/* * linux/drivers/i2o/i2o_lan.c * * I2O LAN CLASS OSM January 7th 1999 * * (C) Copyright 1999 University of Helsinki, * Department of Computer Science * * This code is still under development / test. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Auvo Häkkinen * Juha Sievänen * Deepak Saxena * * Tested: in FDDI environment (using SysKonnect's DDM) * in Gigabit Eth environment (using SysKonnect's DDM) * in Fast Ethernet environment (using Intel 82558 DDM) * * TODO: check error checking / timeouts * code / test for other LAN classes */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i2o_lan.h" //#define DRIVERDEBUG #ifdef DRIVERDEBUG #define dprintk(s, args...) printk(s, ## args) #else #define dprintk(s, args...) #endif /* Module params */ static u32 bucketpost = I2O_BUCKET_COUNT; static u32 bucketthresh = I2O_BUCKET_THRESH; static u32 rx_copybreak = 200; #define MAX_LAN_CARDS 16 static struct net_device *i2o_landevs[MAX_LAN_CARDS+1]; static int unit = -1; /* device unit number */ struct i2o_lan_local { u8 unit; struct i2o_device *i2o_dev; struct fddi_statistics stats; /* see also struct net_device_stats */ unsigned short (*type_trans)(struct sk_buff *, struct net_device *); u32 bucket_count; /* nbr of buckets sent to DDM */ u32 tx_count; /* packets in one TX message frame */ u32 tx_max_out; /* DDM's Tx queue len */ u32 tx_out; /* outstanding TXes */ u32 sgl_max; /* max SGLs in one message frame */ u32 m; /* IOP address of msg frame */ struct tq_struct i2o_batch_send_task; struct sk_buff **i2o_fbl; /* Free bucket list (to reuse skbs) */ int i2o_fbl_tail; spinlock_t lock; }; static void i2o_lan_reply(struct i2o_handler *h, struct i2o_controller *iop, struct i2o_message *m); static void i2o_lan_event_reply(struct net_device *dev, u32 *msg); static int i2o_lan_receive_post(struct net_device *dev); static int i2o_lan_receive_post_reply(struct net_device *dev, u32 *msg); static void i2o_lan_release_buckets(struct net_device *dev, u32 *msg); static struct i2o_handler i2o_lan_handler = { i2o_lan_reply, "I2O Lan OSM", 0, // context I2O_CLASS_LAN }; static int lan_context; static struct tq_struct i2o_post_buckets_task = { 0, 0, (void (*)(void *))i2o_lan_receive_post, (void *) 0 }; /* * i2o_lan_reply(): The only callback function to handle incoming messages. */ static void i2o_lan_reply(struct i2o_handler *h, struct i2o_controller *iop, struct i2o_message *m) { u32 *msg = (u32 *)m; u8 unit = (u8)(msg[2]>>16); // InitiatorContext struct net_device *dev = i2o_landevs[unit]; if (msg[0] & (1<<13)) { // Fail bit is set printk(KERN_ERR "%s: IOP failed to process the msg:\n",dev->name); printk(KERN_ERR " Cmd = 0x%02X, InitiatorTid = %d, TargetTid = %d\n", (msg[1] >> 24) & 0xFF, (msg[1] >> 12) & 0xFFF, msg[1] & 0xFFF); printk(KERN_ERR " FailureCode = 0x%02X\n Severity = 0x%02X\n " "LowestVersion = 0x%02X\n HighestVersion = 0x%02X\n", msg[4] >> 24, (msg[4] >> 16) & 0xFF, (msg[4] >> 8) & 0xFF, msg[4] & 0xFF); printk(KERN_ERR " FailingHostUnit = 0x%04X\n FailingIOP = 0x%03X\n", msg[5] >> 16, msg[5] & 0xFFF); return; } #ifndef DRIVERDEBUG if (msg[4] >> 24) /* ReqStatus != SUCCESS */ #endif i2o_report_status(KERN_INFO, dev->name, msg); switch (msg[1] >> 24) { case LAN_RECEIVE_POST: { if (dev->start) { if (!(msg[4]>>24)) { i2o_lan_receive_post_reply(dev,msg); break; } // Something VERY wrong if this is happening printk( KERN_WARNING "%s: rejected bucket post.\n", dev->name); } // Shutting down, we are getting unused buckets back i2o_lan_release_buckets(dev,msg); break; } case LAN_PACKET_SEND: case LAN_SDU_SEND: { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; u8 trl_count = msg[3] & 0x000000FF; while (trl_count) { // The HDM has handled the outgoing packet dev_kfree_skb((struct sk_buff *)msg[4 + trl_count]); dprintk(KERN_INFO "%s: Request skb freed (trl_count=%d).