/* * macserial.c: Serial port driver for Power Macintoshes. * * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. * * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "macserial.h" /* * It would be nice to dynamically allocate everything that * depends on NUM_SERIAL, so we could support any number of * Z8530s, but for now... */ #define NUM_SERIAL 2 /* Max number of ZS chips supported */ #define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */ /* On PowerMacs, the hardware takes care of the SCC recovery time, but we need the eieio to make sure that the accesses occur in the order we want. */ #define RECOVERY_DELAY eieio() struct mac_zschannel *zs_kgdbchan; struct mac_zschannel zs_channels[NUM_CHANNELS]; struct mac_serial zs_soft[NUM_CHANNELS]; int zs_channels_found; struct mac_serial *zs_chain; /* list of all channels */ struct tty_struct zs_ttys[NUM_CHANNELS]; /** struct tty_struct *zs_constty; **/ /* Console hooks... */ static int zs_cons_chan = 0; struct mac_serial *zs_consinfo = 0; struct mac_zschannel *zs_conschan; /* * Initialization values for when a channel is used for * kernel gdb support. */ static unsigned char kgdb_regs[16] = { 0, 0, 0, /* write 0, 1, 2 */ (Rx8 | RxENABLE), /* write 3 */ (X16CLK | SB1), /* write 4 */ (Tx8 | TxENAB | RTS), /* write 5 */ 0, 0, 0, /* write 6, 7, 8 */ (NV), /* write 9 */ (NRZ), /* write 10 */ (TCBR | RCBR), /* write 11 */ 1, 0, /* 38400 baud divisor, write 12 + 13 */ (BRENABL), /* write 14 */ (DCDIE) /* write 15 */ }; #define ZS_CLOCK 3686400 /* Z8530 RTxC input clock rate */ DECLARE_TASK_QUEUE(tq_serial); struct tty_driver serial_driver, callout_driver; static int serial_refcount; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* Debugging... DEBUG_INTR is bad to use when one of the zs * lines is your console ;( */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #define RS_STROBE_TIME 10 #define RS_ISR_PASS_LIMIT 256 #define _INLINE_ inline static void probe_sccs(void); static void change_speed(struct mac_serial *info); static void rs_wait_until_sent(struct tty_struct *tty, int timeout); static struct tty_struct *serial_table[NUM_CHANNELS]; static struct termios *serial_termios[NUM_CHANNELS]; static struct termios *serial_termios_locked[NUM_CHANNELS]; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the copy_from_user blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char tmp_buf[4096]; /* This is cheating */ static struct semaphore tmp_buf_sem = MUTEX; static inline int serial_paranoia_check(struct mac_serial *info, dev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%d, %d) in %s\n"; static const char *badinfo = "Warning: null mac_serial for (%d, %d) in %s\n"; if (!info) { printk(badinfo, MAJOR(device), MINOR(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, MAJOR(device), MINOR(device), routine); return 1; } #endif return 0; } /* * This is used to figure out the divisor speeds and the timeouts */ static int baud_table[] = { 0, 50, 75, 110, 134, 150, 200, 300, 600, 1200, 1800, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 0 }; /* * Reading and writing Z8530 registers. */ static inline unsigned char read_zsreg(struct mac_zschannel *channel, unsigned char reg) { unsigned char retval; if (reg != 0) { *channel->control = reg; RECOVERY_DELAY; } retval = *channel->control; RECOVERY_DELAY; return retval; } static inline void write_zsreg(struct mac_zschannel *channel, unsigned char reg, unsigned char value) { if (reg != 0) { *channel->control = reg; RECOVERY_DELAY; } *channel->control = value; RECOVERY_DELAY; return; } static inline unsigned char read_zsdata(struct mac_zschannel *channel) { unsigned char retval; retval = *channel->data; RECOVERY_DELAY; return retval; } static inline void write_zsdata(struct mac_zschannel *channel, unsigned char value) { *channel->data = value; RECOVERY_DELAY; return; } static inline void load_zsregs(struct mac_zschannel *channel, unsigned char *regs) { ZS_CLEARERR(channel); ZS_CLEARFIFO(channel); /* Load 'em up */ write_zsreg(channel, R4, regs[R4]); write_zsreg(channel, R10, regs[R10]); write_zsreg(channel, R3, regs[R3] & ~RxENABLE); write_zsreg(channel, R5, regs[R5] & ~TxENAB); write_zsreg(channel, R1, regs[R1]); write_zsreg(channel, R9, regs[R9]); write_zsreg(channel, R11, regs[R11]); write_zsreg(channel, R12, regs[R12]); write_zsreg(channel, R13, regs[R13]); write_zsreg(channel, R14, regs[R14]); write_zsreg(channel, R15, regs[R15]); write_zsreg(channel, R3, regs[R3]); write_zsreg(channel, R5, regs[R5]); return; } /* Sets