650 by counting * how many bytes are in the FIFO. I'm using this for now, * since that's the technique that was sent to me in the * serial driver update, but I'm not convinced this works. * I've had problems doing this in the past. -TYT */ if (size_fifo(info) == 64) state->type = PORT_16654; else state->type = PORT_16650V2; } /* * This routine is called by rs_init() to initialize a specific serial * port. It determines what type of UART chip this serial port is * using: 8250, 16450, 16550, 16550A. The important question is * whether or not this UART is a 16550A or not, since this will * determine whether or not we can use its FIFO features or not. */ static void autoconfig(struct serial_state * state) { unsigned char status1, status2, scratch, scratch2, scratch3; unsigned char save_lcr, save_mcr; struct async_struct *info, scr_info; unsigned long flags; state->type = PORT_UNKNOWN; #ifdef SERIAL_DEBUG_AUTOCONF printk("Testing ttyS%d (0x%04lx, 0x%04x)...\n", state->line, state->port, (unsigned) state->iomem_base); #endif if (!CONFIGURED_SERIAL_PORT(state)) return; info = &scr_info; /* This is just for serial_{in,out} */ info->magic = SERIAL_MAGIC; info->state = state; info->port = state->port; info->flags = state->flags; #ifdef CONFIG_HUB6 info->hub6 = state->hub6; #endif info->io_type = state->io_type; info->iomem_base = state->iomem_base; info->iomem_reg_shift = state->iomem_reg_shift; save_flags(flags); cli(); if (!(state->flags & ASYNC_BUGGY_UART) && !state->iomem_base) { /* * Do a simple existence test first; if we fail this, * there's no point trying anything else. * * 0x80 is used as a nonsense port to prevent against * false positives due to ISA bus float. The * assumption is that 0x80 is a non-existent port; * which should be safe since include/asm/io.h also * makes this assumption. */ scratch = serial_inp(info, UART_IER); serial_outp(info, UART_IER, 0); #ifdef __i386__ outb(0xff, 0x080); #endif scratch2 = serial_inp(info, UART_IER); serial_outp(info, UART_IER, 0x0F); #ifdef __i386__ outb(0, 0x080); #endif scratch3 = serial_inp(info, UART_IER); serial_outp(info, UART_IER, scratch); if (scratch2 || scratch3 != 0x0F) { #ifdef SERIAL_DEBUG_AUTOCONF printk("serial: ttyS%d: simple autoconfig failed " "(%02x, %02x)\n", state->line, scratch2, scratch3); #endif restore_flags(flags); return; /* We failed; there's nothing here */ } } save_mcr = serial_in(info, UART_MCR); save_lcr = serial_in(info, UART_LCR); /* * Check to see if a UART is really there. Certain broken * internal modems based on the Rockwell chipset fail this * test, because they apparently don't implement the loopback * test mode. So this test is skipped on the COM 1 through * COM 4 ports. This *should* be safe, since no board * manufacturer would be stupid enough to design a board * that conflicts with COM 1-4 --- we hope! */ if (!(state->flags & ASYNC_SKIP_TEST)) { serial_outp(info, UART_MCR, UART_MCR_LOOP | 0x0A); status1 = serial_inp(info, UART_MSR) & 0xF0; serial_outp(info, UART_MCR, save_mcr); if (status1 != 0x90) { #ifdef SERIAL_DEBUG_AUTOCONF printk("serial: ttyS%d: no UART loopback failed\n", state->line); #endif restore_flags(flags); return; } } serial_outp(info, UART_LCR, 0xBF); /* set up for StarTech test */ serial_outp(info, UART_EFR, 0); /* EFR is the same as FCR */ serial_outp(info, UART_LCR, 0); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); scratch = serial_in(info, UART_IIR) >> 6; switch (scratch) { case 0: state->type = PORT_16450; break; case 1: state->type = PORT_UNKNOWN; break; case 2: state->type = PORT_16550; break; case 3: state->type = PORT_16550A; break; } if (state->type == PORT_16550A) { /* Check for Startech UART's */ serial_outp(info, UART_LCR, UART_LCR_DLAB); if (serial_in(info, UART_EFR) == 0) { state->type = PORT_16650; } else { serial_outp(info, UART_LCR, 0xBF); if (serial_in(info, UART_EFR) == 0) autoconfig_startech_uarts(info, state, flags); } } if (state->type == PORT_16550A) { /* Check for TI 16750 */ serial_outp(info, UART_LCR, save_lcr | UART_LCR_DLAB); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE); scratch = serial_in(info, UART_IIR) >> 5; if (scratch == 7) { /* * If this is a 16750, and not a cheap UART * clone, then it should only go into 64 byte * mode if the UART_FCR7_64BYTE bit was set * while UART_LCR_DLAB was latched. */ serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); serial_outp(info, UART_LCR, 0); serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO | UART_FCR7_64BYTE); scratch = serial_in(info, UART_IIR) >> 5; if (scratch == 6) state->type = PORT_16750; } serial_outp(info, UART_FCR, UART_FCR_ENABLE_FIFO); } #if defined(CONFIG_SERIAL_RSA) && defined(MODULE) if (state->type == PORT_16550A) { int i; for (i = 0 ; i < PORT_RSA_MAX ; ++i) { if (!probe_rsa[i] && !force_rsa[i]) break; if (((probe_rsa[i] != state->port) || check_region(state->port + UART_RSA_BASE, 16)) && (force_rsa[i] != state->port)) continue; if (!enable_rsa(info)) continue; state->type = PORT_RSA; state->baud_base = SERIAL_RSA_BAUD_BASE; break; } } #endif serial_outp(info, UART_LCR, save_lcr); if (state->type == PORT_16450) { scratch = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, 0xa5); status1 = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, 0x5a); status2 = serial_in(info, UART_SCR); serial_outp(info, UART_SCR, scratch); if ((status1 != 0xa5) || (status2 != 0x5a)) state->type = PORT_8250; } state->xmit_fifo_size = uart_config[state->type].dfl_xmit_fifo_size; if (state->type == PORT_UNKNOWN) { restore_flags(flags); return; } if (info->port) { #ifdef CONFIG_SERIAL_RSA if (state->type == PORT_RSA) request_region(info->port + UART_RSA_BASE, 16, "serial_rsa(auto)"); else #endif request_region(info->port,8,"serial(auto)"); } /* * Reset the UART. */ #ifdef CONFIG_SERIAL_RSA if (state->type == PORT_RSA) serial_outp(info, UART_RSA_FRR, 0); #endif serial_outp(info, UART_MCR, save_mcr); serial_outp(info, UART_FCR, (UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR | UART_FCR_CLEAR_XMIT)); serial_outp(info, UART_FCR, 0); (void)serial_in(info, UART_RX); serial_outp(info, UART_IER, 0); restore_flags(flags); } int register_serial(struct serial_struct *req); void unregister_serial(int line); #if (LINUX_VERSION_CODE > 0x20100) EXPORT_SYMBOL(register_serial); EXPORT_SYMBOL(unregister_serial); #else static struct symbol_table serial_syms = { #include X(register_serial), X(unregister_serial), #include }; #endif #if defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP) static void __init printk_pnp_dev_id(unsigned short vendor, unsigned short device) { printk("%c%c%c%x%x%x%x", 'A' + ((vendor >> 2) & 0x3f) - 1, 'A' + (((vendor & 3) << 3) | ((vendor >> 13) & 7)) - 1, 'A' + ((vendor >> 8) & 0x1f) - 1, (device >> 4) & 0x0f, device & 0x0f, (device >> 12) & 0x0f, (device >> 8) & 0x0f); } static _INLINE_ int get_pci_port(struct pci_dev *dev, struct pci_board *board, struct serial_struct *req, int idx) { unsigned long port; int base_idx; int max_port; int offset; base_idx = SPCI_FL_GET_BASE(board->flags); if (board->flags & SPCI_FL_BASE_TABLE) base_idx += idx; if (board->flags & SPCI_FL_REGION_SZ_CAP) { max_port = pci_resource_len(dev, base_idx) / 8; if (idx >= max_port) return 1; } offset = board->first_uart_offset; /* Timedia/SUNIX uses a mixture of BARs and offsets */ if(dev->vendor == PCI_VENDOR_ID_TIMEDIA ) /* 0x1409 */ switch(idx) { case 0: base_idx=0; break; case 1: base_idx=0; offset=8; break; case 2: base_idx=1; break; case 3: base_idx=1; offset=8; break; case 4: /* BAR 2*/ case 5: /* BAR 3 */ case 6: /* BAR 4*/ case 7: base_idx=idx-2; /* BAR 5*/ } port = pci_resource_start(dev, base_idx) + offset; if ((board->flags & SPCI_FL_BASE_TABLE) == 0) port += idx * (board->uart_offset ? board->uart_offset : 8); if (IS_PCI_REGION_IOPORT(dev, base_idx)) { req->port = port; if (HIGH_BITS_OFFSET) req->port_high = port >> HIGH_BITS_OFFSET; else req->port_high = 0; return 0; } req->io_type = SERIAL_IO_MEM; req->iomem_base = ioremap(port, board->uart_offset); req->iomem_reg_shift = board->reg_shift; req->port = 0; return 0; } static _INLINE_ int get_pci_irq(struct pci_dev *dev, struct pci_board *board, int idx) { int base_idx; if ((board->flags & SPCI_FL_IRQRESOURCE) == 0) return dev->irq; base_idx = SPCI_FL_GET_IRQBASE(board->flags); if (board->flags & SPCI_FL_IRQ_TABLE) base_idx += idx; return PCI_IRQ_RESOURCE(dev, base_idx); } /* * Common enabler code shared by both PCI and ISAPNP probes */ static void __init start_pci_pnp_board(struct pci_dev *dev, struct pci_board *board) { int k, line; struct serial_struct serial_req; int base_baud; if (PREPARE_FUNC(dev) && (PREPARE_FUNC(dev))(dev) < 0) { printk("serial: PNP device '"); printk_pnp_dev_id(board->vendor, board->device); printk("' prepare failed\n"); return; } if (ACTIVATE_FUNC(dev) && (ACTIVATE_FUNC(dev))(dev) < 0) { printk("serial: PNP device '"); printk_pnp_dev_id(board->vendor, board->device); printk("' activate failed\n"); return; } if (!