/* soc.c: Sparc SUNW,soc (Serial Optical Channel) Fibre Channel Sbus adapter support. * * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz) * Copyright (C) 1997,1998 Jiri Hanika (geo@ff.cuni.cz) * * Sources: * Fibre Channel Physical & Signaling Interface (FC-PH), dpANS, 1994 * dpANS Fibre Channel Protocol for SCSI (X3.269-199X), Rev. 012, 1995 * * Supported hardware: * Tested on SOC sbus card bought with SS1000 in Linux running on SS5 and Ultra1. * Should run on on-board SOC/SOC+ cards of Ex000 servers as well, but it is not * tested (let us know if you succeed). * For SOC sbus cards, you have to make sure your FCode is 1.52 or later. * If you have older FCode, you should try to upgrade or get SOC microcode from Sun * (the microcode is present in Solaris soc driver as well). In that case you need * to #define HAVE_SOC_UCODE and format the microcode into soc_asm.c. For the exact * format mail me and I will tell you. I cannot offer you the actual microcode though, * unless Sun confirms they don't mind. */ static char *version = "soc.c:v1.2 27/Feb/98 Jakub Jelinek (jj@sunsite.mff.cuni.cz), Jiri Hanika (geo@ff.cuni.cz)\n"; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* #define SOCDEBUG */ /* #define HAVE_SOC_UCODE */ #include "fcp_scsi.h" #include "soc.h" #ifdef HAVE_SOC_UCODE #include "soc_asm.c" #endif #define soc_printk printk ("soc%d: ", s->soc_no); printk #ifdef SOCDEBUG #define SOD(x) soc_printk x; #else #define SOD(x) #endif #define for_each_soc(s) for (s = socs; s; s = s->next) struct soc *socs = NULL; static inline void soc_disable(struct soc *s) { s->regs->imask = 0; s->regs->cmd = SOC_CMD_SOFT_RESET; } static inline void soc_enable(struct soc *s) { SOD(("enable %08x\n", s->cfg)) s->regs->sae = 0; s->regs->cfg = s->cfg; s->regs->cmd = SOC_CMD_RSP_QALL; SOC_SETIMASK(s, SOC_IMASK_RSP_QALL | SOC_IMASK_SAE); SOD(("imask %08lx %08lx\n", s->imask, s->regs->imask)); } static void soc_reset(fc_channel *fc) { soc_port *port = (soc_port *)fc; struct soc *s = port->s; /* FIXME */ soc_disable(s); s->req[0].seqno = 1; s->req[1].seqno = 1; s->rsp[0].seqno = 1; s->rsp[1].seqno = 1; s->req[0].in = 0; s->req[1].in = 0; s->rsp[0].in = 0; s->rsp[1].in = 0; s->req[0].out = 0; s->req[1].out = 0; s->rsp[0].out = 0; s->rsp[1].out = 0; /* FIXME */ soc_enable(s); } static void inline soc_solicited (struct soc *s) { fc_hdr fchdr; soc_rsp *hwrsp; soc_cq *sw_cq; int token; int status; fc_channel *fc; sw_cq = &s->rsp[SOC_SOLICITED_RSP_Q]; if (sw_cq->pool == NULL) sw_cq->pool = (soc_req *)(s->xram + (xram_get_32low ((xram_p)&sw_cq->hw_cq->address) / sizeof(u16))); sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in); SOD (("soc_solicited, %d packets arrived\n", (sw_cq->in - sw_cq->out) & sw_cq->last)) for (;;) { hwrsp = (soc_rsp *)sw_cq->pool + sw_cq->out; token = xram_get_32low ((xram_p)&hwrsp->shdr.token); status = xram_get_32low ((xram_p)&hwrsp->status); fc = (fc_channel *)(&s->port[(token >> 11) & 1]); if (status == SOC_OK) fcp_receive_solicited(fc, token >> 12, token & ((1 << 11) - 1), FC_STATUS_OK, NULL); else { xram_copy_from(&fchdr, (xram_p)&hwrsp->fchdr, sizeof(fchdr)); /* We have intentionally defined FC_STATUS_* constants to match SOC_* constants, otherwise we'd have to translate status */ fcp_receive_solicited(fc, token >> 12, token & ((1 << 11) - 1), status, &fchdr); } if (++sw_cq->out > sw_cq->last) { sw_cq->seqno++; sw_cq->out = 0; } if (sw_cq->out == sw_cq->in) { sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in); if (sw_cq->out == sw_cq->in) { /* Tell the hardware about it */ s->regs->cmd = (sw_cq->out << 24) | (SOC_CMD_RSP_QALL & ~(SOC_CMD_RSP_Q0 << SOC_SOLICITED_RSP_Q)); /* Read it, so that we're sure it has been updated */ s->regs->cmd; sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in); if (sw_cq->out == sw_cq->in) break; } } } } static void inline soc_request (struct soc *s, u32 cmd) { SOC_SETIMASK(s, s->imask & ~(cmd & SOC_CMD_REQ_QALL)); SOD(("imask %08lx %08lx\n", s->imask, s->regs->imask)); SOD(("Queues available %08x OUT %X %X\n", cmd, xram_get_8((xram_p)&s->req[0].hw_cq->out), xram_get_8((xram_p)&s->req[0].hw_cq->out))) if (s->port[s->curr_port].fc.state != FC_STATE_OFFLINE) { fcp_queue_empty ((fc_channel *)&(s->port[s->curr_port])); if (((s->req[1].in + 1) & s->req[1].last) != (s->req[1].out)) fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port])); } else fcp_queue_empty ((fc_channel *)&(s->port[1 - s->curr_port])); if (s->port[1 - s->curr_port].fc.state != FC_STATE_OFFLINE) s->curr_port ^= 1; } static void inline soc_unsolicited (struct soc *s) { soc_rsp *hwrsp, *hwrspc; soc_cq *sw_cq; int count; int status; int flags; fc_channel *fc; sw_cq = &s->rsp[SOC_UNSOLICITED_RSP_Q]; if (sw_cq->pool == NULL) sw_cq->pool = (soc_req *)(s->xram + (xram_get_32low ((xram_p)&sw_cq->hw_cq->address) / sizeof(u16))); sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in); SOD (("soc_unsolicited, %d packets arrived\n", (sw_cq->in - sw_cq->out) & sw_cq->last)) while (sw_cq->in != sw_cq->out) { /* ...real work per entry here... */ hwrsp = (soc_rsp *)sw_cq->pool + sw_cq->out; hwrspc = NULL; flags = hwrsp->shdr.flags; count = xram_get_8 ((xram_p)&hwrsp->count); fc = (fc_channel *)&s->port[flags & SOC_PORT_B]; SOD(("FC %08lx fcp_state_change %08lx\n", (long)fc, (long)fc->fcp_state_change)) if (count != 1) { /* Ugh, continuation entries */ u8 in; if (count != 2) { printk("%s: Too many continuations entries %d\n", fc->name, count); goto update_out; } in = sw_cq->in; if (in < sw_cq->out) in += sw_cq->last + 1; if (in < sw_cq->out + 2) { /* Ask the hardware about it