or clears DTR/RTS on the requested line */ static inline void zs_rtsdtr(struct mac_serial *ss, int set) { if (set) ss->curregs[5] |= (RTS | DTR); else ss->curregs[5] &= ~(RTS | DTR); write_zsreg(ss->zs_channel, 5, ss->curregs[5]); return; } static inline void kgdb_chaninit(struct mac_serial *ss, int intson, int bps) { int brg; if (intson) { kgdb_regs[R1] = INT_ALL_Rx; kgdb_regs[R9] |= MIE; } else { kgdb_regs[R1] = 0; kgdb_regs[R9] &= ~MIE; } brg = BPS_TO_BRG(bps, ZS_CLOCK/16); kgdb_regs[R12] = brg; kgdb_regs[R13] = brg >> 8; load_zsregs(ss->zs_channel, kgdb_regs); } /* Utility routines for the Zilog */ static inline int get_zsbaud(struct mac_serial *ss) { struct mac_zschannel *channel = ss->zs_channel; int brg; if ((ss->curregs[R11] & TCBR) == 0) { /* higher rates don't use the baud rate generator */ return (ss->curregs[R4] & X32CLK)? ZS_CLOCK/32: ZS_CLOCK/16; } /* The baud rate is split up between two 8-bit registers in * what is termed 'BRG time constant' format in my docs for * the chip, it is a function of the clk rate the chip is * receiving which happens to be constant. */ brg = (read_zsreg(channel, 13) << 8); brg |= read_zsreg(channel, 12); return BRG_TO_BPS(brg, (ZS_CLOCK/(ss->clk_divisor))); } /* On receive, this clears errors and the receiver interrupts */ static inline void rs_recv_clear(struct mac_zschannel *zsc) { write_zsreg(zsc, 0, ERR_RES); write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */ } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(struct mac_serial *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_serial); mark_bh(SERIAL_BH); } extern void breakpoint(void); /* For the KGDB frame character */ static _INLINE_ void receive_chars(struct mac_serial *info, struct pt_regs *regs) { struct tty_struct *tty = info->tty; unsigned char ch, stat, flag; while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) != 0) { stat = read_zsreg(info->zs_channel, R1); ch = read_zsdata(info->zs_channel); #if 0 /* KGDB not yet supported */ /* Look for kgdb 'stop' character, consult the gdb documentation * for remote target debugging and arch/sparc/kernel/sparc-stub.c * to see how all this works. */ if ((info->kgdb_channel) && (ch =='\003')) { breakpoint(); continue; } #endif if (!tty) continue; tty_flip_buffer_push(tty); if (tty->flip.count >= TTY_FLIPBUF_SIZE) { static int flip_buf_ovf; ++flip_buf_ovf; continue; } tty->flip.count++; { static int flip_max_cnt; if (flip_max_cnt < tty->flip.count) flip_max_cnt = tty->flip.count; } if (stat & Rx_OVR) { flag = TTY_OVERRUN; /* reset the error indication */ write_zsreg(info->zs_channel, 0, ERR_RES); } else if (stat & FRM_ERR) { /* this error is not sticky */ flag = TTY_FRAME; } else if (stat & PAR_ERR) { flag = TTY_PARITY; /* reset the error indication */ write_zsreg(info->zs_channel, 0, ERR_RES); } else flag = 0; *tty->flip.flag_buf_ptr++ = flag; *tty->flip.char_buf_ptr++ = ch; } } static void transmit_chars(struct mac_serial *info) { if ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0) return; info->tx_active = 0; if (info->x_char) { /* Send next char */ write_zsdata(info->zs_channel, info->x_char); info->x_char = 0; info->tx_active = 1; return; } if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tx_stopped) { write_zsreg(info->zs_channel, 0, RES_Tx_P); return; } /* Send char */ write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; info->tx_active = 1; if (info->xmit_cnt < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); } static _INLINE_ void status_handle(struct mac_serial *info) { unsigned char status; /* Get status from Read Register 0 */ status = read_zsreg(info->zs_channel, 0); /* Check for DCD transitions */ if (((status ^ info->read_reg_zero) & DCD) != 0 && info->tty && !C_CLOCAL(info->tty)) { if (status & DCD) { wake_up_interruptible(&info->open_wait); } else if (!