\n", dev->name,trl_count); priv->tx_out--; trl_count--; } if (dev->tbusy) { clear_bit(0,(void*)&dev->tbusy); mark_bh(NET_BH); /* inform upper layers */ } break; } case LAN_RESET: /* default reply without payload */ case LAN_SUSPEND: break; case I2O_CMD_UTIL_EVT_REGISTER: case I2O_CMD_UTIL_EVT_ACK: i2o_lan_event_reply(dev, msg); break; default: printk(KERN_ERR "%s: No handler for the reply.\n", dev->name); i2o_report_status(KERN_INFO, dev->name, msg); } } /* * i2o_lan_event_reply(): Handle events. */ static void i2o_lan_event_reply(struct net_device *dev, u32 *msg) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; struct i2o_reply { u8 version_offset; u8 msg_flags; u16 msg_size; u32 tid:12; u32 initiator:12; u32 function:8; u32 initiator_context; u32 transaction_context; u32 evt_indicator; u32 evt_data[(iop->inbound_size - 20) / 4]; /* max */ } *evt = (struct i2o_reply *)msg; int evt_data_len = (evt->msg_size - 5) * 4; /* real */ if (evt->function == I2O_CMD_UTIL_EVT_REGISTER) { printk(KERN_INFO "%s: I2O event - ", dev->name); switch (evt->evt_indicator) { case I2O_EVT_IND_STATE_CHANGE: printk("State chance 0x%08X.\n", evt->evt_data[0]); break; case I2O_EVT_IND_GENERAL_WARNING: printk("General warning 0x%02X.\n", evt->evt_data[0]); break; case I2O_EVT_IND_CONFIGURATION_FLAG: printk("Configuration requested.\n"); break; case I2O_EVT_IND_LOCK_RELEASE: printk("Lock released.\n"); break; case I2O_EVT_IND_CAPABILITY_CHANGE: printk("Capability change 0x%02X.\n", evt->evt_data[0]); break; case I2O_EVT_IND_DEVICE_RESET: printk("Device reset.\n"); break; case I2O_EVT_IND_EVT_MASK_MODIFIED: printk("Event mask modified, 0x%08X.\n", evt->evt_data[0]); break; case I2O_EVT_IND_FIELD_MODIFIED: { u16 *work16 = (u16 *)evt->evt_data; printk("Group 0x%04X, field %d changed.\n", work16[0], work16[1]); break; } case I2O_EVT_IND_VENDOR_EVT: { int i; printk("Vendor event:\n"); for (i = 0; i < evt_data_len / 4; i++) printk(" 0x%08X\n", evt->evt_data[i]); break; } case I2O_EVT_IND_DEVICE_STATE: printk("Device state changed 0x%08X.\n", evt->evt_data[0]); break; case I2O_LAN_EVT_LINK_DOWN: printk("Link to the physical device is lost.\n"); break; case I2O_LAN_EVT_LINK_UP: printk("Link to the physical device is (re)established.\n"); break; case I2O_LAN_EVT_MEDIA_CHANGE: printk("Media change.\n"); break; default: printk("Event Indicator = 0x%08X.\n", evt->evt_indicator); } /* * EventAck necessary only for events that cause the device * to syncronize with the user * *if (i2o_event_ack(iop, i2o_dev->lct_data->tid, * priv->unit << 16 | lan_context, * evt->evt_indicator, * evt->evt_data, evt_data_len) < 0) * printk("%s: Event Acknowledge timeout.\n", dev->name); */ } /* else evt->function == I2O_CMD_UTIL_EVT_ACK) */ /* Do we need to do something here too? */ } /* * i2o_lan_release_buckets(): Handle unused buckets. */ static void i2o_lan_release_buckets(struct net_device *dev, u32 *msg) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; u8 trl_count = (u8)(msg[3] & 0x000000FF); u32 *pskb = &msg[6]; while (trl_count--) { dprintk("%s: Releasing unused sk_buff %p.