(board->flags & SPCI_FL_ISPNP) && pci_enable_device(dev)) { printk("serial: PCI device enable failed\n"); return; } /* * Run the initialization function, if any */ if (board->init_fn && ((board->init_fn)(dev, board, 1) != 0)) return; #ifdef MODULE /* * Register the serial board in the array if we need to * shutdown the board on a module unload. */ if (DEACTIVATE_FUNC(dev) || board->init_fn) { if (serial_pci_board_idx >= NR_PCI_BOARDS) return; serial_pci_board[serial_pci_board_idx].board = *board; serial_pci_board[serial_pci_board_idx].dev = dev; serial_pci_board_idx++; } #endif base_baud = board->base_baud; if (!base_baud) base_baud = BASE_BAUD; memset(&serial_req, 0, sizeof(serial_req)); for (k=0; k < board->num_ports; k++) { serial_req.irq = get_pci_irq(dev, board, k); if (get_pci_port(dev, board, &serial_req, k)) break; serial_req.flags = ASYNC_SKIP_TEST | ASYNC_AUTOPROBE; #ifdef SERIAL_DEBUG_PCI printk("Setup PCI/PNP port: port %x, irq %d, type %d\n", serial_req.port, serial_req.irq, serial_req.io_type); #endif line = register_serial(&serial_req); if (line < 0) break; rs_table[line].baud_base = base_baud; } } #endif /* ENABLE_SERIAL_PCI || ENABLE_SERIAL_PNP */ #ifdef ENABLE_SERIAL_PCI /* * Some PCI serial cards using the PLX 9050 PCI interface chip require * that the card interrupt be explicitly enabled or disabled. This * seems to be mainly needed on card using the PLX which also use I/O * mapped memory. */ static int #ifndef MODULE __init #endif pci_plx9050_fn(struct pci_dev *dev, struct pci_board *board, int enable) { u8 data, *p, irq_config; int pci_config; irq_config = 0x41; pci_config = PCI_COMMAND_MEMORY; if (dev->vendor == PCI_VENDOR_ID_PANACOM) irq_config = 0x43; if ((dev->vendor == PCI_VENDOR_ID_PLX) && (dev->device == PCI_VENDOR_ID_PLX_ROMULUS)) { /* * As the megawolf cards have the int pins active * high, and have 2 UART chips, both ints must be * enabled on the 9050. Also, the UARTS are set in * 16450 mode by default, so we have to enable the * 16C950 'enhanced' mode so that we can use the deep * FIFOs */ irq_config = 0x5b; pci_config = PCI_COMMAND_MEMORY | PCI_COMMAND_IO; } pci_read_config_byte(dev, PCI_COMMAND, &data); if (enable) pci_write_config_byte(dev, PCI_COMMAND, data | pci_config); /* enable/disable interrupts */ p = ioremap(pci_resource_start(dev, 0), 0x80); writel(enable ? irq_config : 0x00, (unsigned long)p + 0x4c); iounmap(p); if (!enable) pci_write_config_byte(dev, PCI_COMMAND, data & ~pci_config); return 0; } /* * SIIG serial cards have an PCI interface chip which also controls * the UART clocking frequency. Each UART can be clocked independently * (except cards equiped with 4 UARTs) and initial clocking settings * are stored in the EEPROM chip. It can cause problems because this * version of serial driver doesn't support differently clocked UART's * on single PCI card. To prevent this, initialization functions set * high frequency clocking for all UART's on given card. It is safe (I * hope) because it doesn't touch EEPROM settings to prevent conflicts * with other OSes (like M$ DOS). * * SIIG support added by Andrey Panin , 10/1999 * * There is two family of SIIG serial cards with different PCI * interface chip and different configuration methods: * - 10x cards have control registers in IO and/or memory space; * - 20x cards have control registers in standard PCI configuration space. */ #define PCI_DEVICE_ID_SIIG_1S_10x (PCI_DEVICE_ID_SIIG_1S_10x_550 & 0xfffc) #define PCI_DEVICE_ID_SIIG_2S_10x (PCI_DEVICE_ID_SIIG_2S_10x_550 & 0xfff8) static int #ifndef MODULE __init #endif pci_siig10x_fn(struct pci_dev *dev, struct pci_board *board, int enable) { u16 data, *p; if (!enable) return 0; p = ioremap(pci_resource_start(dev, 0), 0x80); switch (dev->device & 0xfff8) { case PCI_DEVICE_ID_SIIG_1S_10x: /* 1S */ data = 0xffdf; break; case PCI_DEVICE_ID_SIIG_2S_10x: /* 2S, 2S1P */ data = 0xf7ff; break; default: /* 1S1P, 4S */ data = 0xfffb; break; } writew(readw((unsigned long) p + 0x28) & data, (unsigned long) p + 0x28); iounmap(p); return 0; } #define PCI_DEVICE_ID_SIIG_2S_20x (PCI_DEVICE_ID_SIIG_2S_20x_550 & 0xfffc) #define PCI_DEVICE_ID_SIIG_2S1P_20x (PCI_DEVICE_ID_SIIG_2S1P_20x_550 & 0xfffc) static int #ifndef MODULE __init #endif pci_siig20x_fn(struct pci_dev *dev, struct pci_board *board, int enable) { u8 data; if (!enable) return 0; /* Change clock frequency for the first UART. */ pci_read_config_byte(dev, 0x6f, &data); pci_write_config_byte(dev, 0x6f, data & 0xef); /* If this card has 2 UART, we have to do the same with second UART. */ if (((dev->device & 0xfffc) == PCI_DEVICE_ID_SIIG_2S_20x) || ((dev->device & 0xfffc) == PCI_DEVICE_ID_SIIG_2S1P_20x)) { pci_read_config_byte(dev, 0x73, &data); pci_write_config_byte(dev, 0x73, data & 0xef); } return 0; } /* Added for EKF Intel i960 serial boards */ static int #ifndef MODULE __init #endif pci_inteli960ni_fn(struct pci_dev *dev, struct pci_board *board, int enable) { unsigned long oldval; if (!(board->subdevice & 0x1000)) return(-1); if (!enable) /* is there something to deinit? */ return(0); #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG " Subsystem ID %lx (intel 960)\n", (unsigned long) board->subdevice); #endif /* is firmware started? */ pci_read_config_dword(dev, 0x44, (void*) &oldval); if (oldval == 0x00001000L) { /* RESET value */ printk(KERN_DEBUG "Local i960 firmware missing"); return(-1); } return(0); } /* * This is the configuration table for all of the PCI serial boards * which we support. */ static struct pci_board pci_boards[] __initdata = { /* * Vendor ID, Device ID, * Subvendor ID, Subdevice ID, * PCI Flags, Number of Ports, Base (Maximum) Baud Rate, * Offset to get to next UART's registers, * Register shift to use for memory-mapped I/O, * Initialization function, first UART offset */ { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_232, SPCI_FL_BASE1, 8, 1382400 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_232, SPCI_FL_BASE1, 4, 1382400 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH2_232, SPCI_FL_BASE1, 2, 1382400 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_232, SPCI_FL_BASE1, 8, 1382400 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_232, SPCI_FL_BASE1, 4, 1382400 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH2_232, SPCI_FL_BASE1, 2, 1382400 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_485, SPCI_FL_BASE1, 8, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_485_4_4, SPCI_FL_BASE1, 8, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_485, SPCI_FL_BASE1, 4, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_485_2_2, SPCI_FL_BASE1, 4, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH2_485, SPCI_FL_BASE1, 2, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_485, SPCI_FL_BASE1, 8, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH8_485_4_4, SPCI_FL_BASE1, 8, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_485, SPCI_FL_BASE1, 4, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH4_485_2_2, SPCI_FL_BASE1, 4, 921600 }, { PCI_VENDOR_ID_V3, PCI_DEVICE_ID_V3_V960V2, PCI_SUBVENDOR_ID_CONNECT_TECH, PCI_SUBDEVICE_ID_CONNECT_TECH_BH2_485, SPCI_FL_BASE1, 2, 921600 }, { PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_U530, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 1, 115200 }, { PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_UCOMM2, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 115200 }, { PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_UCOMM422, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 115200 }, { PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_UCOMM232, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 115200 }, { PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_COMM4, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 115200 }, { PCI_VENDOR_ID_SEALEVEL, PCI_DEVICE_ID_SEALEVEL_COMM8, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 8, 115200 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_GTEK_SERIAL2, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 115200 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_SPCOM200, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600 }, /* VScom SPCOM800, from sl@s.pl */ { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_SPCOM800, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 8, 921600 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_KEYSPAN, PCI_SUBDEVICE_ID_KEYSPAN_SX2, SPCI_FL_BASE2, 2, 921600, /* IOMEM */ 0x400, 7, pci_plx9050_fn }, { PCI_VENDOR_ID_PANACOM, PCI_DEVICE_ID_PANACOM_QUADMODEM, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 921600, 0x400, 7, pci_plx9050_fn }, { PCI_VENDOR_ID_PANACOM, PCI_DEVICE_ID_PANACOM_DUALMODEM, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, 0x400, 7, pci_plx9050_fn }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_CHASE_PCIFAST, PCI_SUBDEVICE_ID_CHASE_PCIFAST4, SPCI_FL_BASE2, 4, 460800 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_CHASE_PCIFAST, PCI_SUBDEVICE_ID_CHASE_PCIFAST8, SPCI_FL_BASE2, 8, 460800 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_CHASE_PCIFAST, PCI_SUBDEVICE_ID_CHASE_PCIFAST16, SPCI_FL_BASE2, 16, 460800 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_CHASE_PCIFAST, PCI_SUBDEVICE_ID_CHASE_PCIFAST16FMC, SPCI_FL_BASE2, 16, 460800 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_CHASE_PCIRAS, PCI_SUBDEVICE_ID_CHASE_PCIRAS4, SPCI_FL_BASE2, 4, 460800 }, { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9050, PCI_SUBVENDOR_ID_CHASE_PCIRAS, PCI_SUBDEVICE_ID_CHASE_PCIRAS8, SPCI_FL_BASE2, 8, 460800 }, /* Megawolf Romulus PCI Serial Card, from Mike Hudson */ /* (Exoray@isys.ca) */ { PCI_VENDOR_ID_PLX, PCI_VENDOR_ID_PLX_ROMULUS, 0x10b5, 0x106a, SPCI_FL_BASE2, 4, 921600, 0x20, 2, pci_plx9050_fn, 0x03 }, { PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_QSC100, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE1, 4, 115200 }, { PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_DSC100, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE1, 2, 115200 }, { PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_ESC100D, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE1, 8, 115200 }, { PCI_VENDOR_ID_QUATECH, PCI_DEVICE_ID_QUATECH_ESC100M, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE1, 8, 115200 }, { PCI_VENDOR_ID_SPECIALIX, PCI_DEVICE_ID_OXSEMI_16PCI954, PCI_VENDOR_ID_SPECIALIX, PCI_SUBDEVICE_ID_SPECIALIX_SPEED4, SPCI_FL_BASE0 , 4, 921600 }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI954, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 , 4, 115200 }, { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI952, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 , 2, 115200 }, /* This board uses the size of PCI Base region 0 to * signal now many ports are available */ { PCI_VENDOR_ID_OXSEMI, PCI_DEVICE_ID_OXSEMI_16PCI95N, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_REGION_SZ_CAP, 32, 115200 }, /* PCI_VENDOR_ID_TIMEDIA/Sunix, PCI_DEVICE_ID_TIMEDIA_1889, */ { 0x1409, 0x7168, 0x1409, 0x0002, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4036A*/ { 0x1409, 0x7168, 0x1409, 0x4025, SPCI_FL_BASE_TABLE, 1, 921600 }, /*4025A*/ { 0x1409, 0x7168, 0x1409, 0x4027, SPCI_FL_BASE_TABLE, 1, 921600 }, /*4027A*/ { 0x1409, 0x7168, 0x1409, 0x4028, SPCI_FL_BASE_TABLE, 1, 921600 }, /*4028D*/ { 0x1409, 0x7168, 0x1409, 0x4036, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4036D*/ { 0x1409, 0x7168, 0x1409, 0x4037, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4037A*/ { 0x1409, 0x7168, 0x1409, 0x4038, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4038D*/ { 0x1409, 0x7168, 0x1409, 0x4055, SPCI_FL_BASE_TABLE, 4, 921600 }, /*4055A*/ { 0x1409, 0x7168, 0x1409, 0x4056, SPCI_FL_BASE_TABLE, 4, 921600 }, /*4056A*/ { 0x1409, 0x7168, 0x1409, 0x4065, SPCI_FL_BASE_TABLE, 8, 921600 }, /*4065A*/ { 0x1409, 0x7168, 0x1409, 0x4066, SPCI_FL_BASE_TABLE, 8, 921600 }, /*4066A*/ { 0x1409, 0x7168, 0x1409, 0x4078, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4078A*/ { 0x1409, 0x7168, 0x1409, 0x4079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4079H*/ { 0x1409, 0x7168, 0x1409, 0x4085, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4085H*/ { 0x1409, 0x7168, 0x1409, 0x4088, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4088A*/ { 0x1409, 0x7168, 0x1409, 0x4089, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4089A*/ { 0x1409, 0x7168, 0x1409, 0x4095, SPCI_FL_BASE_TABLE, 4, 921600 }, /*4095A*/ { 0x1409, 0x7168, 0x1409, 0x4096, SPCI_FL_BASE_TABLE, 4, 921600 }, /*4096A*/ { 0x1409, 0x7168, 0x1409, 0x5025, SPCI_FL_BASE_TABLE, 1, 921600 }, /*4025D*/ { 0x1409, 0x7168, 0x1409, 0x5027, SPCI_FL_BASE_TABLE, 1, 921600 }, /*4027D*/ { 0x1409, 0x7168, 0x1409, 0x5037, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4037D*/ { 0x1409, 0x7168, 0x1409, 0x5056, SPCI_FL_BASE_TABLE, 4, 921600 }, /*4056R*/ { 0x1409, 0x7168, 0x1409, 0x5065, SPCI_FL_BASE_TABLE, 8, 921600 }, /*4065R*/ { 0x1409, 0x7168, 0x1409, 0x5066, SPCI_FL_BASE_TABLE, 8, 921600 }, /*4066R*/ { 0x1409, 0x7168, 0x1409, 0x5078, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4078U*/ { 0x1409, 0x7168, 0x1409, 0x5079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4079A*/ { 0x1409, 0x7168, 0x1409, 0x5085, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4085U*/ { 0x1409, 0x7168, 0x1409, 0x6079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4079R*/ { 0x1409, 0x7168, 0x1409, 0x7079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4079S*/ { 0x1409, 0x7168, 0x1409, 0x8079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4079D*/ { 0x1409, 0x7168, 0x1409, 0x8137, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8137*/ { 0x1409, 0x7168, 0x1409, 0x8138, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8138*/ { 0x1409, 0x7168, 0x1409, 0x8156, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8156*/ { 0x1409, 0x7168, 0x1409, 0x8157, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8157*/ { 0x1409, 0x7168, 0x1409, 0x8166, SPCI_FL_BASE_TABLE, 8, 921600 }, /*8166*/ { 0x1409, 0x7168, 0x1409, 0x8237, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8237*/ { 0x1409, 0x7168, 0x1409, 0x8238, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8238*/ { 0x1409, 0x7168, 0x1409, 0x8256, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8256*/ { 0x1409, 0x7168, 0x1409, 0x8257, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8257*/ { 0x1409, 0x7168, 0x1409, 0x9056, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9056A*/ { 0x1409, 0x7168, 0x1409, 0x9066, SPCI_FL_BASE_TABLE, 8, 921600 }, /*9066A*/ { 0x1409, 0x7168, 0x1409, 0x9079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4079E*/ { 0x1409, 0x7168, 0x1409, 0x9137, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8137S*/ { 0x1409, 0x7168, 0x1409, 0x9138, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8138S*/ { 0x1409, 0x7168, 0x1409, 0x9156, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8156S*/ { 0x1409, 0x7168, 0x1409, 0x9157, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8157S*/ { 0x1409, 0x7168, 0x1409, 0x9158, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9158*/ { 0x1409, 0x7168, 0x1409, 0x9159, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9159*/ { 0x1409, 0x7168, 0x1409, 0x9166, SPCI_FL_BASE_TABLE, 8, 921600 }, /*8166S*/ { 0x1409, 0x7168, 0x1409, 0x9167, SPCI_FL_BASE_TABLE, 8, 921600 }, /*9167*/ { 0x1409, 0x7168, 0x1409, 0x9168, SPCI_FL_BASE_TABLE, 8, 921600 }, /*9168*/ { 0x1409, 0x7168, 0x1409, 0x9237, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8237S*/ { 0x1409, 0x7168, 0x1409, 0x9238, SPCI_FL_BASE_TABLE, 2, 921600 }, /*8238S*/ { 0x1409, 0x7168, 0x1409, 0x9256, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8256S*/ { 0x1409, 0x7168, 0x1409, 0x9257, SPCI_FL_BASE_TABLE, 4, 921600 }, /*8257S*/ { 0x1409, 0x7168, 0x1409, 0xA056, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9056B*/ { 0x1409, 0x7168, 0x1409, 0xA066, SPCI_FL_BASE_TABLE, 8, 921600 }, /*9066B*/ { 0x1409, 0x7168, 0x1409, 0xA079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*4079F*/ { 0x1409, 0x7168, 0x1409, 0xA157, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9157*/ { 0x1409, 0x7168, 0x1409, 0xA158, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9158S*/ { 0x1409, 0x7168, 0x1409, 0xA159, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9159S*/ { 0x1409, 0x7168, 0x1409, 0xA167, SPCI_FL_BASE_TABLE, 8, 921600 }, /*9167S*/ { 0x1409, 0x7168, 0x1409, 0xA168, SPCI_FL_BASE_TABLE, 8, 921600 }, /*9168S*/ { 0x1409, 0x7168, 0x1409, 0xB056, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9056C*/ { 0x1409, 0x7168, 0x1409, 0xB079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*9079A*/ { 0x1409, 0x7168, 0x1409, 0xB157, SPCI_FL_BASE_TABLE, 4, 921600 }, /*9157S*/ { 0x1409, 0x7168, 0x1409, 0xC079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*9079B*/ { 0x1409, 0x7168, 0x1409, 0xD079, SPCI_FL_BASE_TABLE, 2, 921600 }, /*9079C*/ { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_DSERIAL, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 115200 }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUATRO_A, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 115200 }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUATRO_B, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 115200 }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_PORT_PLUS, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 460800 }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUAD_A, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 460800 }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_QUAD_B, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 460800 }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_SSERIAL, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 1, 115200 }, { PCI_VENDOR_ID_LAVA, PCI_DEVICE_ID_LAVA_PORT_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 1, 460800 }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_10x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 1, 460800, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_10x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 1, 460800, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_10x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 1, 460800, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S1P_10x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 1, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S1P_10x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 1, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S1P_10x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2, 1, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_10x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_10x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_10x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S1P_10x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S1P_10x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S1P_10x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_10x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_10x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_10x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 4, 921600, 0, 0, pci_siig10x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_20x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_20x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S_20x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S1P_20x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S1P_20x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_1S1P_20x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2P1S_20x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2P1S_20x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2P1S_20x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_20x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_20x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S_20x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S1P_20x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S1P_20x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_2S1P_20x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 2, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_20x_550, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 4, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_20x_650, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 4, 921600, 0, 0, pci_siig20x_fn }, { PCI_VENDOR_ID_SIIG, PCI_DEVICE_ID_SIIG_4S_20x_850, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0 | SPCI_FL_BASE_TABLE, 4, 921600, 0, 0, pci_siig20x_fn }, /* Computone devices submitted by Doug McNash dmcnash@computone.com */ { PCI_VENDOR_ID_COMPUTONE, PCI_DEVICE_ID_COMPUTONE_PG, PCI_SUBVENDOR_ID_COMPUTONE, PCI_SUBDEVICE_ID_COMPUTONE_PG4, SPCI_FL_BASE0, 4, 921600, /* IOMEM */ 0x40, 2, NULL, 0x200 }, { PCI_VENDOR_ID_COMPUTONE, PCI_DEVICE_ID_COMPUTONE_PG, PCI_SUBVENDOR_ID_COMPUTONE, PCI_SUBDEVICE_ID_COMPUTONE_PG8, SPCI_FL_BASE0, 8, 921600, /* IOMEM */ 0x40, 2, NULL, 0x200 }, { PCI_VENDOR_ID_COMPUTONE, PCI_DEVICE_ID_COMPUTONE_PG, PCI_SUBVENDOR_ID_COMPUTONE, PCI_SUBDEVICE_ID_COMPUTONE_PG6, SPCI_FL_BASE0, 6, 921600, /* IOMEM */ 0x40, 2, NULL, 0x200 }, /* Digitan DS560-558, from jimd@esoft.com */ { PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_ATT_VENUS_MODEM, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE1, 1, 115200 }, /* 3Com US Robotics 56k Voice Internal PCI model 5610 */ { PCI_VENDOR_ID_USR, 0x1008, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 115200 }, /* Titan Electronic cards */ { PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_100, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 921600 }, { PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_200, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 2, 921600 }, { PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_400, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 4, 921600 }, { PCI_VENDOR_ID_TITAN, PCI_DEVICE_ID_TITAN_800B, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 4, 921600 }, /* EKF addition for i960 Boards form EKF with serial port */ { PCI_VENDOR_ID_INTEL, 0x1960, 0xE4BF, PCI_ANY_ID, SPCI_FL_BASE0, 32, 921600, /* max 256 ports */ 8<<2, 2, pci_inteli960ni_fn, 0x10000}, /* RAStel 2 port modem, gerg@moreton.com.au */ { PCI_VENDOR_ID_MORETON, PCI_DEVICE_ID_RASTEL_2PORT, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE2 | SPCI_FL_BASE_TABLE, 2, 115200 }, /* * Untested PCI modems, sent in from various folks... */ /* Elsa Model 56K PCI Modem, from Andreas Rath */ { PCI_VENDOR_ID_ROCKWELL, 0x1004, 0x1048, 0x1500, SPCI_FL_BASE1, 1, 115200 }, #ifdef CONFIG_DDB5074 /* * NEC Vrc-5074 (Nile 4) builtin UART. * Conditionally compiled in since this is a motherboard device. */ { PCI_VENDOR_ID_NEC, PCI_DEVICE_ID_NEC_NILE4, PCI_ANY_ID, PCI_ANY_ID, SPCI_FL_BASE0, 1, 520833, 64, 