(info->flags & ZILOG_CALLOUT_ACTIVE)) { if (info->tty) tty_hangup(info->tty); } } /* Check for CTS transitions */ if (info->tty && C_CRTSCTS(info->tty)) { /* * For some reason, on the Power Macintosh, * it seems that the CTS bit is 1 when CTS is * *negated* and 0 when it is asserted. * The DCD bit doesn't seem to be inverted * like this. */ if ((status & CTS) == 0) { if (info->tx_stopped) { info->tx_stopped = 0; if (!info->tx_active) transmit_chars(info); } } else { info->tx_stopped = 1; } } /* Clear status condition... */ write_zsreg(info->zs_channel, 0, RES_EXT_INT); info->read_reg_zero = status; } /* * This is the serial driver's generic interrupt routine */ void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct mac_serial *info = (struct mac_serial *) dev_id; unsigned char zs_intreg; int shift; /* NOTE: The read register 3, which holds the irq status, * does so for both channels on each chip. Although * the status value itself must be read from the A * channel and is only valid when read from channel A. * Yes... broken hardware... */ #define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT) if (info->zs_chan_a == info->zs_channel) shift = 3; /* Channel A */ else shift = 0; /* Channel B */ for (;;) { zs_intreg = read_zsreg(info->zs_chan_a, 3) >> shift; if ((zs_intreg & CHAN_IRQMASK) == 0) break; if (zs_intreg & CHBRxIP) receive_chars(info, regs); if (zs_intreg & CHBTxIP) transmit_chars(info); if (zs_intreg & CHBEXT) status_handle(info); } } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_stop")) return; #if 0 save_flags(flags); cli(); if (info->curregs[5] & TxENAB) { info->curregs[5] &= ~TxENAB; info->pendregs[5] &= ~TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); } restore_flags(flags); #endif } static void rs_start(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_start")) return; save_flags(flags); cli(); #if 0 if (info->xmit_cnt && info->xmit_buf && !(info->curregs[5] & TxENAB)) { info->curregs[5] |= TxENAB; info->pendregs[5] = info->curregs[5]; write_zsreg(info->zs_channel, 5, info->curregs[5]); } #else if (info->xmit_cnt && info->xmit_buf && !info->tx_active) { transmit_chars(info); } #endif restore_flags(flags); } /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct mac_serial *info = (struct mac_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } static void rs_timer(void) { } static int startup(struct mac_serial * info) { unsigned long flags; if (info->flags & ZILOG_INITIALIZED) return 0; if (!info->xmit_buf) { info->xmit_buf = (unsigned char *) get_free_page(GFP_KERNEL); if (!info->xmit_buf) return -ENOMEM; } save_flags(flags); cli(); #ifdef SERIAL_DEBUG_OPEN printk("starting up ttyS%d (irq %d)...", info->line, info->irq); #endif /* * Clear the receive FIFO. */ ZS_CLEARFIFO(info->zs_channel); info->xmit_fifo_size = 1; /* * Clear the interrupt registers. */ write_zsreg(info->zs_channel, 0, ERR_RES); write_zsreg(info->zs_channel, 0, RES_H_IUS); /* * Turn on RTS and DTR. */ zs_rtsdtr(info, 1); /* * Finally, enable sequencing and interrupts */ info->curregs[1] = (info->curregs[1] & ~0x18) | (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB); info->pendregs[1] = info->curregs[1]; info->curregs[3] |= (RxENABLE | Rx8); info->pendregs[3] = info->curregs[3]; info->curregs[5] |= (TxENAB | Tx8); info->pendregs[5] = info->curregs[5]; info->curregs[9] |= (NV | MIE); info->pendregs[9] = info->curregs[9]; write_zsreg(info->zs_channel, 3, info->curregs[3]); write_zsreg(info->zs_channel, 5, info->curregs[5]); write_zsreg(info->zs_channel, 9, info->curregs[9]); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * Set the speed of the serial port */ change_speed(info); /* Save the current value of RR0 */ info->read_reg_zero = read_zsreg(info->zs_channel, 0); info->flags |= ZILOG_INITIALIZED; restore_flags(flags); return 0; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct mac_serial * info) { unsigned long flags; if (!(info->flags & ZILOG_INITIALIZED)) return; #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....", info->line, info->irq); #endif save_flags(flags); cli(); /* Disable interrupts */ if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } info->pendregs[1] = info->curregs[1] = 0; write_zsreg(info->zs_channel, 1, 0); /* no interrupts */ info->curregs[3] &= ~RxENABLE; info->pendregs[3] = info->curregs[3]; write_zsreg(info->zs_channel, 3, info->curregs[3]); info->curregs[5] &= ~TxENAB; if (!info->tty || C_HUPCL(info->tty)) info->curregs[5] &= ~(DTR | RTS); info->pendregs[5] = info->curregs[5]; write_zsreg(info->zs_channel, 5, info->curregs[5]); if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); info->flags &= ~ZILOG_INITIALIZED; restore_flags(flags); } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct mac_serial *info) { unsigned short port; unsigned cflag; int i; int brg; unsigned long flags; if (!info->tty || !info->tty->termios) return; cflag = info->tty->termios->c_cflag; if (!