/* * macserial.c: Serial port driver for Power Macintoshes. * * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras. * * Copyright (C) 1996 Paul Mackerras (Paul.Mackerras@cs.anu.edu.au) * Copyright (C) 1995 David S. Miller (davem@caip.rutgers.edu) */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SERIAL_CONSOLE #include #endif #include #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_KGDB #include #endif #include "macserial.h" #ifdef CONFIG_PMAC_PBOOK static int serial_notify_sleep(struct pmu_sleep_notifier *self, int when); static struct pmu_sleep_notifier serial_sleep_notifier = { serial_notify_sleep, SLEEP_LEVEL_MISC, }; #endif /* * It would be nice to dynamically allocate everything that * depends on NUM_SERIAL, so we could support any number of * Z8530s, but for now... */ #define NUM_SERIAL 2 /* Max number of ZS chips supported */ #define NUM_CHANNELS (NUM_SERIAL * 2) /* 2 channels per chip */ /* On PowerMacs, the hardware takes care of the SCC recovery time, but we need the eieio to make sure that the accesses occur in the order we want. */ #define RECOVERY_DELAY eieio() struct mac_zschannel zs_channels[NUM_CHANNELS]; struct mac_serial zs_soft[NUM_CHANNELS]; int zs_channels_found; struct mac_serial *zs_chain; /* list of all channels */ struct tty_struct zs_ttys[NUM_CHANNELS]; static int is_powerbook; #ifdef CONFIG_SERIAL_CONSOLE static struct console sercons; #endif #ifdef CONFIG_KGDB struct mac_zschannel *zs_kgdbchan; static unsigned char scc_inittab[] = { 9, 0x80, /* reset A side (CHRA) */ 13, 0, /* set baud rate divisor */ 12, 1, 14, 1, /* baud rate gen enable, src=rtxc (BRENABL) */ 11, 0x50, /* clocks = br gen (RCBR | TCBR) */ 5, 0x6a, /* tx 8 bits, assert RTS (Tx8 | TxENAB | RTS) */ 4, 0x44, /* x16 clock, 1 stop (SB1 | X16CLK)*/ 3, 0xc1, /* rx enable, 8 bits (RxENABLE | Rx8)*/ }; #endif #define ZS_CLOCK 3686400 /* Z8530 RTxC input clock rate */ static DECLARE_TASK_QUEUE(tq_serial); static struct tty_driver serial_driver, callout_driver; static int serial_refcount; /* serial subtype definitions */ #define SERIAL_TYPE_NORMAL 1 #define SERIAL_TYPE_CALLOUT 2 /* number of characters left in xmit buffer before we ask for more */ #define WAKEUP_CHARS 256 /* * Debugging. */ #undef SERIAL_DEBUG_INTR #undef SERIAL_DEBUG_OPEN #undef SERIAL_DEBUG_FLOW #undef SERIAL_DEBUG_POWER #undef SERIAL_DEBUG_THROTTLE #undef SERIAL_DEBUG_STOP #undef SERIAL_DEBUG_BAUDS #define RS_STROBE_TIME 10 #define RS_ISR_PASS_LIMIT 256 #define _INLINE_ inline static void probe_sccs(void); static void change_speed(struct mac_serial *info, struct termios *old); static void rs_wait_until_sent(struct tty_struct *tty, int timeout); static int set_scc_power(struct mac_serial * info, int state); static int setup_scc(struct mac_serial * info); static struct tty_struct *serial_table[NUM_CHANNELS]; static struct termios *serial_termios[NUM_CHANNELS]; static struct termios *serial_termios_locked[NUM_CHANNELS]; #ifndef MIN #define MIN(a,b) ((a) < (b) ? (a) : (b)) #endif /* * tmp_buf is used as a temporary buffer by serial_write. We need to * lock it in case the copy_from_user blocks while swapping in a page, * and some other program tries to do a serial write at the same time. * Since the lock will only come under contention when the system is * swapping and available memory is low, it makes sense to share one * buffer across all the serial ports, since it significantly saves * memory if large numbers of serial ports are open. */ static unsigned char *tmp_buf; static DECLARE_MUTEX(tmp_buf_sem); static inline int __pmac serial_paranoia_check(struct mac_serial *info, dev_t device, const char *routine) { #ifdef SERIAL_PARANOIA_CHECK static const char *badmagic = "Warning: bad magic number for serial struct (%d, %d) in %s\n"; static const char *badinfo = "Warning: null mac_serial for (%d, %d) in %s\n"; if (!info) { printk(badinfo, MAJOR(device), MINOR(device), routine); return 1; } if (info->magic != SERIAL_MAGIC) { printk(badmagic, MAJOR(device), MINOR(device), routine); return 