\n",dev->name, (struct sk_buff*)(*pskb)); dev_kfree_skb((struct sk_buff*)(*pskb)); pskb++; priv->bucket_count--; } } /* * i2o_lan_receive_post_reply(): Process incoming packets. */ static int i2o_lan_receive_post_reply(struct net_device *dev, u32 *msg) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_bucket_descriptor *bucket = (struct i2o_bucket_descriptor *)&msg[6]; struct i2o_packet_info *packet; u8 trl_count = msg[3] & 0x000000FF; struct sk_buff *skb, *old_skb; while (trl_count--) { skb = (struct sk_buff *)bucket->context; packet = (struct i2o_packet_info *)bucket->packet_info; priv->bucket_count--; if (packet->len < rx_copybreak) { old_skb = skb; skb = (struct sk_buff *)dev_alloc_skb(packet->len+2); if (skb == NULL) { printk("%s: Can't allocate skb.\n", dev->name); return -ENOMEM; } skb_reserve(skb,2); memcpy(skb_put(skb,packet->len), old_skb->data, packet->len); if (priv->i2o_fbl_tail < I2O_BUCKET_COUNT) priv->i2o_fbl[++priv->i2o_fbl_tail] = old_skb; else dev_kfree_skb(old_skb); } else skb_put(skb,packet->len); skb->dev = dev; skb->protocol = priv->type_trans(skb, dev); netif_rx(skb); dprintk(KERN_INFO "%s: Incoming packet (%d bytes) delivered " "to upper level.\n",dev->name,packet->len); bucket++; // to next Packet Descriptor Block } #ifdef DRIVERDEBUG if (msg[5] == 0) printk(KERN_INFO "%s: DDM out of buckets (priv->count = %d)!\n", dev->name, priv->bucket_count); #endif if (priv->bucket_count <= bucketpost - bucketthresh) { i2o_post_buckets_task.data = (void *)dev; queue_task(&i2o_post_buckets_task, &tq_immediate); mark_bh(IMMEDIATE_BH); /* Note: the task is queued only once */ } return 0; } /* * i2o_lan_receive_post(): Post buckets to receive packets. */ static int i2o_lan_receive_post(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; struct sk_buff *skb; u32 m; u32 *msg; u32 bucket_len = (dev->mtu + dev->hard_header_len); u32 total = bucketpost - priv->bucket_count; u32 bucket_count; u32 *sgl_elem; while (total) { m = I2O_POST_READ32(iop); if (m == 0xFFFFFFFF) return -ETIMEDOUT; msg = (u32 *)(iop->mem_offset + m); bucket_count = (total >= priv->sgl_max) ? priv->sgl_max : total; total -= bucket_count; priv->bucket_count += bucket_count; dprintk(KERN_INFO "%s: Sending %d buckets (size %d) to LAN HDM.\n", dev->name, bucket_count, bucket_len); __raw_writel(I2O_MESSAGE_SIZE(4 + 3 * bucket_count) | SGL_OFFSET_4, msg); __raw_writel(LAN_RECEIVE_POST<<24 | HOST_TID<<12 | i2o_dev->lct_data->tid, msg+1); __raw_writel(priv->unit << 16 | lan_context, msg+2); __raw_writel(bucket_count, msg+3); sgl_elem = &msg[4]; while (bucket_count--) { if (priv->i2o_fbl_tail >= 0) skb = priv->i2o_fbl[priv->i2o_fbl_tail--]; else { skb = dev_alloc_skb(bucket_len + 2); if (skb == NULL) return -ENOMEM; skb_reserve(skb, 2); } __raw_writel(0x51000000 | bucket_len, sgl_elem); __raw_writel((u32)skb, sgl_elem+1); __raw_writel(virt_to_bus(skb->data), sgl_elem+2); sgl_elem += 3; } /* set LE flag and post buckets */ __raw_writel(__raw_readl(sgl_elem-3) | 0x80000000, (sgl_elem-3)); i2o_post_message(iop,m); } return 0; } /* * i2o_lan_reset(): Reset the LAN adapter into the operational state and * restore it to full operation. */ static int i2o_lan_reset(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; u32 msg[5]; dprintk(KERN_INFO "%s: LAN RESET MESSAGE.\n", dev->name); msg[0] = FIVE_WORD_MSG_SIZE | SGL_OFFSET_0; msg[1] = LAN_RESET<<24 | HOST_TID<<12 | i2o_dev->lct_data->tid; msg[2] = priv->unit << 16 | lan_context; // InitiatorContext msg[3] = 0; // TransactionContext msg[4] = 1 << 16; // return posted buckets if (i2o_post_this(iop, msg, sizeof(msg)) < 0) return -ETIMEDOUT; return 0; } /* * i2o_lan_suspend(): Put LAN adapter into a safe, non-active state. * Reply to any LAN class message with status error_no_data_transfer * / suspended. */ static int i2o_lan_suspend(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; u32 msg[5]; dprintk(KERN_INFO "%s: LAN SUSPEND MESSAGE.