(port = info->port)) return; i = cflag & CBAUD; save_flags(flags); cli(); info->zs_baud = baud_table[i]; info->clk_divisor = 16; switch (info->zs_baud) { case ZS_CLOCK/16: /* 230400 */ info->curregs[4] = X16CLK; info->curregs[11] = 0; break; case ZS_CLOCK/32: /* 115200 */ info->curregs[4] = X32CLK; info->curregs[11] = 0; break; default: info->curregs[4] = X16CLK; info->curregs[11] = TCBR | RCBR; brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor); info->curregs[12] = (brg & 255); info->curregs[13] = ((brg >> 8) & 255); info->curregs[14] = BRENABL; } /* byte size and parity */ info->curregs[3] &= ~RxNBITS_MASK; info->curregs[5] &= ~TxNBITS_MASK; switch (cflag & CSIZE) { case CS5: info->curregs[3] |= Rx5; info->curregs[5] |= Tx5; break; case CS6: info->curregs[3] |= Rx6; info->curregs[5] |= Tx6; break; case CS7: info->curregs[3] |= Rx7; info->curregs[5] |= Tx7; break; case CS8: default: /* defaults to 8 bits */ info->curregs[3] |= Rx8; info->curregs[5] |= Tx8; break; } info->pendregs[3] = info->curregs[3]; info->pendregs[5] = info->curregs[5]; info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN); if (cflag & CSTOPB) { info->curregs[4] |= SB2; } else { info->curregs[4] |= SB1; } if (cflag & PARENB) { info->curregs[4] |= PAR_ENA; } if (!(cflag & PARODD)) { info->curregs[4] |= PAR_EVEN; } info->pendregs[4] = info->curregs[4]; if (!(cflag & CLOCAL)) { if (!(info->curregs[15] & DCDIE)) info->read_reg_zero = read_zsreg(info->zs_channel, 0); info->curregs[15] |= DCDIE; } else info->curregs[15] &= ~DCDIE; if (cflag & CRTSCTS) { info->curregs[15] |= CTSIE; if ((read_zsreg(info->zs_channel, 0) & CTS) != 0) info->tx_stopped = 1; } else { info->curregs[15] &= ~CTSIE; info->tx_stopped = 0; } info->pendregs[15] = info->curregs[15]; /* Load up the new values */ load_zsregs(info->zs_channel, info->curregs); restore_flags(flags); } /* This is for console output over ttya/ttyb */ static void rs_put_char(char ch) { struct mac_zschannel *chan = zs_conschan; int loops = 0; unsigned long flags; if(!chan) return; save_flags(flags); cli(); while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0) if (++loops >= 1000000) break; write_zsdata(chan, ch); restore_flags(flags); } /* These are for receiving and sending characters under the kgdb * source level kernel debugger. */ void putDebugChar(char kgdb_char) { struct mac_zschannel *chan = zs_kgdbchan; while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0) udelay(5); write_zsdata(chan, kgdb_char); } char getDebugChar(void) { struct mac_zschannel *chan = zs_kgdbchan; while ((read_zsreg(chan, 0) & Rx_CH_AV) == 0) udelay(5); return read_zsdata(chan); } /* * Fair output driver allows a process to speak. */ static void rs_fair_output(void) { int left; /* Output no more than that */ unsigned long flags; struct mac_serial *info = zs_consinfo; char c; if (info == 0) return; if (info->xmit_buf == 0) return; save_flags(flags); cli(); left = info->xmit_cnt; while (left != 0) { c = info->xmit_buf[info->xmit_tail]; info->xmit_tail = (info->xmit_tail+1) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; restore_flags(flags); rs_put_char(c); save_flags(flags); cli(); left = MIN(info->xmit_cnt, left-1); } restore_flags(flags); return; } /* * zs_console_print is registered for printk. */ static void zs_console_print(const char *p) { char c; while ((c = *(p++)) != 0) { if (c == '\n') rs_put_char('\r'); rs_put_char(c); } /* Comment this if you want to have a strict interrupt-driven output */ rs_fair_output(); } static void rs_flush_chars(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped || !info->xmit_buf) return; /* Enable transmitter */ save_flags(flags); cli(); transmit_chars(info); restore_flags(flags); } static int rs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, total = 0; struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty || !info->xmit_buf) return 