1; } #endif return 0; } /* * Reading and writing Z8530 registers. */ static inline unsigned char __pmac read_zsreg(struct mac_zschannel *channel, unsigned char reg) { unsigned char retval; unsigned long flags; /* * We have to make this atomic. */ spin_lock_irqsave(&channel->lock, flags); if (reg != 0) { *channel->control = reg; RECOVERY_DELAY; } retval = *channel->control; RECOVERY_DELAY; spin_unlock_irqrestore(&channel->lock, flags); return retval; } static inline void __pmac write_zsreg(struct mac_zschannel *channel, unsigned char reg, unsigned char value) { unsigned long flags; spin_lock_irqsave(&channel->lock, flags); if (reg != 0) { *channel->control = reg; RECOVERY_DELAY; } *channel->control = value; RECOVERY_DELAY; spin_unlock_irqrestore(&channel->lock, flags); return; } static inline unsigned char __pmac read_zsdata(struct mac_zschannel *channel) { unsigned char retval; retval = *channel->data; RECOVERY_DELAY; return retval; } static inline void write_zsdata(struct mac_zschannel *channel, unsigned char value) { *channel->data = value; RECOVERY_DELAY; return; } static inline void load_zsregs(struct mac_zschannel *channel, unsigned char *regs) { ZS_CLEARERR(channel); ZS_CLEARFIFO(channel); /* Load 'em up */ write_zsreg(channel, R4, regs[R4]); write_zsreg(channel, R10, regs[R10]); write_zsreg(channel, R3, regs[R3] & ~RxENABLE); write_zsreg(channel, R5, regs[R5] & ~TxENAB); write_zsreg(channel, R1, regs[R1]); write_zsreg(channel, R9, regs[R9]); write_zsreg(channel, R11, regs[R11]); write_zsreg(channel, R12, regs[R12]); write_zsreg(channel, R13, regs[R13]); write_zsreg(channel, R14, regs[R14]); write_zsreg(channel, R15, regs[R15]); write_zsreg(channel, R3, regs[R3]); write_zsreg(channel, R5, regs[R5]); return; } /* Sets or clears DTR/RTS on the requested line */ static inline void zs_rtsdtr(struct mac_serial *ss, int set) { if (set) ss->curregs[5] |= (RTS | DTR); else ss->curregs[5] &= ~(RTS | DTR); write_zsreg(ss->zs_channel, 5, ss->curregs[5]); return; } /* Utility routines for the Zilog */ static inline int get_zsbaud(struct mac_serial *ss) { struct mac_zschannel *channel = ss->zs_channel; int brg; if ((ss->curregs[R11] & TCBR) == 0) { /* higher rates don't use the baud rate generator */ return (ss->curregs[R4] & X32CLK)? ZS_CLOCK/32: ZS_CLOCK/16; } /* The baud rate is split up between two 8-bit registers in * what is termed 'BRG time constant' format in my docs for * the chip, it is a function of the clk rate the chip is * receiving which happens to be constant. */ brg = (read_zsreg(channel, 13) << 8); brg |= read_zsreg(channel, 12); return BRG_TO_BPS(brg, (ZS_CLOCK/(ss->clk_divisor))); } /* On receive, this clears errors and the receiver interrupts */ static inline void rs_recv_clear(struct mac_zschannel *zsc) { write_zsreg(zsc, 0, ERR_RES); write_zsreg(zsc, 0, RES_H_IUS); /* XXX this is unnecessary */ } /* * ---------------------------------------------------------------------- * * Here starts the interrupt handling routines. All of the following * subroutines are declared as inline and are folded into * rs_interrupt(). They were separated out for readability's sake. * * - Ted Ts'o (tytso@mit.edu), 7-Mar-93 * ----------------------------------------------------------------------- */ /* * This routine is used by the interrupt handler to schedule * processing in the software interrupt portion of the driver. */ static _INLINE_ void rs_sched_event(struct mac_serial *info, int event) { info->event |= 1 << event; queue_task(&info->tqueue, &tq_serial); mark_bh(MACSERIAL_BH); } static _INLINE_ void receive_chars(struct mac_serial *info, struct pt_regs *regs) { struct tty_struct *tty = info->tty; unsigned char ch, stat, flag; while ((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) != 0) { stat = read_zsreg(info->zs_channel, R1); ch = read_zsdata(info->zs_channel); #ifdef CONFIG_KGDB if (info->kgdb_channel) { if (ch == 0x03 || ch == '$') breakpoint(); if (stat & (Rx_OVR|FRM_ERR|PAR_ERR)) write_zsreg(info->zs_channel, 0, ERR_RES); return; } #endif