\n", dev->name); msg[0] = FIVE_WORD_MSG_SIZE | SGL_OFFSET_0; msg[1] = LAN_SUSPEND<<24 | HOST_TID<<12 | i2o_dev->lct_data->tid; msg[2] = priv->unit << 16 | lan_context; // InitiatorContext msg[3] = 0; // TransactionContext msg[4] = 1 << 16; // return posted buckets if (i2o_post_this(iop, msg, sizeof(msg)) < 0) return -ETIMEDOUT; return 0; } /* * i2o_set_batch_mode(): Set DDM into batch mode. */ static void i2o_set_batch_mode(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; u32 val; /* set LAN_BATCH_CONTROL attributes */ // enable batch mode, toggle automatically val = 0x00000000; if (i2o_set_scalar(iop, i2o_dev->lct_data->tid, 0x0003, 0, &val, sizeof(val)) <0) printk(KERN_WARNING "%s: Unable to enter I2O LAN batch mode.\n", dev->name); else dprintk(KERN_INFO "%s: I2O LAN batch mode enabled.\n",dev->name); /* * When PacketOrphanlimit is same as the maximum packet length, * the packets will never be split into two separate buckets */ /* set LAN_OPERATION attributes */ val = dev->mtu + dev->hard_header_len; // PacketOrphanLimit if (i2o_set_scalar(iop, i2o_dev->lct_data->tid, 0x0004, 2, &val, sizeof(val)) < 0) printk(KERN_WARNING "%s: Unable to set PacketOrphanLimit.\n", dev->name); else dprintk(KERN_INFO "%s: PacketOrphanLimit set to %d.\n", dev->name,val); return; } /* * i2o_lan_open(): Open the device to send/receive packets via * the network device. */ static int i2o_lan_open(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; #if 0 struct i2o_controller *iop = i2o_dev->controller; u32 evt_mask = 0xFFC00007; // All generic events, all lan events #endif if (i2o_claim_device(i2o_dev, &i2o_lan_handler, I2O_CLAIM_PRIMARY)) { printk(KERN_WARNING "%s: Unable to claim the I2O LAN device.\n", dev->name); return -EAGAIN; } dprintk(KERN_INFO "%s: I2O LAN device claimed (tid=%d).\n", dev->name, i2o_dev->lct_data->tid); #if 0 if (i2o_event_register(iop, i2o_dev->lct_data->tid, priv->unit << 16 | lan_context, evt_mask) < 0) printk(KERN_WARNING "%s: Unable to set the event mask.\n", dev->name); #endif i2o_lan_reset(dev); priv->i2o_fbl = kmalloc(bucketpost * sizeof(struct sk_buff *),GFP_KERNEL); if (priv->i2o_fbl == NULL) return -ENOMEM; priv->i2o_fbl_tail = -1; dev->tbusy = 0; dev->start = 1; i2o_set_batch_mode(dev); i2o_lan_receive_post(dev); MOD_INC_USE_COUNT; return 0; } /* * i2o_lan_close(): End the transfering. */ static int i2o_lan_close(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; #if 0 struct i2o_controller *iop = i2o_dev->controller; if (i2o_event_register(iop, i2o_dev->lct_data->tid, priv->unit << 16 | lan_context, 0) < 0) printk(KERN_WARNING "%s: Unable to clear the event mask.\n", #endif dev->name); dev->tbusy = 1; dev->start = 0; i2o_lan_suspend(dev); if (i2o_release_device(i2o_dev, &i2o_lan_handler, I2O_CLAIM_PRIMARY)) printk(KERN_WARNING "%s: Unable to unclaim I2O LAN device " "(tid=%d).\n", dev->name, i2o_dev->lct_data->tid); while (priv->i2o_fbl_tail >= 0) dev_kfree_skb(priv->i2o_fbl[priv->i2o_fbl_tail--]); kfree(priv->i2o_fbl); MOD_DEC_USE_COUNT; return 0; } #if 0 /* * i2o_lan_sdu_send(): Send a packet, MAC header added by the HDM. * Must be supported by Fibre Channel, optional for Ethernet/802.3, * Token Ring, FDDI */ static int i2o_lan_sdu_send(struct sk_buff *skb, struct net_device *dev) { return -EINVAL; } #endif static void i2o_lan_batch_send(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_controller *iop = priv->i2o_dev->controller; if (priv->tx_count != 0) { i2o_post_message(iop, priv->m); dprintk("%s: %d packets sent.