3, NULL, 0x300 }, #endif /* Generic serial board */ { 0, 0, 0, 0, SPCI_FL_BASE0, 1, 115200 }, }; /* * Given a complete unknown PCI device, try to use some heuristics to * guess what the configuration might be, based on the pitiful PCI * serial specs. Returns 0 on success, 1 on failure. */ static int _INLINE_ serial_pci_guess_board(struct pci_dev *dev, struct pci_board *board) { int num_iomem = 0, num_port = 0, first_port = -1; int i; /* * If it is not a communications device or the programming * interface is greater than 6, give up. * * (Should we try to make guesses for multiport serial devices * later?) */ if ((dev->class >> 8) != PCI_CLASS_COMMUNICATION_SERIAL || (dev->class & 0xff) > 6) return 1; for (i=0; i < 6; i++) { if (IS_PCI_REGION_IOPORT(dev, i)) { num_port = 0; if (first_port == -1) first_port = i; } else { num_iomem++; } } /* * If there is 1 or 0 iomem regions, and exactly one port, use * it. */ if (num_iomem <= 1 && num_port == 1) { board->flags = first_port; return 0; } return 1; } /* * Query PCI space for known serial boards * If found, add them to the PCI device space in rs_table[] * * Accept a maximum of eight boards * */ static void __init probe_serial_pci(void) { struct pci_dev *dev = NULL; struct pci_board *board; #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Entered probe_serial_pci()\n"); #endif pci_for_each_dev(dev) { for (board = pci_boards; board->vendor; board++) { if (board->vendor != (unsigned short) PCI_ANY_ID && dev->vendor != board->vendor) continue; if (board->device != (unsigned short) PCI_ANY_ID && dev->device != board->device) continue; if (board->subvendor != (unsigned short) PCI_ANY_ID && pci_get_subvendor(dev) != board->subvendor) continue; if (board->subdevice != (unsigned short) PCI_ANY_ID && pci_get_subdevice(dev) != board->subdevice) continue; break; } if (board->vendor == 0 && serial_pci_guess_board(dev, board)) continue; start_pci_pnp_board(dev, board); } #ifdef SERIAL_DEBUG_PCI printk(KERN_DEBUG "Leaving probe_serial_pci() (probe finished)\n"); #endif return; } #endif /* ENABLE_SERIAL_PCI */ #ifdef ENABLE_SERIAL_PNP struct pnp_board { unsigned short vendor; unsigned short device; }; static struct pnp_board pnp_devices[] __initdata = { /* Archtek America Corp. */ /* Archtek SmartLink Modem 3334BT Plug & Play */ { ISAPNP_VENDOR('A', 'A', 'C'), ISAPNP_DEVICE(0x000F) }, /* Anchor Datacomm BV */ /* SXPro 144 External Data Fax Modem Plug & Play */ { ISAPNP_VENDOR('A', 'D', 'C'), ISAPNP_DEVICE(0x0001) }, /* SXPro 288 External Data Fax Modem Plug & Play */ { ISAPNP_VENDOR('A', 'D', 'C'), ISAPNP_DEVICE(0x0002) }, /* Rockwell 56K ACF II Fax+Data+Voice Modem */ { ISAPNP_VENDOR('A', 'K', 'Y'), ISAPNP_DEVICE(0x1021) }, /* AZT3005 PnP SOUND DEVICE */ { ISAPNP_VENDOR('A', 'Z', 'T'), ISAPNP_DEVICE(0x4001) }, /* Best Data Products Inc. Smart One 336F PnP Modem */ { ISAPNP_VENDOR('B', 'D', 'P'), ISAPNP_DEVICE(0x3336) }, /* Boca Research */ /* Boca Complete Ofc Communicator 14.4 Data-FAX */ { ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x0A49) }, /* Boca Research 33,600 ACF Modem */ { ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x1400) }, /* Boca 33.6 Kbps Internal FD34FSVD */ { ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x3400) }, /* Boca 33.6 Kbps Internal FD34FSVD */ { ISAPNP_VENDOR('B', 'R', 'I'), ISAPNP_DEVICE(0x0A49) }, /* Best Data Products Inc. Smart One 336F PnP Modem */ { ISAPNP_VENDOR('B', 'D', 'P'), ISAPNP_DEVICE(0x3336) }, /* Computer Peripherals Inc */ /* EuroViVa CommCenter-33.6 SP PnP */ { ISAPNP_VENDOR('C', 'P', 'I'), ISAPNP_DEVICE(0x4050) }, /* Creative Labs */ /* Creative Labs Phone Blaster 28.8 DSVD PnP Voice */ { ISAPNP_VENDOR('C', 'T', 'L'), ISAPNP_DEVICE(0x3001) }, /* Creative Labs Modem Blaster 28.8 DSVD PnP Voice */ { ISAPNP_VENDOR('C', 'T', 'L'), ISAPNP_DEVICE(0x3011) }, /* Creative */ /* Creative Modem Blaster Flash56 DI5601-1 */ { ISAPNP_VENDOR('D', 'M', 'B'), ISAPNP_DEVICE(0x1032) }, /* Creative Modem Blaster V.90 DI5660 */ { ISAPNP_VENDOR('D', 'M', 'B'), ISAPNP_DEVICE(0x2001) }, /* FUJITSU */ /* Fujitsu 33600 PnP-I2 R Plug & Play */ { ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0202) }, /* Fujitsu FMV-FX431 Plug & Play */ { ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0205) }, /* Fujitsu 33600 PnP-I4 R Plug & Play */ { ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0206) }, /* Fujitsu Fax Voice 33600 PNP-I5 R Plug & Play */ { ISAPNP_VENDOR('F', 'U', 'J'), ISAPNP_DEVICE(0x0209) }, /* Archtek America Corp. */ /* Archtek SmartLink Modem 3334BT Plug & Play */ { ISAPNP_VENDOR('G', 'V', 'C'), ISAPNP_DEVICE(0x000F) }, /* Hayes */ /* Hayes Optima 288 V.34-V.FC + FAX + Voice Plug & Play */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x0001) }, /* Hayes Optima 336 V.34 + FAX + Voice PnP */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x000C) }, /* Hayes Optima 336B V.34 + FAX + Voice PnP */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x000D) }, /* Hayes Accura 56K Ext Fax Modem PnP */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x5670) }, /* Hayes Accura 56K Ext Fax Modem PnP */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x5674) }, /* Hayes Accura 56K Fax Modem PnP */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0x5675) }, /* Hayes 288, V.34 + FAX */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0xF000) }, /* Hayes Optima 288 V.34 + FAX + Voice, Plug & Play */ { ISAPNP_VENDOR('H', 'A', 'Y'), ISAPNP_DEVICE(0xF001) }, /* IBM */ /* IBM Thinkpad 701 Internal Modem Voice */ { ISAPNP_VENDOR('I', 'B', 'M'), ISAPNP_DEVICE(0x0033) }, /* Intertex */ /* Intertex 28k8 33k6 Voice EXT PnP */ { ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xC801) }, /* Intertex 33k6 56k Voice EXT PnP */ { ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xC901) }, /* Intertex 28k8 33k6 Voice SP EXT PnP */ { ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xD801) }, /* Intertex 33k6 56k Voice SP EXT PnP */ { ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xD901) }, /* Intertex 28k8 33k6 Voice SP INT PnP */ { ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xF401) }, /* Intertex 28k8 33k6 Voice SP EXT PnP */ { ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xF801) }, /* Intertex 33k6 56k Voice SP EXT PnP */ { ISAPNP_VENDOR('I', 'X', 'D'), ISAPNP_DEVICE(0xF901) }, /* Kortex International */ /* KORTEX 28800 Externe PnP */ { ISAPNP_VENDOR('K', 'O', 'R'), ISAPNP_DEVICE(0x4522) }, /* KXPro 33.6 Vocal ASVD PnP */ { ISAPNP_VENDOR('K', 'O', 'R'), ISAPNP_DEVICE(0xF661) }, /* Lasat */ /* LASAT Internet 33600 PnP */ { ISAPNP_VENDOR('L', 'A', 'S'), ISAPNP_DEVICE(0x4040) }, /* Lasat Safire 560 PnP */ { ISAPNP_VENDOR('L', 'A', 'S'), ISAPNP_DEVICE(0x4540) }, /* Lasat Safire 336 PnP */ { ISAPNP_VENDOR('L', 'A', 'S'), ISAPNP_DEVICE(0x5440) }, /* Microcom, Inc. */ /* Microcom TravelPorte FAST V.34 Plug & Play */ { ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x281) }, /* Microcom DeskPorte V.34 FAST or FAST+ Plug & Play */ { ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0336) }, /* Microcom DeskPorte FAST EP 28.8 Plug & Play */ { ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0339) }, /* Microcom DeskPorte 28.8P Plug & Play */ { ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0342) }, /* Microcom DeskPorte FAST ES 28.8 Plug & Play */ { ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0500) }, /* Microcom DeskPorte FAST ES 28.8 Plug & Play */ { ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0501) }, /* Microcom DeskPorte 28.8S Internal Plug & Play */ { ISAPNP_VENDOR('M', 'N', 'P'), ISAPNP_DEVICE(0x0502) }, /* Motorola */ /* Motorola BitSURFR Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1105) }, /* Motorola TA210 Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1111) }, /* Motorola HMTA 200 (ISDN) Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1114) }, /* Motorola BitSURFR Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1115) }, /* Motorola