0; save_flags(flags); while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; if (from_user) { down(&tmp_buf_sem); copy_from_user(tmp_buf, buf, c); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); up(&tmp_buf_sem); } else memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = (info->xmit_head + c) & (SERIAL_XMIT_SIZE-1); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; total += c; } if (info->xmit_cnt && !tty->stopped && !info->tx_stopped && !info->tx_active) transmit_chars(info); restore_flags(flags); return total; } static int rs_write_room(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int rs_chars_in_buffer(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void rs_flush_buffer(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; sti(); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; if (I_IXOFF(tty)) { save_flags(flags); cli(); info->x_char = STOP_CHAR(tty); if (!info->tx_active) transmit_chars(info); restore_flags(flags); } if (C_CRTSCTS(tty)) { /* * Here we want to turn off the RTS line. On Macintoshes, * we only get the DTR line, which goes to both DTR and * RTS on the modem. RTS doesn't go out to the serial * port socket. So you should make sure your modem is * set to ignore DTR if you're using CRTSCTS. */ save_flags(flags); cli(); info->curregs[5] &= ~(DTR | RTS); info->pendregs[5] &= ~(DTR | RTS); write_zsreg(info->zs_channel, 5, info->curregs[5]); restore_flags(flags); } } static void rs_unthrottle(struct tty_struct * tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n", _tty_name(tty, buf), tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; if (I_IXOFF(tty)) { save_flags(flags); cli(); if (info->x_char) info->x_char = 0; else { info->x_char = START_CHAR(tty); if (!info->tx_active) transmit_chars(info); } restore_flags(flags); } if (C_CRTSCTS(tty)) { /* Assert RTS and DTR lines */ save_flags(flags); cli(); info->curregs[5] |= DTR | RTS; info->pendregs[5] |= DTR | RTS; write_zsreg(info->zs_channel, 5, info->curregs[5]); restore_flags(flags); } } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct mac_serial * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; return copy_to_user(retinfo,&tmp,sizeof(*retinfo)); } static int set_serial_info(struct mac_serial * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct mac_serial old_info; int retval = 0; if (!new_info) return -EFAULT; copy_from_user(&new_serial,new_info,sizeof(new_serial)); old_info = *info; if (!suser()) { if ((new_serial.baud_base != info->baud_base) || (new_serial.type != info->type) || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ZILOG_USR_MASK) != (info->flags & ~ZILOG_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ZILOG_USR_MASK) | (new_serial.flags & ZILOG_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } if (info->count > 1) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->baud_base = new_serial.baud_base; info->flags = ((info->flags & ~ZILOG_FLAGS) | (new_serial.flags & ZILOG_FLAGS)); info->type = new_serial.type; info->close_delay = new_serial.close_delay; info->closing_wait = new_serial.closing_wait; check_and_exit: retval = startup(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct mac_serial * info, unsigned int *value) { unsigned char status; cli(); status = read_zsreg(info->zs_channel, 0); sti(); put_user(status,value); return 0; } static int get_modem_info(struct mac_serial *info, unsigned int *value) { unsigned char control, status; unsigned int result; cli(); control = info->curregs[5]; status = read_zsreg(info->zs_channel, 0); sti(); result = ((control & RTS) ? TIOCM_RTS: 0) | ((control & DTR) ? TIOCM_DTR: 0) | ((status & DCD) ? TIOCM_CAR: 0) | ((status & CTS) ? 