\n", dev->name, priv->tx_count); priv->tx_count = 0; } } /* * i2o_lan_packet_send(): Send a packet as is, including the MAC header. * * Must be supported by Ethernet/802.3, Token Ring, FDDI, optional for * Fibre Channel */ static int i2o_lan_packet_send(struct sk_buff *skb, struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; u32 m, *msg; u32 *sgl_elem; /* * Keep interrupt from changing dev->tbusy from underneath us * (Do we really need to do this?) */ if (test_and_set_bit(0,(void*)&dev->tbusy) != 0) { return 1; } priv->tx_count++; priv->tx_out++; if (priv->tx_count == 1) { dprintk("%s: New message frame\n", dev->name); m = I2O_POST_READ32(iop); if (m == 0xFFFFFFFF) { dev_kfree_skb(skb); return -ETIMEDOUT; } msg = (u32 *)(iop->mem_offset + m); priv->m = m; __raw_writel(SEVEN_WORD_MSG_SIZE | 1<<12 | SGL_OFFSET_4, msg); __raw_writel(LAN_PACKET_SEND<<24 | HOST_TID<<12 | i2o_dev->lct_data->tid, msg+1); __raw_writel(priv->unit << 16 | lan_context, msg+2); // InitiatorContext __raw_writel(1 << 4, msg+3); // TransmitControlWord __raw_writel(0xD5000000 | skb->len, msg+4); // MAC hdr included __raw_writel((u32)skb, msg+5); // TransactionContext __raw_writel(virt_to_bus(skb->data), msg+6); queue_task(&priv->i2o_batch_send_task, &tq_scheduler); } else { /* Add new SGL element to the previous message frame */ dprintk("%s: Adding packet %d to msg frame\n", dev->name, priv->tx_count); msg = (u32 *)(iop->mem_offset + priv->m); sgl_elem = &msg[priv->tx_count * 3 + 1]; __raw_writel(I2O_MESSAGE_SIZE((__raw_readl(msg)>>16) + 3) | 1<<12 | SGL_OFFSET_4, msg); __raw_writel(__raw_readl(sgl_elem-3) & 0x7FFFFFFF, sgl_elem-3); /* clear LE flag */ __raw_writel(0xD5000000 | skb->len, sgl_elem); __raw_writel((u32)skb, sgl_elem+1); __raw_writel(virt_to_bus(skb->data), sgl_elem+2); if (priv->tx_count == priv->sgl_max) { /* frame full, send now */ i2o_post_message(iop, priv->m); dprintk("%s: %d packets sent.\n", dev->name, priv->tx_count); priv->tx_count = 0; } } /* If HDMs TxMaxPktOut reached, stay busy (don't clean tbusy) */ if (priv->tx_out < priv->tx_max_out) clear_bit(0, (void *)&dev->tbusy); return 0; } /* * i2o_lan_get_stats(): Fill in the statistics. */ static struct net_device_stats *i2o_lan_get_stats(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; u64 val64[16]; u64 supported_group[4] = { 0, 0, 0, 0 }; if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0100, -1, val64, sizeof(val64)) < 0) printk("%s: Unable to query LAN_HISTORICAL_STATS.\n",dev->name); else { dprintk("%s: LAN_HISTORICAL_STATS queried.\n",dev->name); priv->stats.tx_packets = val64[0]; priv->stats.tx_bytes = val64[1]; priv->stats.rx_packets = val64[2]; priv->stats.rx_bytes = val64[3]; priv->stats.tx_errors = val64[4]; priv->stats.rx_errors = val64[5]; priv->stats.rx_dropped = val64[6]; } if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0180, -1, &supported_group, sizeof(supported_group)) < 0) printk("%s: Unable to query LAN_SUPPORTED_OPTIONAL_HISTORICAL_STATS.\n",dev->name); if (supported_group[2]) { if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0183, -1, val64, sizeof(val64)) < 0) printk("%s: Unable to query LAN_OPTIONAL_RX_HISTORICAL_STATS.\n",dev->name); else { dprintk("%s: LAN_OPTIONAL_RX_HISTORICAL_STATS queried.\n",dev->name); priv->stats.multicast = val64[4]; priv->stats.rx_length_errors = val64[10]; priv->stats.rx_crc_errors = val64[0]; } } if (i2o_dev->lct_data->sub_class == I2O_LAN_ETHERNET) { u64 supported_stats = 0; if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0200, -1, val64, sizeof(val64)) < 0) printk("%s: Unable to query LAN_802_3_HISTORICAL_STATS.\n",dev->name); else { dprintk("%s: LAN_802_3_HISTORICAL_STATS queried.