if they haven't arrived yet */ s->regs->cmd = (sw_cq->out << 24) | (SOC_CMD_RSP_QALL & ~(SOC_CMD_RSP_Q0 << SOC_UNSOLICITED_RSP_Q)); /* Read it, so that we're sure it has been updated */ s->regs->cmd; sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in); in = sw_cq->in; if (in < sw_cq->out) in += sw_cq->last + 1; if (in < sw_cq->out + 2) /* Nothing came, let us wait */ return; } if (sw_cq->out == sw_cq->last) hwrspc = (soc_rsp *)sw_cq->pool; else hwrspc = hwrsp + 1; } switch (flags & ~SOC_PORT_B) { case SOC_STATUS: status = xram_get_32low ((xram_p)&hwrsp->status); switch (status) { case SOC_ONLINE: SOD(("State change to ONLINE\n")); fcp_state_change(fc, FC_STATE_ONLINE); break; case SOC_OFFLINE: SOD(("State change to OFFLINE\n")); fcp_state_change(fc, FC_STATE_OFFLINE); break; default: printk ("%s: Unknown STATUS no %d\n", fc->name, status); break; } break; case (SOC_UNSOLICITED|SOC_FC_HDR): { int r_ctl = xram_get_8 ((xram_p)&hwrsp->fchdr); unsigned len; char buf[64]; if ((r_ctl & 0xf0) == R_CTL_EXTENDED_SVC) { len = xram_get_32 ((xram_p)&hwrsp->shdr.bytecnt); if (len < 4 || !hwrspc) printk ("%s: Invalid R_CTL %02x continuation entries\n", fc->name, r_ctl); else { if (len > 60) len = 60; xram_copy_from (buf, (xram_p)hwrspc, (len + 3) & ~3); if (*(u32 *)buf == LS_DISPLAY) { int i; for (i = 4; i < len; i++) if (buf[i] == '\n') buf[i] = ' '; buf[len] = 0; printk ("%s message: %s\n", fc->name, buf + 4); } else printk ("%s: Unknown LS_CMD %02x\n", fc->name, buf[0]); } } else printk ("%s: Unsolicited R_CTL %02x not handled\n", fc->name, r_ctl); } break; default: printk ("%s: Unexpected flags %08x\n", fc->name, flags); break; } update_out: if (++sw_cq->out > sw_cq->last) { sw_cq->seqno++; sw_cq->out = 0; } if (hwrspc) { if (++sw_cq->out > sw_cq->last) { sw_cq->seqno++; sw_cq->out = 0; } } if (sw_cq->out == sw_cq->in) { sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in); if (sw_cq->out == sw_cq->in) { /* Tell the hardware about it */ s->regs->cmd = (sw_cq->out << 24) | (SOC_CMD_RSP_QALL & ~(SOC_CMD_RSP_Q0 << SOC_UNSOLICITED_RSP_Q)); /* Read it, so that we're sure it has been updated */ s->regs->cmd; sw_cq->in = xram_get_8 ((xram_p)&sw_cq->hw_cq->in); } } } } static void soc_intr(int irq, void *dev_id, struct pt_regs *regs) { u32 cmd; unsigned long flags; register struct soc *s = (struct soc *)dev_id; spin_lock_irqsave(&io_request_lock, flags); cmd = s->regs->cmd; for (; (cmd = SOC_INTR (s, cmd)); cmd = s->regs->cmd) { if (cmd & SOC_CMD_RSP_Q1) soc_unsolicited (s); if (cmd & SOC_CMD_RSP_Q0) soc_solicited (s); if (cmd & SOC_CMD_REQ_QALL) soc_request (s, cmd); } spin_unlock_irqrestore(&io_request_lock, flags); } #define TOKEN(proto, port, token) (((proto)<<12)|(token)|(port)) static int soc_hw_enque (fc_channel *fc, fcp_cmnd *fcmd) { soc_port *port = (soc_port *)fc; struct soc *s = port->s; int qno; soc_cq *sw_cq; int cq_next_in; soc_req *request; fc_hdr *fch; int i; if (fcmd->proto == TYPE_SCSI_FCP) qno = 1; else qno = 0; SOD(("Putting a FCP packet type %d into hw queue %d\n", fcmd->proto, qno)) if (s->imask & (SOC_IMASK_REQ_Q0 << qno)) { SOD(("EIO %08x\n", s->imask)) return -EIO; } sw_cq = s->req + qno; cq_next_in = (sw_cq->in + 1) & sw_cq->last; if (cq_next_in == sw_cq->out && cq_next_in == (sw_cq->out = xram_get_8((xram_p)&sw_cq->hw_cq->out))) { SOD(("%d IN %d OUT %d LAST %d\n", qno, sw_cq->in, sw_cq->out, sw_cq->last)) SOC_SETIMASK(s, s->imask | (SOC_IMASK_REQ_Q0 << qno)); SOD(("imask %08lx %08lx\n", s->imask, s->regs->imask)); /* If queue is full, just say NO */ return -EBUSY; } request = sw_cq->pool + sw_cq->in; fch = &request->fchdr; switch (fcmd->proto) { case TYPE_SCSI_FCP: request->shdr.token = TOKEN(TYPE_SCSI_FCP, port->mask, fcmd->token); request->data[0].base = fc->dma_scsi_cmd + fcmd->token * sizeof(fcp_cmd); request->data[0].count = sizeof(fcp_cmd); request->data[1].base = fc->dma_scsi_rsp + fcmd->token * fc->rsp_size; request->data[1].count = fc->rsp_size; if (fcmd->data) { request->shdr.segcnt = 3; i = fc->scsi_cmd_pool[fcmd->token].fcp_data_len; request->shdr.bytecnt = i; request->data[2].base = fcmd->data; request->data[2].count = i; request->type = (fc->scsi_cmd_pool[fcmd->token].fcp_cntl & FCP_CNTL_WRITE) ? SOC_CQTYPE_IO_WRITE : SOC_CQTYPE_IO_READ; } else { request->shdr.segcnt = 2; request->shdr.bytecnt = 0; request->data[2].base = 0; request->data[2].count = 0; request->type = SOC_CQTYPE_SIMPLE; } FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fc->did); FILL_FCHDR_SID(fch, fc->sid); FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE); FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0); FILL_FCHDR_OXRX(fch, 0xffff, 0xffff); fch->param = 0; request->shdr.flags = port->flags; request->shdr.class = 2; break; case PROTO_OFFLINE: memset (request, 0, sizeof(*request)); request->shdr.token = TOKEN(PROTO_OFFLINE, port->mask, fcmd->token); request->type = SOC_CQTYPE_OFFLINE; FILL_FCHDR_RCTL_DID(fch, R_CTL_COMMAND, fc->did); FILL_FCHDR_SID(fch, fc->sid); FILL_FCHDR_TYPE_FCTL(fch, TYPE_SCSI_FCP, F_CTL_FIRST_SEQ | F_CTL_SEQ_INITIATIVE); FILL_FCHDR_SEQ_DF_SEQ(fch, 0, 0, 0); FILL_FCHDR_OXRX(fch, 0xffff, 0xffff); request->shdr.flags = port->flags; break; default: request->shdr.token = TOKEN(fcmd->proto, port->mask, fcmd->token); request->shdr.class = 2; request->shdr.flags = port->flags; memcpy (fch, &fcmd->fch, sizeof(fc_hdr)); request->data[0].count = fcmd->cmdlen; request->data[1].count = fcmd->rsplen; request->type = fcmd->class; switch (fcmd->class) { case FC_CLASS_OUTBOUND: request->data[0].base = fcmd->cmd; request->data[0].count = fcmd->cmdlen; request->type = SOC_CQTYPE_OUTBOUND; request->shdr.bytecnt = fcmd->cmdlen; request->shdr.segcnt = 1; break; case FC_CLASS_INBOUND: request->data[0].base = fcmd->rsp; request->data[0].count = fcmd->rsplen; request->type = SOC_CQTYPE_INBOUND; request->shdr.bytecnt = 0; request->shdr.segcnt = 1; break; case FC_CLASS_SIMPLE: request->data[0].base = fcmd->cmd; request->data[1].base = fcmd->rsp; request->data[0].count = fcmd->cmdlen; request->data[1].count = fcmd->rsplen; request->type = SOC_CQTYPE_SIMPLE; request->shdr.bytecnt = fcmd->cmdlen; request->shdr.segcnt = 2; break; case FC_CLASS_IO_READ: case FC_CLASS_IO_WRITE: request->data[0].base = fcmd->cmd; request->data[1].base = fcmd->rsp; request->data[0].count = fcmd->cmdlen; request->data[1].count = fcmd->rsplen; request->type = (fcmd->class == FC_CLASS_IO_READ) ? SOC_CQTYPE_IO_READ : SOC_CQTYPE_IO_WRITE; if (fcmd->data) { request->data[2].base = fcmd->data; request->data[2].count = fcmd->datalen; request->shdr.bytecnt = fcmd->datalen; request->shdr.segcnt = 3; } else { request->shdr.bytecnt = 0; request->shdr.segcnt = 2; } break; } break; } request->count = 1; request->flags = 0; request->seqno = sw_cq->seqno; /* And now tell the SOC about it */ if (++sw_cq->in > sw_cq->last) { sw_cq->in = 0; sw_cq->seqno++; } SOD(("Putting %08x into cmd\n", SOC_CMD_RSP_QALL | (sw_cq->in << 24) | (SOC_CMD_REQ_Q0 << qno))) s->regs->cmd = SOC_CMD_RSP_QALL | (sw_cq->in << 24) | (SOC_CMD_REQ_Q0 << qno); /* Read so that command is completed */ s->regs->cmd; return 0; } static inline void soc_download_fw(struct soc *s) { #ifdef HAVE_SOC_UCODE xram_copy_to (s->xram, soc_ucode, sizeof(soc_ucode)); xram_bzero (s->xram + (sizeof(soc_ucode)/sizeof(u16)), 32768 - sizeof(soc_ucode)); #endif } /* Check for what the best SBUS burst we can use happens * to be on this machine. */ static inline void soc_init_bursts(struct soc *s, struct linux_sbus_device *sdev) { int bsizes, bsizes_more; bsizes = (prom_getintdefault(sdev->prom_node,"burst-sizes",0xff) & 0xff); bsizes_more = (prom_getintdefault(sdev->my_bus->prom_node, "burst-sizes", 0xff) & 0xff); bsizes &= bsizes_more; if ((bsizes & 0x7f) == 0x7f) s->cfg = SOC_CFG_BURST_64; else if ((bsizes & 0x3f) == 0x3f) s->cfg = SOC_CFG_BURST_32; else if ((bsizes & 0x1f) == 0x1f) s->cfg = SOC_CFG_BURST_16; else s->cfg = SOC_CFG_BURST_4; } static inline void soc_init(struct linux_sbus_device *sdev, int no) { unsigned char tmp[60]; int propl; struct soc *s; static unsigned version_printed = 0; soc_hw_cq cq[8]; int size, i; int irq; s = kmalloc (sizeof (struct soc), GFP_KERNEL); if (!s) return; memset (s, 0, sizeof(struct soc)); s->soc_no = no; SOD(("socs %08lx soc_intr %08lx soc_hw_enque %08x\n", (long)socs, (long)soc_intr, (long)soc_hw_enque)) if (version_printed++ == 0) printk (version); #ifdef