0: TIOCM_CTS); put_user(result,value); return 0; } static int set_modem_info(struct mac_serial *info, unsigned int cmd, unsigned int *value) { int error; unsigned int arg, bits; error = verify_area(VERIFY_READ, value, sizeof(int)); if (error) return error; get_user(arg, value); bits = (arg & TIOCM_RTS? RTS: 0) + (arg & TIOCM_DTR? DTR: 0); cli(); switch (cmd) { case TIOCMBIS: info->curregs[5] |= bits; break; case TIOCMBIC: info->curregs[5] &= ~bits; break; case TIOCMSET: info->curregs[5] = (info->curregs[5] & ~(DTR | RTS)) | bits; break; default: sti(); return -EINVAL; } info->pendregs[5] = info->curregs[5]; write_zsreg(info->zs_channel, 5, info->curregs[5]); sti(); return 0; } /* * rs_break - turn transmit break condition on/off */ static void rs_break(struct tty_struct *tty, int break_state) { struct mac_serial *info = (struct mac_serial *) tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_break")) return; if (!info->port) return; save_flags(flags); cli(); if (break_state == -1) info->curregs[5] |= SND_BRK; else info->curregs[5] &= ~SND_BRK; write_zsreg(info->zs_channel, 5, info->curregs[5]); restore_flags(flags); } static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { int error; struct mac_serial * info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGWILD) && (cmd != TIOCSERSWILD) && (cmd != TIOCSERGSTRUCT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TIOCMGET: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned int)); if (error) return error; return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct serial_struct)); if (error) return error; return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERGETLSR: /* Get line status register */ error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(unsigned int)); if (error) return error; else return get_lsr_info(info, (unsigned int *) arg); case TIOCSERGSTRUCT: error = verify_area(VERIFY_WRITE, (void *) arg, sizeof(struct mac_serial)); if (error) return error; copy_from_user((struct mac_serial *) arg, info, sizeof(struct mac_serial)); return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; int was_stopped; if (tty->termios->c_cflag == old_termios->c_cflag) return; was_stopped = info->tx_stopped; change_speed(info); if (was_stopped && !info->tx_stopped) rs_start(tty); } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. * Wait for the last remaining data to be sent. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct mac_serial * info = (struct mac_serial *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { restore_flags(flags); return; } info->flags |= ZILOG_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ZILOG_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ZILOG_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ tty->closing = 1; if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receiver and receive interrupts. */ /** if (!info->iscons) ... **/ info->curregs[3] &= ~RxENABLE; info->pendregs[3] = info->curregs[3]; write_zsreg(info->zs_channel, 3, info->curregs[3]); info->curregs[1] &= ~(0x18); /* disable any rx ints */ info->pendregs[1] = info->curregs[1]; write_zsreg(info->zs_channel, 1, info->curregs[1]); ZS_CLEARFIFO(info->zs_channel); if (info->flags & ZILOG_INITIALIZED) { /* * Before we drop DTR, make sure the SCC transmitter * has completely drained. */ rs_wait_until_sent(tty, info->timeout); } shutdown(info); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; current->timeout = jiffies + info->close_delay; schedule(); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE| ZILOG_CLOSING); wake_up_interruptible(&info->close_wait); restore_flags(flags); } /* * rs_wait_until_sent() --- wait until the transmitter is empty */ static void rs_wait_until_sent(struct tty_struct *tty, int timeout) { struct mac_serial *info = (struct mac_serial *) tty->driver_data; unsigned long orig_jiffies, char_time; if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent")) return; orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. */ char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; char_time = char_time / 5; if (char_time == 0) char_time = 1; if (timeout) char_time = MIN(char_time, timeout); while ((read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) { current->state = TASK_INTERRUPTIBLE; current->counter = 0; /* make us low-priority */ current->timeout = jiffies + char_time; schedule(); if (signal_pending(current)) break; if (timeout && ((orig_jiffies + timeout) < jiffies)) break; } current->state = TASK_RUNNING; } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ void rs_hangup(struct tty_struct *tty) { struct mac_serial * info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_hangup")) return; rs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct mac_serial *info) { struct wait_queue wait = { current, NULL }; int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (info->flags & ZILOG_CLOSING) { interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ZILOG_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ZILOG_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ZILOG_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ZILOG_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } if (info->flags & ZILOG_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", info->line, info->count); #endif cli(); if (!tty_hung_up_p(filp)) info->count--; sti(); info->blocked_open++; while (1) { cli(); if (!