\n",dev->name); priv->stats.transmit_collision = val64[1] + val64[2]; priv->stats.rx_frame_errors = val64[0]; priv->stats.tx_carrier_errors = val64[6]; } if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0280, -1, &supported_stats, sizeof(supported_stats)) < 0) printk("%s: Unable to query LAN_SUPPORTED_802_3_HISTORICAL_STATS.\n", dev->name); if (supported_stats != 0) { if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0281, -1, val64, sizeof(val64)) < 0) printk("%s: Unable to query LAN_OPTIONAL_802_3_HISTORICAL_STATS.\n",dev->name); else { dprintk("%s: LAN_OPTIONAL_802_3_HISTORICAL_STATS queried.\n",dev->name); if (supported_stats & 0x1) priv->stats.rx_over_errors = val64[0]; if (supported_stats & 0x4) priv->stats.tx_heartbeat_errors = val64[2]; } } } #ifdef CONFIG_TR if (i2o_dev->lct_data->sub_class == I2O_LAN_TR) { if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0300, -1, val64, sizeof(val64)) < 0) printk("%s: Unable to query LAN_802_5_HISTORICAL_STATS.\n",dev->name); else { struct tr_statistics *stats = (struct tr_statistics *)&priv->stats; dprintk("%s: LAN_802_5_HISTORICAL_STATS queried.\n",dev->name); stats->line_errors = val64[0]; stats->internal_errors = val64[7]; stats->burst_errors = val64[4]; stats->A_C_errors = val64[2]; stats->abort_delimiters = val64[3]; stats->lost_frames = val64[1]; /* stats->recv_congest_count = ?; FIXME ??*/ stats->frame_copied_errors = val64[5]; stats->frequency_errors = val64[6]; stats->token_errors = val64[9]; } /* Token Ring optional stats not yet defined */ } #endif #ifdef CONFIG_FDDI if (i2o_dev->lct_data->sub_class == I2O_LAN_FDDI) { if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0400, -1, val64, sizeof(val64)) < 0) printk("%s: Unable to query LAN_FDDI_HISTORICAL_STATS.\n",dev->name); else { dprintk("%s: LAN_FDDI_HISTORICAL_STATS queried.\n",dev->name); priv->stats.smt_cf_state = val64[0]; memcpy(priv->stats.mac_upstream_nbr, &val64[1], FDDI_K_ALEN); memcpy(priv->stats.mac_downstream_nbr, &val64[2], FDDI_K_ALEN); priv->stats.mac_error_cts = val64[3]; priv->stats.mac_lost_cts = val64[4]; priv->stats.mac_rmt_state = val64[5]; memcpy(priv->stats.port_lct_fail_cts, &val64[6], 8); memcpy(priv->stats.port_lem_reject_cts, &val64[7], 8); memcpy(priv->stats.port_lem_cts, &val64[8], 8); memcpy(priv->stats.port_pcm_state, &val64[9], 8); } /* FDDI optional stats not yet defined */ } #endif return (struct net_device_stats *)&priv->stats; } /* * i2o_lan_set_mc_list(): Enable a network device to receive packets * not send to the protocol address. */ static void i2o_lan_set_mc_list(struct net_device *dev) { struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; struct i2o_controller *iop = i2o_dev->controller; u32 filter_mask; u32 max_size_mc_table; u32 mc_addr_group[64]; if (i2o_query_scalar(iop, i2o_dev->lct_data->tid, 0x0001, -1, &mc_addr_group, sizeof(mc_addr_group)) < 0 ) { printk(KERN_WARNING "%s: Unable to query LAN_MAC_ADDRESS group.\n", dev->name); return; } max_size_mc_table = mc_addr_group[8]; if (dev->flags & IFF_PROMISC) { filter_mask = 0x00000002; dprintk(KERN_INFO "%s: Enabling promiscuous mode...\n", dev->name); } else if ((dev->flags & IFF_ALLMULTI) || dev->mc_count > max_size_mc_table) { filter_mask = 0x00000004; dprintk(KERN_INFO "%s: Enabling all multicast mode...\n", dev->name); } else if (dev->mc_count) { struct dev_mc_list *mc; u8 mc_table[2 + 8 * dev->mc_count]; // RowCount, Addresses u64 *work64 = (u64 *)(mc_table + 2); filter_mask = 0x00000000; dprintk(KERN_INFO "%s: Enabling multicast mode...