if (!tty) continue; if (tty->flip.count >= TTY_FLIPBUF_SIZE) tty_flip_buffer_push(tty); if (tty->flip.count >= TTY_FLIPBUF_SIZE) { static int flip_buf_ovf; if (++flip_buf_ovf <= 1) printk("FB. overflow: %d\n", flip_buf_ovf); break; } tty->flip.count++; { static int flip_max_cnt; if (flip_max_cnt < tty->flip.count) flip_max_cnt = tty->flip.count; } if (stat & Rx_OVR) { flag = TTY_OVERRUN; } else if (stat & FRM_ERR) { flag = TTY_FRAME; } else if (stat & PAR_ERR) { flag = TTY_PARITY; } else flag = 0; if (flag) /* reset the error indication */ write_zsreg(info->zs_channel, 0, ERR_RES); *tty->flip.flag_buf_ptr++ = flag; *tty->flip.char_buf_ptr++ = ch; } if (tty) tty_flip_buffer_push(tty); } static void transmit_chars(struct mac_serial *info) { unsigned long flags; save_flags(flags); cli(); if ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0) goto out; info->tx_active = 0; if (info->x_char) { /* Send next char */ write_zsdata(info->zs_channel, info->x_char); info->x_char = 0; info->tx_active = 1; goto out; } if ((info->xmit_cnt <= 0) || info->tty->stopped || info->tx_stopped) { write_zsreg(info->zs_channel, 0, RES_Tx_P); goto out; } /* Send char */ write_zsdata(info->zs_channel, info->xmit_buf[info->xmit_tail++]); info->xmit_tail = info->xmit_tail & (SERIAL_XMIT_SIZE-1); info->xmit_cnt--; info->tx_active = 1; if (info->xmit_cnt < WAKEUP_CHARS) rs_sched_event(info, RS_EVENT_WRITE_WAKEUP); out: restore_flags(flags); } static _INLINE_ void status_handle(struct mac_serial *info) { unsigned char status; /* Get status from Read Register 0 */ status = read_zsreg(info->zs_channel, 0); /* Check for DCD transitions */ if (((status ^ info->read_reg_zero) & DCD) != 0 && info->tty && !C_CLOCAL(info->tty)) { if (status & DCD) { wake_up_interruptible(&info->open_wait); } else if (!(info->flags & ZILOG_CALLOUT_ACTIVE)) { if (info->tty) tty_hangup(info->tty); } } /* Check for CTS transitions */ if (info->tty && C_CRTSCTS(info->tty)) { /* * For some reason, on the Power Macintosh, * it seems that the CTS bit is 1 when CTS is * *negated* and 0 when it is asserted. * The DCD bit doesn't seem to be inverted * like this. */ if ((status & CTS) == 0) { if (info->tx_stopped) { #ifdef SERIAL_DEBUG_FLOW printk("CTS up\n"); #endif info->tx_stopped = 0; if (!info->tx_active) transmit_chars(info); } } else { #ifdef SERIAL_DEBUG_FLOW printk("CTS down\n"); #endif info->tx_stopped = 1; } } /* Clear status condition... */ write_zsreg(info->zs_channel, 0, RES_EXT_INT); info->read_reg_zero = status; } /* * This is the serial driver's generic interrupt routine */ static void rs_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct mac_serial *info = (struct mac_serial *) dev_id; unsigned char zs_intreg; int shift; /* NOTE: The read register 3, which holds the irq status, * does so for both channels on each chip. Although * the status value itself must be read from the A * channel and is only valid when read from channel A. * Yes... broken hardware... */ #define CHAN_IRQMASK (CHBRxIP | CHBTxIP | CHBEXT) if (info->zs_chan_a == info->zs_channel) shift = 3; /* Channel A */ else shift = 0; /* Channel B */ for (;;) { zs_intreg = read_zsreg(info->zs_chan_a, 3) >> shift; #ifdef SERIAL_DEBUG_INTR printk("rs_interrupt: irq %d, zs_intreg 0x%x\n", irq, (int)zs_intreg); #endif if ((zs_intreg & CHAN_IRQMASK) == 0) break; if (!(info->flags & ZILOG_INITIALIZED)) { printk("rs_interrupt: irq %d, port not initialized\n", irq); break; } if (zs_intreg & CHBRxIP) receive_chars(info, regs); if (zs_intreg & CHBTxIP) transmit_chars(info); if (zs_intreg & CHBEXT) status_handle(info); } } /* * ------------------------------------------------------------------- * Here ends the serial interrupt routines. * ------------------------------------------------------------------- */ /* * ------------------------------------------------------------ * rs_stop() and rs_start() * * This routines are called before setting or resetting tty->stopped. * ------------------------------------------------------------ */ static void rs_stop(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; #ifdef SERIAL_DEBUG_STOP printk("rs_stop %ld....