(info->flags & ZILOG_CALLOUT_ACTIVE) && (tty->termios->c_cflag & CBAUD)) zs_rtsdtr(info, 1); sti(); current->state = TASK_INTERRUPTIBLE; if (tty_hung_up_p(filp) || !(info->flags & ZILOG_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ZILOG_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ZILOG_CALLOUT_ACTIVE) && !(info->flags & ZILOG_CLOSING) && (do_clocal || (read_zsreg(info->zs_channel, 0) & DCD))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its ZILOG structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ int rs_open(struct tty_struct *tty, struct file * filp) { struct mac_serial *info; int retval, line; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= zs_channels_found)) return -ENODEV; info = zs_soft + line; /* Is the kgdb running over this line? */ if (info->kgdb_channel) return -ENODEV; if (serial_paranoia_check(info, tty->device, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif info->count++; tty->driver_data = info; info->tty = tty; /* * If the port is the middle of closing, bail out now */ if (tty_hung_up_p(filp) || (info->flags & ZILOG_CLOSING)) { if (info->flags & ZILOG_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ZILOG_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * Start up serial port */ retval = startup(info); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ZILOG_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; change_speed(info); } info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("rs_open ttys%d successful...", info->line); #endif return 0; } /* Finally, routines used to initialize the serial driver. */ static void show_serial_version(void) { printk("PowerMac Z8530 serial driver version 1.00\n"); } /* Ask the PROM how many Z8530s we have and initialize their zs_channels */ static void probe_sccs() { struct device_node *dev, *ch; struct mac_serial **pp; int n; n = 0; pp = &zs_chain; for (dev = find_devices("escc"); dev != 0; dev = dev->next) { if (n >= NUM_CHANNELS) { printk("Sorry, can't use %s: no more channels\n", dev->full_name); continue; } for (ch = dev->child; ch != 0; ch = ch->sibling) { if (ch->n_addrs < 1 || ch ->n_intrs < 1) { printk("Can't use %s: %d addrs %d intrs\n", ch->full_name, ch->n_addrs, ch->n_intrs); continue; } zs_channels[n].control = (volatile unsigned char *) ch->addrs[0].address; zs_channels[n].data = zs_channels[n].control + ch->addrs[0].size / 2; zs_soft[n].zs_channel = &zs_channels[n]; zs_soft[n].irq = ch->intrs[0]; if (request_irq(ch->intrs[0], rs_interrupt, 0, "SCC", &zs_soft[n])) panic("macserial: can't get irq %d", ch->intrs[0]); /* XXX this assumes the prom puts chan A before B */ if (n & 1) zs_soft[n].zs_chan_a = &zs_channels[n-1]; else zs_soft[n].zs_chan_a = &zs_channels[n]; *pp = &zs_soft[n]; pp = &zs_soft[n].zs_next; ++n; } } *pp = 0; zs_channels_found = n; } /* rs_init inits the driver */ int rs_init(void) { int channel, i; unsigned long flags; struct mac_serial *info; /* Setup base handler, and timer table. */ init_bh(SERIAL_BH, do_serial_bh); timer_table[RS_TIMER].fn = rs_timer; timer_table[RS_TIMER].expires = 0; /* Find out how many Z8530 SCCs we have */ if (zs_chain == 0) probe_sccs(); show_serial_version(); /* Initialize the tty_driver structure */ /* Not all of this is exactly right for us. */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.name = "ttyS"; serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = zs_channels_found; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B38400 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = rs_open; serial_driver.close = rs_close; serial_driver.write = rs_write; serial_driver.flush_chars = rs_flush_chars; serial_driver.write_room = rs_write_room; serial_driver.chars_in_buffer = rs_chars_in_buffer; serial_driver.flush_buffer = rs_flush_buffer; serial_driver.ioctl = rs_ioctl; serial_driver.throttle = rs_throttle; serial_driver.unthrottle = rs_unthrottle; serial_driver.set_termios = rs_set_termios; serial_driver.stop = rs_stop; serial_driver.start = rs_start; serial_driver.hangup = rs_hangup; serial_driver.break_ctl = rs_break; serial_driver.wait_until_sent = rs_wait_until_sent; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; callout_driver.name = "cua"; callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver\n"); save_flags(flags); cli(); for (channel = 0; channel < zs_channels_found; ++channel) { zs_soft[channel].clk_divisor = 16; zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); /* If console serial line, then enable interrupts. */ if (zs_soft[channel].is_cons) { write_zsreg(zs_soft[channel].zs_channel, R1, (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV | MIE)); } /* If this is the kgdb line, enable interrupts because we * now want to receive the 'control-c' character from the * client attached to us asynchronously. */ if (zs_soft[channel].kgdb_channel) kgdb_chaninit(&zs_soft[channel], 1, zs_soft[channel].zs_baud); } for (info = zs_chain, i = 0; info; info = info->zs_next, i++) { info->magic = SERIAL_MAGIC; info->port = (int) info->zs_channel->control; info->line = i; info->tty = 0; info->custom_divisor = 16; info->close_delay = 50; info->closing_wait = 3000; info->x_char = 0; info->event = 0; info->count = 0; info->blocked_open = 0; info->tqueue.routine = do_softint; info->tqueue.data = info; info->callout_termios =callout_driver.init_termios; info->normal_termios = serial_driver.init_termios; info->open_wait = 0; info->close_wait = 0; printk("tty%02d at 0x%08x (irq = %d)", info->line, info->port, info->irq); printk(" is a Z8530 ESCC\n"); } restore_flags(flags); return 0; } /* * register_serial and unregister_serial allows for serial ports to be * configured at run-time, to support PCMCIA modems. */ /* PowerMac: Unused at this time, just here to make things link. */ int register_serial(struct serial_struct *req) { return -1; } void unregister_serial(int line) { return; } extern void register_console(void (*proc)(const char *)); /* * Initialization values for when a channel is used for * a serial console. */ static unsigned char cons_init_regs[16] = { 0, 0, 0, /* write 0, 1, 2 */ (Rx8 | RxENABLE), /* write 3 */ (X16CLK | SB1), /* write 4 */ (Tx8 | TxENAB | RTS), /* write 5 */ 0, 0, 0, /* write 6, 7, 8 */ 0, /* write 9 */ (NRZ), /* write 10 */ (TCBR | RCBR), /* write 11 */ 1, 0, /* 38400 baud divisor, write 12 + 13 */ (BRENABL), /* write 14 */ 0 /* write 15 */ }; /* * Hooks for running a serial console. con_init() calls this if the * console is being run over one of the serial ports. * 'channel' is decoded as 1=modem, 2=printer. */ void rs_cons_hook(int chip, int out, int channel) { int brg; if (!out) return; if (zs_consinfo != 0) { printk("rs_cons_hook called twice?\n"); return; } if (zs_chain == 0) probe_sccs(); --channel; if (channel < 0 || channel >= zs_channels_found) { printk("rs_cons_hook: channel = %d?\n", channel); return; } zs_cons_chan = channel; zs_consinfo = &zs_soft[channel]; zs_conschan = zs_consinfo->zs_channel; zs_consinfo->clk_divisor = 16; zs_consinfo->zs_baud = 38400; zs_consinfo->is_cons = 1; memcpy(zs_consinfo->curregs, cons_init_regs, sizeof(cons_init_regs)); brg = BPS_TO_BRG(zs_consinfo->zs_baud, ZS_CLOCK/16); zs_consinfo->curregs[R12] = brg; zs_consinfo->curregs[R13] = brg >> 8; load_zsregs(zs_conschan, zs_consinfo->curregs); register_console(zs_console_print); printk("zs%d: console I/O\n", channel); } /* This is called at boot time to prime the kgdb serial debugging * serial line. The 'tty_num' argument is 0 for /dev/ttyS0 and 1 * for /dev/ttyS1 which is determined in setup_arch() from the * boot command line flags. */ void rs_kgdb_hook(int tty_num) { if (zs_chain == 0) probe_sccs(); zs_kgdbchan = zs_soft[tty_num].zs_channel; zs_soft[tty_num].clk_divisor = 16; zs_soft[tty_num].zs_baud = get_zsbaud(&zs_soft[tty_num]); zs_soft[tty_num].kgdb_channel = 1; /* This runs kgdb */ zs_soft[tty_num ^ 1].kgdb_channel = 0; /* This does not */ /* Turn on transmitter/receiver at 8-bits/char */ kgdb_chaninit(&zs_soft[tty_num], 0, 9600); ZS_CLEARERR(zs_kgdbchan); ZS_CLEARFIFO(zs_kgdbchan); }