\n", dev->name); /* Fill multicast addr table */ memset(mc_table, 0, sizeof(mc_table)); memcpy(mc_table, &dev->mc_count, 2); for (mc = dev->mc_list; mc ; mc = mc->next, work64++ ) memcpy(work64, mc->dmi_addr, mc->dmi_addrlen); /* Clear old mc table, copy new table to */ if (i2o_clear_table(iop, i2o_dev->lct_data->tid, 0x0002) < 0) printk("%s: Unable to clear LAN_MULTICAST_MAC_ADDRESS table.\n",dev->name); if ((i2o_row_add_table(iop, i2o_dev->lct_data->tid, 0x0002, -1, mc_table, sizeof(mc_table))) < 0) printk("%s: Unable to set LAN_MULTICAST_MAC_ADDRESS table.\n",dev->name); } else { filter_mask = 0x00000300; // Broadcast, Multicast disabled printk(KERN_INFO "%s: Enabling unicast mode...\n",dev->name); } /* Finally copy new FilterMask to */ if (i2o_set_scalar(iop, i2o_dev->lct_data->tid, 0x0001, 3, &filter_mask, sizeof(filter_mask)) <0) printk(KERN_WARNING "%s: Unable to set MAC FilterMask.\n",dev->name); return; } /* * i2o_lan_set_multicast_list(): * Queue routine i2o_lan_set_mc_list() to be called later. * Needs to be async. */ static void i2o_lan_set_multicast_list(struct net_device *dev) { struct tq_struct *task; task = (struct tq_struct *)kmalloc(sizeof(struct tq_struct), GFP_KERNEL); if (task == NULL) return; task->next = NULL; task->sync = 0; task->routine = (void *)i2o_lan_set_mc_list; task->data = (void *)dev; queue_task(task, &tq_scheduler); } /* * i2o_lan_change_mtu(): Change maximum transfer unit size. */ static int i2o_lan_change_mtu(struct net_device *dev, int new_mtu) { if ((new_mtu < 68) || (new_mtu > 9000)) return -EINVAL; dev->mtu = new_mtu; return 0; } /* * i2o_lan_register_device(): Register LAN class device to kernel. */ struct net_device *i2o_lan_register_device(struct i2o_device *i2o_dev) { struct net_device *dev = NULL; struct i2o_lan_local *priv = NULL; u8 hw_addr[8]; u32 tx_max_out = 0; unsigned short (*type_trans)(struct sk_buff *, struct net_device *); void (*unregister_dev)(struct net_device *dev); switch (i2o_dev->lct_data->sub_class) { case I2O_LAN_ETHERNET: dev = init_etherdev(NULL, sizeof(struct i2o_lan_local)); if (dev == NULL) return NULL; type_trans = eth_type_trans; unregister_dev = unregister_netdev; break; #ifdef CONFIG_ANYLAN case I2O_LAN_100VG: printk(KERN_ERR "i2o_lan: 100base VG not yet supported.\n"); break; #endif #ifdef CONFIG_TR case I2O_LAN_TR: dev = init_trdev(NULL, sizeof(struct i2o_lan_local)); if (dev==NULL) return NULL; type_trans = tr_type_trans; unregister_dev = unregister_trdev; break; #endif #ifdef CONFIG_FDDI case I2O_LAN_FDDI: { int size = sizeof(struct net_device) + sizeof(struct i2o_lan_local) + sizeof("fddi%d "); dev = (struct net_device *) kmalloc(size, GFP_KERNEL); memset((char *)dev, 0, size); dev->priv = (void *)(dev + 1); dev->name = (char *)(dev + 1) + sizeof(struct i2o_lan_local); if (dev_alloc_name(dev,"fddi%d") < 0) { printk(KERN_WARNING "i2o_lan: Too many FDDI devices.\n"); kfree(dev); return NULL; } type_trans = fddi_type_trans; unregister_dev = (void *)unregister_netdevice; fddi_setup(dev); register_netdev(dev); } break; #endif #ifdef CONFIG_FIBRE_CHANNEL case I2O_LAN_FIBRE_CHANNEL: printk(KERN_INFO "i2o_lan: Fibre Channel not yet supported.\n"); break; #endif case I2O_LAN_UNKNOWN: default: printk(KERN_ERR "i2o_lan: LAN type 0x%08X not supported.\n", i2o_dev->lct_data->sub_class); return NULL; } priv = (struct i2o_lan_local *)dev->priv; priv->i2o_dev = i2o_dev; priv->type_trans = type_trans; priv->bucket_count = 0; priv->sgl_max = (i2o_dev->controller->inbound_size - 16) / 12; unit++; i2o_landevs[unit] = dev; priv->unit = unit; if (i2o_query_scalar(i2o_dev->controller, i2o_dev->lct_data->tid, 0x0001, 0, &hw_addr, sizeof(hw_addr)) < 0) { printk(KERN_ERR "%s: Unable to query hardware address.