Lifestyle 28.8 Internal */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1190) }, /* Motorola V.3400 Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1501) }, /* Motorola Lifestyle 28.8 V.34 Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1502) }, /* Motorola Power 28.8 V.34 Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1505) }, /* Motorola ModemSURFR External 28.8 Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1509) }, /* Motorola Premier 33.6 Desktop Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x150A) }, /* Motorola VoiceSURFR 56K External PnP */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x150F) }, /* Motorola ModemSURFR 56K External PnP */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1510) }, /* Motorola ModemSURFR 56K Internal PnP */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1550) }, /* Motorola ModemSURFR Internal 28.8 Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1560) }, /* Motorola Premier 33.6 Internal Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x1580) }, /* Motorola OnlineSURFR 28.8 Internal Plug & Play */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x15B0) }, /* Motorola VoiceSURFR 56K Internal PnP */ { ISAPNP_VENDOR('M', 'O', 'T'), ISAPNP_DEVICE(0x15F0) }, /* Com 1 */ /* Deskline K56 Phone System PnP */ { ISAPNP_VENDOR('M', 'V', 'X'), ISAPNP_DEVICE(0x00A1) }, /* PC Rider K56 Phone System PnP */ { ISAPNP_VENDOR('M', 'V', 'X'), ISAPNP_DEVICE(0x00F2) }, /* Pace 56 Voice Internal Plug & Play Modem */ { ISAPNP_VENDOR('P', 'M', 'C'), ISAPNP_DEVICE(0x2430) }, /* Generic */ /* Generic standard PC COM port */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0x0500) }, /* Generic 16550A-compatible COM port */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0x0501) }, /* Compaq 14400 Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC000) }, /* Compaq 2400/9600 Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC001) }, /* Dial-Up Networking Serial Cable between 2 PCs */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC031) }, /* Dial-Up Networking Parallel Cable between 2 PCs */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC032) }, /* Standard 9600 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC100) }, /* Standard 14400 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC101) }, /* Standard 28800 bps Modem*/ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC102) }, /* Standard Modem*/ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC103) }, /* Standard 9600 bps Modem*/ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC104) }, /* Standard 14400 bps Modem*/ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC105) }, /* Standard 28800 bps Modem*/ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC106) }, /* Standard Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC107) }, /* Standard 9600 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC108) }, /* Standard 14400 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC109) }, /* Standard 28800 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10A) }, /* Standard Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10B) }, /* Standard 9600 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10C) }, /* Standard 14400 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10D) }, /* Standard 28800 bps Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10E) }, /* Standard Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0xC10F) }, /* Standard PCMCIA Card Modem */ { ISAPNP_VENDOR('P', 'N', 'P'), ISAPNP_DEVICE(0x2000) }, /* Rockwell */ /* Modular Technology */ /* Rockwell 33.6 DPF Internal PnP */ /* Modular Technology 33.6 Internal PnP */ { ISAPNP_VENDOR('R', 'O', 'K'), ISAPNP_DEVICE(0x0030) }, /* Kortex International */ /* KORTEX 14400 Externe PnP */ { ISAPNP_VENDOR('R', 'O', 'K'), ISAPNP_DEVICE(0x0100) }, /* Viking Components, Inc */ /* Viking 28.8 INTERNAL Fax+Data+Voice PnP */ { ISAPNP_VENDOR('R', 'O', 'K'), ISAPNP_DEVICE(0x4920) }, /* Rockwell */ /* British Telecom */ /* Modular Technology */ /* Rockwell 33.6 DPF External PnP */ /* BT Prologue 33.6 External PnP */ /* Modular Technology 33.6 External PnP */ { ISAPNP_VENDOR('R', 'S', 'S'), ISAPNP_DEVICE(0x00A0) }, /* Viking 56K FAX INT */ { ISAPNP_VENDOR('R', 'S', 'S'), ISAPNP_DEVICE(0x0262) }, /* SupraExpress 28.8 Data/Fax PnP modem */ { ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1310) }, /* SupraExpress 33.6 Data/Fax PnP modem */ { ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1421) }, /* SupraExpress 33.6 Data/Fax PnP modem */ { ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1590) }, /* SupraExpress 33.6 Data/Fax PnP modem */ { ISAPNP_VENDOR('S', 'U', 'P'), ISAPNP_DEVICE(0x1760) }, /* Phoebe Micro */ /* Phoebe Micro 33.6 Data Fax 1433VQH Plug & Play */ { ISAPNP_VENDOR('T', 'E', 'X'), ISAPNP_DEVICE(0x0011) }, /* Archtek America Corp. */ /* Archtek SmartLink Modem 3334BT Plug & Play */ { ISAPNP_VENDOR('U', 'A', 'C'), ISAPNP_DEVICE(0x000F) }, /* 3Com Corp. */ /* Gateway Telepath IIvi 33.6 */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0000) }, /* Sportster Vi 14.4 PnP FAX Voicemail */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0004) }, /* U.S. Robotics 33.6K Voice INT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0006) }, /* U.S. Robotics 33.6K Voice EXT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x0007) }, /* U.S. Robotics 33.6K Voice INT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x2002) }, /* U.S. Robotics 56K Voice INT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x2070) }, /* U.S. Robotics 56K Voice EXT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x2080) }, /* U.S. Robotics 56K FAX INT */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3031) }, /* U.S. Robotics 56K Voice INT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3070) }, /* U.S. Robotics 56K Voice EXT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3080) }, /* U.S. Robotics 56K Voice INT PnP */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x3090) }, /* U.S. Robotics 56K Message */ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9100) }, /* U.S. Robotics 56K FAX EXT PnP*/ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9160) }, /* U.S. Robotics 56K FAX INT PnP*/ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9170) }, /* U.S. Robotics 56K Voice EXT PnP*/ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9180) }, /* U.S. Robotics 56K Voice INT PnP*/ { ISAPNP_VENDOR('U', 'S', 'R'), ISAPNP_DEVICE(0x9190) }, { 0, } }; static void inline avoid_irq_share(struct pci_dev *dev) { int i, map = 0x1FF8; struct serial_state *state = rs_table; struct isapnp_irq *irq; struct isapnp_resources *res = dev->sysdata; for (i = 0; i < NR_PORTS; i++) { if (state->type != PORT_UNKNOWN) clear_bit(state->irq, &map); state++; } for ( ; res; res = res->alt) for(irq = res->irq; irq; irq = irq->next) irq->map = map; } static char *modem_names[] __initdata = { "MODEM", "Modem", "modem", "FAX", "Fax", "fax", "56K", "56k", "K56", "33.6", "28.8", "14.4", "33,600", "28,800", "14,400", "33.600", "28.800", "14.400", "33600", "28800", "14400", "V.90", "V.34", "V.32", 0 }; static int __init check_name(char *name) { char **tmp = modem_names; while (*tmp) { if (strstr(name, *tmp)) return 1; tmp++; } return 0; } static int inline check_compatible_id(struct pci_dev *dev) { int i; for (i = 0; i < DEVICE_COUNT_COMPATIBLE; i++) if ((dev->vendor_compatible[i] == ISAPNP_VENDOR('P', 'N', 'P')) && (swab16(dev->device_compatible[i]) >= 0xc000) && (swab16(dev->device_compatible[i]) <= 0xdfff)) return 0; return 1; } /* * Given a complete unknown ISA PnP device, try to use some heuristics to * detect modems. Currently use such heuristic set: * - dev->name or dev->bus->name must contain "modem" substring; * - device must have only one IO region (8 byte long) with base adress * 0x2e8, 0x3e8, 0x2f8 or 0x3f8. * * Such detection looks very ugly, but can detect at least some of numerous * ISA PnP modems, alternatively we must hardcode all modems in pnp_devices[] * table. */ static int _INLINE_ serial_pnp_guess_board(struct pci_dev *dev, struct pci_board *board) { struct isapnp_resources *res = (struct isapnp_resources *)dev->sysdata; struct isapnp_resources *resa; if (!