MODULE s->port[0].fc.module = &__this_module; s->port[1].fc.module = &__this_module; #else s->port[0].fc.module = NULL; s->port[1].fc.module = NULL; #endif s->next = socs; socs = s; s->port[0].fc.dev = sdev; s->port[1].fc.dev = sdev; s->port[0].s = s; s->port[1].s = s; s->port[0].fc.next = &s->port[1].fc; /* World Wide Name of SOC */ propl = prom_getproperty (sdev->prom_node, "soc-wwn", tmp, sizeof(tmp)); if (propl != sizeof (fc_wwn)) { s->wwn.naaid = NAAID_IEEE; s->wwn.lo = 0x12345678; } else memcpy (&s->wwn, tmp, sizeof (fc_wwn)); propl = prom_getproperty (sdev->prom_node, "port-wwns", tmp, sizeof(tmp)); if (propl != 2 * sizeof (fc_wwn)) { s->port[0].fc.wwn_nport.naaid = NAAID_IEEE_EXT; s->port[0].fc.wwn_nport.hi = s->wwn.hi; s->port[0].fc.wwn_nport.lo = s->wwn.lo; s->port[1].fc.wwn_nport.naaid = NAAID_IEEE_EXT; s->port[1].fc.wwn_nport.nportid = 1; s->port[1].fc.wwn_nport.hi = s->wwn.hi; s->port[1].fc.wwn_nport.lo = s->wwn.lo; } else { memcpy (&s->port[0].fc.wwn_nport, tmp, sizeof (fc_wwn)); memcpy (&s->port[1].fc.wwn_nport, tmp + sizeof (fc_wwn), sizeof (fc_wwn)); } memcpy (&s->port[0].fc.wwn_node, &s->wwn, sizeof (fc_wwn)); memcpy (&s->port[1].fc.wwn_node, &s->wwn, sizeof (fc_wwn)); SOD(("Got wwns %08x%08x ports %08x%08x and %08x%08x\n", *(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo, *(u32 *)&s->port[0].fc.wwn_nport, s->port[0].fc.wwn_nport.lo, *(u32 *)&s->port[1].fc.wwn_nport, s->port[1].fc.wwn_nport.lo)) s->port[0].fc.sid = 1; s->port[1].fc.sid = 17; s->port[0].fc.did = 2; s->port[1].fc.did = 18; s->port[0].fc.reset = soc_reset; s->port[1].fc.reset = soc_reset; /* Setup the reg property for this device. */ prom_apply_sbus_ranges(sdev->my_bus, sdev->reg_addrs, sdev->num_registers, sdev); if (sdev->num_registers == 1) { /* Probably SunFire onboard SOC */ s->xram = (xram_p) sparc_alloc_io (sdev->reg_addrs [0].phys_addr, 0, sdev->reg_addrs [0].reg_size, "soc_xram", sdev->reg_addrs [0].which_io, 0); s->regs = (struct soc_regs *)((char *)s->xram + 0x10000); } else { /* Probably SOC sbus card */ s->xram = (xram_p) sparc_alloc_io (sdev->reg_addrs [1].phys_addr, 0, sdev->reg_addrs [1].reg_size, "soc_xram", sdev->reg_addrs [1].which_io, 0); s->regs = (struct soc_regs *) sparc_alloc_io (sdev->reg_addrs [2].phys_addr, 0, sdev->reg_addrs [2].reg_size, "soc_regs", sdev->reg_addrs [2].which_io, 0); } soc_init_bursts(s, sdev); SOD(("Disabling SOC\n")) soc_disable (s); irq = sdev->irqs[0]; if (request_irq (irq, soc_intr, SA_SHIRQ, "SOC", (void *)s)) { soc_printk ("Cannot order irq %d to go\n", irq); socs = s->next; return; } SOD(("SOC uses IRQ%s\n", __irq_itoa(irq))) s->port[0].fc.irq = irq; s->port[1].fc.irq = irq; sprintf (s->port[0].fc.name, "soc%d port A", no); sprintf (s->port[1].fc.name, "soc%d port B", no); s->port[0].flags = SOC_FC_HDR | SOC_PORT_A; s->port[1].flags = SOC_FC_HDR | SOC_PORT_B; s->port[1].mask = (1 << 11); s->port[0].fc.hw_enque = soc_hw_enque; s->port[1].fc.hw_enque = soc_hw_enque; soc_download_fw (s); SOD(("Downloaded firmware\n")) /* Now setup xram circular queues */ memset (cq, 0, sizeof(cq)); size = (SOC_CQ_REQ0_SIZE + SOC_CQ_REQ1_SIZE) * sizeof(soc_req); s->req[0].pool = (soc_req *) sparc_dvma_malloc (size, "SOC request queues", &cq[0].address); s->req[1].pool = s->req[0].pool + SOC_CQ_REQ0_SIZE; s->req[0].hw_cq = (soc_hw_cq *)(s->xram + SOC_CQ_REQ_OFFSET); s->req[1].hw_cq = (soc_hw_cq *)(s->xram + SOC_CQ_REQ_OFFSET + sizeof(soc_hw_cq) / sizeof(u16)); s->rsp[0].hw_cq = (soc_hw_cq *)(s->xram + SOC_CQ_RSP_OFFSET); s->rsp[1].hw_cq = (soc_hw_cq *)(s->xram + SOC_CQ_RSP_OFFSET + sizeof(soc_hw_cq) / sizeof(u16)); cq[1].address = cq[0].address + (SOC_CQ_REQ0_SIZE * sizeof(soc_req)); cq[4].address = 1; cq[5].address = 1; cq[0].last = SOC_CQ_REQ0_SIZE - 1; cq[1].last = SOC_CQ_REQ1_SIZE - 1; cq[4].last = SOC_CQ_RSP0_SIZE - 1; cq[5].last = SOC_CQ_RSP1_SIZE - 1; for (i = 0; i < 8; i++) cq[i].seqno = 1; s->req[0].last = SOC_CQ_REQ0_SIZE - 1; s->req[1].last = SOC_CQ_REQ1_SIZE - 1; s->rsp[0].last = SOC_CQ_RSP0_SIZE - 1; s->rsp[1].last = SOC_CQ_RSP1_SIZE - 1; s->req[0].seqno = 1; s->req[1].seqno = 1; s->rsp[0].seqno = 1; s->rsp[1].seqno = 1; xram_copy_to (s->xram + SOC_CQ_REQ_OFFSET, cq, sizeof(cq)); /* Make our sw copy of SOC service parameters */ xram_copy_from (s->serv_params, s->xram + 0x140, sizeof (s->serv_params)); s->port[0].fc.common_svc = (common_svc_parm *)s->serv_params; s->port[0].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20); s->port[1].fc.common_svc = (common_svc_parm *)&s->serv_params; s->port[1].fc.class_svcs = (svc_parm *)(s->serv_params + 0x20); soc_enable (s); SOD(("Enabled SOC\n")) } #ifndef MODULE __initfunc(int soc_probe(void)) #else int init_module(void) #endif { struct linux_sbus *bus; struct linux_sbus_device *sdev = 0; struct soc *s; int cards = 0; for_each_sbus(bus) { for_each_sbusdev(sdev, bus) { if(!strcmp(sdev->prom_name, "SUNW,soc")) { soc_init(sdev, cards); cards++; } } } if (!cards) return -EIO; for_each_soc(s) if (s->next) s->port[1].fc.next = &s->next->port[0].fc; fcp_init (&socs->port[0].fc); return 0; } EXPORT_NO_SYMBOLS; #ifdef MODULE void cleanup_module(void) { struct soc *s; int irq; struct linux_sbus_device *sdev; for_each_soc(s) { irq = s->port[0].fc.irq; disable_irq (irq); free_irq (irq, s); fcp_release(&(s->port[0].fc), 2); sdev = s->port[0].fc.dev; if (sdev->num_registers == 1) sparc_free_io ((char *)s->xram, sdev->reg_addrs [0].reg_size); else { sparc_free_io ((char *)s->xram, sdev->reg_addrs [1].reg_size); sparc_free_io ((char *)s->regs, sdev->reg_addrs [2].reg_size); } /* FIXME: sparc_dvma_free() ??? */ } } #endif