\n", dev->name); unit--; unregister_dev(dev); kfree(dev); return NULL; } dprintk("%s: hwaddr = %02X:%02X:%02X:%02X:%02X:%02X\n", dev->name,hw_addr[0], hw_addr[1], hw_addr[2], hw_addr[3], hw_addr[4], hw_addr[5]); dev->addr_len = 6; memcpy(dev->dev_addr, hw_addr, 6); if (i2o_query_scalar(i2o_dev->controller, i2o_dev->lct_data->tid, 0x0007, 2, &tx_max_out, sizeof(tx_max_out)) < 0) { printk(KERN_ERR "%s: Unable to query max TX queue.\n", dev->name); unit--; unregister_dev(dev); kfree(dev); return NULL; } dprintk(KERN_INFO "%s: Max TX Outstanding = %d.\n", dev->name, tx_max_out); priv->tx_max_out = tx_max_out; priv->tx_out = 0; priv->tx_count = 0; priv->lock = SPIN_LOCK_UNLOCKED; priv->i2o_batch_send_task.next = NULL; priv->i2o_batch_send_task.sync = 0; priv->i2o_batch_send_task.routine = (void *)i2o_lan_batch_send; priv->i2o_batch_send_task.data = (void *)dev; dev->open = i2o_lan_open; dev->stop = i2o_lan_close; dev->hard_start_xmit = i2o_lan_packet_send; dev->get_stats = i2o_lan_get_stats; dev->set_multicast_list = i2o_lan_set_multicast_list; dev->change_mtu = i2o_lan_change_mtu; return dev; } #ifdef MODULE #define i2o_lan_init init_module #endif int __init i2o_lan_init(void) { struct net_device *dev; int i; printk(KERN_INFO "Linux I2O LAN OSM (c) 1999 University of Helsinki.\n"); if (bucketpost > I2O_BUCKET_COUNT) bucketpost = I2O_BUCKET_COUNT; if (bucketthresh > bucketpost) bucketthresh = bucketpost; if (i2o_install_handler(&i2o_lan_handler) < 0) { printk(KERN_ERR "i2o_lan: Unable to register I2O LAN OSM.\n"); return -EINVAL; } lan_context = i2o_lan_handler.context; for(i=0; i <= MAX_LAN_CARDS; i++) i2o_landevs[i] = NULL; for (i=0; i < MAX_I2O_CONTROLLERS; i++) { struct i2o_controller *iop = i2o_find_controller(i); struct i2o_device *i2o_dev; if (iop==NULL) continue; for (i2o_dev=iop->devices;i2o_dev != NULL;i2o_dev=i2o_dev->next) { if (i2o_dev->lct_data->class_id != I2O_CLASS_LAN) continue; /* Make sure device not already claimed by an ISM */ if (i2o_dev->lct_data->user_tid != 0xFFF) continue; if (unit == MAX_LAN_CARDS) { i2o_unlock_controller(iop); printk(KERN_WARNING "i2o_lan: Too many I2O LAN devices.\n"); return -EINVAL; } dev = i2o_lan_register_device(i2o_dev); if (dev == NULL) { printk(KERN_ERR "i2o_lan: Unable to register I2O LAN device.\n"); continue; // try next one } printk(KERN_INFO "%s: I2O LAN device registered, tid = %d," " subclass = 0x%08X, unit = %d.\n", dev->name, i2o_dev->lct_data->tid, i2o_dev->lct_data->sub_class, ((struct i2o_lan_local *)dev->priv)->unit); } i2o_unlock_controller(iop); } dprintk(KERN_INFO "%d I2O LAN devices found and registered.\n", unit+1); return 0; } #ifdef MODULE void cleanup_module(void) { int i; for (i = 0; i <= unit; i++) { struct net_device *dev = i2o_landevs[i]; struct i2o_lan_local *priv = (struct i2o_lan_local *)dev->priv; struct i2o_device *i2o_dev = priv->i2o_dev; switch (i2o_dev->lct_data->sub_class) { case I2O_LAN_ETHERNET: unregister_netdev(dev); kfree(dev); break; #ifdef CONFIG_FDDI case I2O_LAN_FDDI: unregister_netdevice(dev); kfree(dev); break; #endif #ifdef CONFIG_TR case I2O_LAN_TR: unregister_trdev(dev); kfree(dev); break; #endif default: printk(KERN_WARNING "i2o_lan: Spurious I2O LAN subclass 0x%08X.\n", i2o_dev->lct_data->sub_class); } dprintk(KERN_INFO "%s: I2O LAN device unregistered.\n", dev->name); } i2o_remove_handler(&i2o_lan_handler); } EXPORT_NO_SYMBOLS; MODULE_AUTHOR("Univ of Helsinki, CS Department"); MODULE_DESCRIPTION("I2O Lan OSM"); MODULE_PARM(bucketpost, "i"); // Total number of buckets to post MODULE_PARM(bucketthresh, "i"); // Bucket post threshold MODULE_PARM(rx_copybreak, "i"); #endif