(check_name(dev->name) || check_name(dev->bus->name)) && !(check_compatible_id(dev))) return 1; if (!res || res->next) return 1; for (resa = res->alt; resa; resa = resa->alt) { struct isapnp_port *port; for (port = res->port; port; port = port->next) if ((port->size == 8) && ((port->min == 0x2f8) || (port->min == 0x3f8) || (port->min == 0x2e8) || (port->min == 0x3e8))) return 0; } return 1; } static void __init probe_serial_pnp(void) { struct pci_dev *dev = NULL; struct pnp_board *pnp_board; struct pci_board board; #ifdef SERIAL_DEBUG_PNP printk("Entered probe_serial_pnp()\n"); #endif if (!isapnp_present()) { #ifdef SERIAL_DEBUG_PNP printk("Leaving probe_serial_pnp() (no isapnp)\n"); #endif return; } isapnp_for_each_dev(dev) { if (dev->active) continue; memset(&board, 0, sizeof(board)); board.flags = SPCI_FL_BASE0 | SPCI_FL_PNPDEFAULT; board.num_ports = 1; board.base_baud = 115200; for (pnp_board = pnp_devices; pnp_board->vendor; pnp_board++) if ((dev->vendor == pnp_board->vendor) && (dev->device == pnp_board->device)) break; if (pnp_board->vendor) { board.vendor = pnp_board->vendor; board.device = pnp_board->device; /* Special case that's more efficient to hardcode */ if ((board.vendor == ISAPNP_VENDOR('A', 'K', 'Y') && board.device == ISAPNP_DEVICE(0x1021))) board.flags |= SPCI_FL_NO_SHIRQ; } else { if (serial_pnp_guess_board(dev, &board)) continue; } if (board.flags & SPCI_FL_NO_SHIRQ) avoid_irq_share(dev); start_pci_pnp_board(dev, &board); } #ifdef SERIAL_DEBUG_PNP printk("Leaving probe_serial_pnp() (probe finished)\n"); #endif return; } #endif /* ENABLE_SERIAL_PNP */ /* * The serial driver boot-time initialization code! */ static int __init rs_init(void) { int i; struct serial_state * state; if (serial_timer.function) { printk("RS_TIMER already set, another serial driver " "already loaded?\n"); #ifdef MODULE printk("Can't load serial driver module over built-in " "serial driver\n"); #endif return -EBUSY; } init_bh(SERIAL_BH, do_serial_bh); init_timer(&serial_timer); serial_timer.function = rs_timer; mod_timer(&serial_timer, jiffies + RS_STROBE_TIME); for (i = 0; i < NR_IRQS; i++) { IRQ_ports[i] = 0; IRQ_timeout[i] = 0; #ifdef CONFIG_SERIAL_MULTIPORT memset(&rs_multiport[i], 0, sizeof(struct rs_multiport_struct)); #endif } #ifdef CONFIG_SERIAL_CONSOLE /* * The interrupt of the serial console port * can't be shared. */ if (sercons.flags & CON_CONSDEV) { for(i = 0; i < NR_PORTS; i++) if (i != sercons.index && rs_table[i].irq == rs_table[sercons.index].irq) rs_table[i].irq = 0; } #endif show_serial_version(); /* Initialize the tty_driver structure */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; #if (LINUX_VERSION_CODE > 0x20100) serial_driver.driver_name = "serial"; #endif #if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS)) serial_driver.name = "tts/%d"; #else serial_driver.name = "ttyS"; #endif serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64 + SERIAL_DEV_OFFSET; serial_driver.num = NR_PORTS; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_NO_DEVFS; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = rs_open; serial_driver.close = rs_close; serial_driver.write = rs_write; serial_driver.put_char = rs_put_char; serial_driver.flush_chars = rs_flush_chars; serial_driver.write_room = rs_write_room; serial_driver.chars_in_buffer = rs_chars_in_buffer; serial_driver.flush_buffer = rs_flush_buffer; serial_driver.ioctl = rs_ioctl; serial_driver.throttle = rs_throttle; serial_driver.unthrottle = rs_unthrottle; serial_driver.set_termios = rs_set_termios; serial_driver.stop = rs_stop; serial_driver.start = rs_start; serial_driver.hangup = rs_hangup; #if (LINUX_VERSION_CODE >= 131394) /* Linux 2.1.66 */ serial_driver.break_ctl = rs_break; #endif #if (LINUX_VERSION_CODE >= 131343) serial_driver.send_xchar = rs_send_xchar; serial_driver.wait_until_sent = rs_wait_until_sent; serial_driver.read_proc = rs_read_proc; #endif /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; #if (LINUX_VERSION_CODE > 0x2032D && defined(CONFIG_DEVFS_FS)) callout_driver.name = "cua/%d"; #else callout_driver.name = "cua"; #endif callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; #if (LINUX_VERSION_CODE >= 131343) callout_driver.read_proc = 0; callout_driver.proc_entry = 0; #endif if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver\n"); for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) { state->magic = SSTATE_MAGIC; state->line = i; state->type = PORT_UNKNOWN; state->custom_divisor = 0; state->close_delay = 5*HZ/10; state->closing_wait = 30*HZ; state->callout_termios = callout_driver.init_termios; state->normal_termios = serial_driver.init_termios; state->icount.cts = state->icount.dsr = state->icount.rng = state->icount.dcd = 0; state->icount.rx = state->icount.tx = 0; state->icount.frame = state->icount.parity = 0; state->icount.overrun = state->icount.brk = 0; state->irq = irq_cannonicalize(state->irq); if (state->hub6) state->io_type = SERIAL_IO_HUB6; if (state->port && check_region(state->port,8)) continue; if (state->flags & ASYNC_BOOT_AUTOCONF) autoconfig(state); } for (i = 0, state = rs_table; i < NR_PORTS; i++,state++) { if (state->type == PORT_UNKNOWN) continue; if ( (state->flags & ASYNC_BOOT_AUTOCONF) && (state->flags & ASYNC_AUTO_IRQ) && (state->port != 0)) state->irq = detect_uart_irq(state); printk(KERN_INFO "ttyS%02d%s at 0x%04lx (irq = %d) is a %s\n", state->line + SERIAL_DEV_OFFSET, (state->flags & ASYNC_FOURPORT) ? " FourPort" : "", state->port, state->irq, uart_config[state->type].name); tty_register_devfs(&serial_driver, 0, serial_driver.minor_start + state->line); tty_register_devfs(&callout_driver, 0, callout_driver.minor_start + state->line); } #ifdef ENABLE_SERIAL_PCI probe_serial_pci(); #endif #ifdef ENABLE_SERIAL_PNP probe_serial_pnp(); #endif return 0; } /* * register_serial and unregister_serial allows for 16x50 serial ports to be * configured at run-time, to support PCMCIA modems. */ /** * register_serial - configure a 16x50 serial port at runtime * @req: request structure * * Configure the serial port specified by the request. If the * port exists and is in use an error is returned. If the port * is not currently in the table it is added. * * The port is then probed and if neccessary the IRQ is autodetected * If this fails an error is returned. * * On success the port is ready to use and the line number is returned. */ int register_serial(struct serial_struct *req) { int i; unsigned long flags; struct serial_state *state; struct async_struct *info; unsigned long port; port = req->port; if (HIGH_BITS_OFFSET) port += (unsigned long) req->port_high << HIGH_BITS_OFFSET; save_flags(flags); cli(); for (i = 0; i < NR_PORTS; i++) { if ((rs_table[i].port == port) && (rs_table[i].iomem_base == req->iomem_base)) break; } if (i == NR_PORTS) { for (i = 4; i < NR_PORTS; i++) if ((rs_table[i].type == PORT_UNKNOWN) && (rs_table[i].count == 0)) break; } if (i == NR_PORTS) { for (i = 0; i < NR_PORTS; i++) if ((rs_table[i].type == PORT_UNKNOWN) && (rs_table[i].count == 0)) break; } if (i == NR_PORTS) { restore_flags(flags); return -1; } state = &rs_table[i]; if (rs_table[i].count) { restore_flags(flags); printk("Couldn't configure serial #%d (port=%ld,irq=%d): " "device already open\n", i, port, req->irq); return -1; } state->irq = req->irq; state->port = port; state->flags = req->flags; state->io_type = req->io_type; state->iomem_base = req->iomem_base; state->iomem_reg_shift = req->iomem_reg_shift; if (req->baud_base) state->baud_base = req->baud_base; if ((info = state->info) != NULL) { info->port = port; info->flags = req->flags; info->io_type = req->io_type; info->iomem_base = req->iomem_base; info->iomem_reg_shift = req->iomem_reg_shift; } autoconfig(state); if (state->type == PORT_UNKNOWN) { restore_flags(flags); printk("register_serial(): autoconfig failed\n"); return -1; } restore_flags(flags); if ((state->flags & ASYNC_AUTO_IRQ) && CONFIGURED_SERIAL_PORT(state)) state->irq = detect_uart_irq(state); printk(KERN_INFO "ttyS%02d at %s 0x%04lx (irq = %d) is a %s\n", state->line + SERIAL_DEV_OFFSET, state->iomem_base ? "iomem" : "port", state->iomem_base ? (unsigned long)state->iomem_base : state->port, state->irq, uart_config[state->type].name); tty_register_devfs(&serial_driver, 0, serial_driver.minor_start + state->line); tty_register_devfs(&callout_driver, 0, callout_driver.minor_start + state->line); return state->line + SERIAL_DEV_OFFSET; } /** * unregister_serial - deconfigure a 16x50 serial port * @line: line to deconfigure * * The port specified is deconfigured and its resources are freed. Any * user of the port is disconnected as if carrier was dropped. Line is * the port number returned by register_serial(). */ void unregister_serial(int line) { unsigned long flags; struct serial_state *state = &rs_table[line]; save_flags(flags); cli(); if (state->info && state->info->tty) tty_hangup(state->info->tty); state->type = PORT_UNKNOWN; printk(KERN_INFO "tty%02d unloaded\n", state->line); /* These will be hidden, because they are devices that will no longer * be available to the system. (ie, PCMCIA modems, once ejected) */ tty_unregister_devfs(&serial_driver, serial_driver.minor_start + state->line); tty_unregister_devfs(&callout_driver, callout_driver.minor_start + state->line); restore_flags(flags); } static void __exit rs_fini(void) { unsigned long flags; int e1, e2; int i; struct async_struct *info; /* printk("Unloading %s: version %s\n", serial_name, serial_version); */ del_timer_sync(&serial_timer); save_flags(flags); cli(); remove_bh(SERIAL_BH); if ((e1 = tty_unregister_driver(&serial_driver))) printk("serial: failed to unregister serial driver (%d)\n", e1); if ((e2 = tty_unregister_driver(&callout_driver))) printk("serial: failed to unregister callout driver (%d)\n", e2); restore_flags(flags); for (i = 0; i < NR_PORTS; i++) { if ((info = rs_table[i].info)) { rs_table[i].info = NULL; kfree(info); } if ((rs_table[i].type != PORT_UNKNOWN) && rs_table[i].port) { #ifdef CONFIG_SERIAL_RSA if (rs_table[i].type == PORT_RSA) release_region(rs_table[i].port + UART_RSA_BASE, 16); else #endif release_region(rs_table[i].port, 8); } #if defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP) if (rs_table[i].iomem_base) iounmap(rs_table[i].iomem_base); #endif } #if defined(ENABLE_SERIAL_PCI) || defined(ENABLE_SERIAL_PNP) for (i=0; i < serial_pci_board_idx; i++) { struct pci_board_inst *brd = &serial_pci_board[i]; if (brd->board.init_fn) (brd->board.init_fn)(brd->dev, &brd->board, 0); if (DEACTIVATE_FUNC(brd->dev)) (DEACTIVATE_FUNC(brd->dev))(brd->dev); } #endif if (tmp_buf) { unsigned long pg = (unsigned long) tmp_buf; tmp_buf = NULL; free_page(pg); } } module_init(rs_init); module_exit(rs_fini); /* * ------------------------------------------------------------ * Serial console driver * ------------------------------------------------------------ */ #ifdef CONFIG_SERIAL_CONSOLE #define BOTH_EMPTY (UART_LSR_TEMT | UART_LSR_THRE) static struct async_struct async_sercons; /* * Wait for transmitter & holding register to empty */ static inline void wait_for_xmitr(struct async_struct *info) { unsigned int tmout = 1000000; while (--tmout && ((serial_in(info, UART_LSR) & BOTH_EMPTY) != BOTH_EMPTY)); } /* * Print a string to the serial port trying not to disturb * any possible real use of the port... * * The console_lock must be held when we get here. */ static void serial_console_write(struct console *co, const char *s, unsigned count) { static struct async_struct *info = &async_sercons; int ier; unsigned i; /* * First save the IER then disable the interrupts */ ier = serial_in(info, UART_IER); serial_out(info, UART_IER, 0x00); /* * Now, do each character */ for (i = 0; i < count; i++, s++) { wait_for_xmitr(info); /* * Send the character out. * If a LF, also do CR... */ serial_out(info, UART_TX, *s); if (*s == 10) { wait_for_xmitr(info); serial_out(info, UART_TX, 13); } } /* * Finally, Wait for transmitter & holding register to empty * and restore the IER */ wait_for_xmitr(info); serial_out(info, UART_IER, ier); } /* * Receive character from the serial port */ static int serial_console_wait_key(struct console *co) { static struct async_struct *info; int ier, c; info = &async_sercons; /* * First save the IER then disable the interrupts so * that the real driver for the port does not get the * character. */ ier = serial_in(info, UART_IER); serial_out(info, UART_IER, 0x00); while ((serial_in(info, UART_LSR) & UART_LSR_DR) == 0); c = serial_in(info, UART_RX); /* * Restore the interrupts */ serial_out(info, UART_IER, ier); return c; } static kdev_t serial_console_device(struct console *c) { return MKDEV(TTY_MAJOR, 64 + c->index); } /* * Setup initial baud/bits/parity. We do two things here: * - construct a cflag setting for the first rs_open() * - initialize the serial port * Return non-zero if we didn't find a serial port. */ static int __init serial_console_setup(struct console *co, char *options) { static struct async_struct *info; struct serial_state *state; unsigned cval; int baud = 9600; int bits = 8; int parity = 'n'; int cflag = CREAD | HUPCL | CLOCAL; int quot = 0; char *s; if (options) { baud = simple_strtoul(options, NULL, 10); s = options; while(*s >= '0' && *s <= '9') s++; if (*s) parity = *s++; if (*s) bits = *s - '0'; } /* * Now construct a cflag setting. */ switch(baud) { case 1200: cflag |= B1200; break; case 2400: cflag |= B2400; break; case 4800: cflag |= B4800; break; case 19200: cflag |= B19200; break; case 38400: cflag |= B38400; break; case 57600: cflag |= B57600; break; case 115200: cflag |= B115200; break; case 9600: default: cflag |= B9600; break; } switch(bits) { case 7: cflag |= CS7; break; default: case 8: cflag |= CS8; break; } switch(parity) { case 'o': case 'O': cflag |= PARODD; break; case 'e': case 'E': cflag |= PARENB; break; } co->cflag = cflag; /* * Divisor, bytesize and parity */ state = rs_table + co->index; info = &async_sercons; info->magic = SERIAL_MAGIC; info->state = state; info->port = state->port; info->flags = state->flags; #ifdef CONFIG_HUB6 info->hub6 = state->hub6; #endif info->io_type = state->io_type; info->iomem_base = state->iomem_base; info->iomem_reg_shift = state->iomem_reg_shift; quot = state->baud_base / baud; cval = cflag & (CSIZE | CSTOPB); #if defined(__powerpc__) || defined(__alpha__) cval >>= 8; #else /* !__powerpc__ && !__alpha__ */ cval >>= 4; #endif /* !__powerpc__ && !__alpha__ */ if (cflag & PARENB) cval |= UART_LCR_PARITY; if (!(cflag & PARODD)) cval |= UART_LCR_EPAR; /* * Disable UART interrupts, set DTR and RTS high * and set speed. */ serial_out(info, UART_LCR, cval | UART_LCR_DLAB); /* set DLAB */ serial_out(info, UART_DLL, quot & 0xff); /* LS of divisor */ serial_out(info, UART_DLM, quot >> 8); /* MS of divisor */ serial_out(info, UART_LCR, cval); /* reset DLAB */ serial_out(info, UART_IER, 0); serial_out(info, UART_MCR, UART_MCR_DTR | UART_MCR_RTS); /* * If we read 0xff from the LSR, there is no UART here. */ if (serial_in(info, UART_LSR) == 0xff) return -1; return 0; } static struct console sercons = { "ttyS", serial_console_write, NULL, serial_console_device, serial_console_wait_key, NULL, serial_console_setup, CON_PRINTBUFFER, -1, 0, NULL }; /* * Register console. */ void __init serial_console_init(void) { register_console(&sercons); } #endif /* Local variables: compile-command: "gcc -D__KERNEL__ -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -fno-strict-aliasing -pipe -fno-strength-reduce -march=i586 -DMODULE -DMODVERSIONS -include ../../include/linux/modversions.h -DEXPORT_SYMTAB -c serial.c" End: */