\n", tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_stop")) return; #if 0 save_flags(flags); cli(); if (info->curregs[5] & TxENAB) { info->curregs[5] &= ~TxENAB; info->pendregs[5] &= ~TxENAB; write_zsreg(info->zs_channel, 5, info->curregs[5]); } restore_flags(flags); #endif } static void rs_start(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_STOP printk("rs_start %ld....\n", tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_start")) return; save_flags(flags); cli(); #if 0 if (info->xmit_cnt && info->xmit_buf && !(info->curregs[5] & TxENAB)) { info->curregs[5] |= TxENAB; info->pendregs[5] = info->curregs[5]; write_zsreg(info->zs_channel, 5, info->curregs[5]); } #else if (info->xmit_cnt && info->xmit_buf && !info->tx_active) { transmit_chars(info); } #endif restore_flags(flags); } /* * This routine is used to handle the "bottom half" processing for the * serial driver, known also the "software interrupt" processing. * This processing is done at the kernel interrupt level, after the * rs_interrupt() has returned, BUT WITH INTERRUPTS TURNED ON. This * is where time-consuming activities which can not be done in the * interrupt driver proper are done; the interrupt driver schedules * them using rs_sched_event(), and they get done here. */ static void do_serial_bh(void) { run_task_queue(&tq_serial); } static void do_softint(void *private_) { struct mac_serial *info = (struct mac_serial *) private_; struct tty_struct *tty; tty = info->tty; if (!tty) return; if (test_and_clear_bit(RS_EVENT_WRITE_WAKEUP, &info->event)) { if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); wake_up_interruptible(&tty->write_wait); } } static void rs_timer(void) { } static int startup(struct mac_serial * info, int can_sleep) { int delay; #ifdef SERIAL_DEBUG_OPEN printk("startup() (ttyS%d, irq %d)\n", info->line, info->irq); #endif if (info->flags & ZILOG_INITIALIZED) { #ifdef SERIAL_DEBUG_OPEN printk(" -> already inited\n"); #endif return 0; } if (!info->xmit_buf) { info->xmit_buf = (unsigned char *) get_free_page(GFP_KERNEL); if (!info->xmit_buf) return -ENOMEM; } #ifdef SERIAL_DEBUG_OPEN printk("starting up ttyS%d (irq %d)...\n", info->line, info->irq); #endif delay = set_scc_power(info, 1); setup_scc(info); #ifdef SERIAL_DEBUG_OPEN printk("enabling IRQ on ttyS%d (irq %d)...\n", info->line, info->irq); #endif info->flags |= ZILOG_INITIALIZED; enable_irq(info->irq); if (delay) { if (can_sleep) { /* we need to wait a bit before using the port */ current->state = TASK_INTERRUPTIBLE; schedule_timeout(delay * HZ / 1000); } else mdelay(delay); } return 0; } static int setup_scc(struct mac_serial * info) { unsigned long flags; #ifdef SERIAL_DEBUG_OPEN printk("setting up ttys%d SCC...\n", info->line); #endif save_flags(flags); cli(); /* Disable interrupts */ /* * Reset the chip. */ write_zsreg(info->zs_channel, 9, (info->zs_channel == info->zs_chan_a? CHRA: CHRB)); udelay(10); write_zsreg(info->zs_channel, 9, 0); /* * Clear the receive FIFO. */ ZS_CLEARFIFO(info->zs_channel); info->xmit_fifo_size = 1; /* * Clear the interrupt registers. */ write_zsreg(info->zs_channel, 0, ERR_RES); write_zsreg(info->zs_channel, 0, RES_H_IUS); /* * Turn on RTS and DTR. */ zs_rtsdtr(info, 1); /* * Finally, enable sequencing and interrupts */ info->curregs[1] = (info->curregs[1] & ~0x18) | (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB); info->pendregs[1] = info->curregs[1]; info->curregs[3] |= (RxENABLE | Rx8); info->pendregs[3] = info->curregs[3]; info->curregs[5] |= (TxENAB | Tx8); info->pendregs[5] = info->curregs[5]; info->curregs[9] |= (NV | MIE); info->pendregs[9] = info->curregs[9]; write_zsreg(info->zs_channel, 3, info->curregs[3]); write_zsreg(info->zs_channel, 5, info->curregs[5]); write_zsreg(info->zs_channel, 9, info->curregs[9]); if (info->tty) clear_bit(TTY_IO_ERROR, &info->tty->flags); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; /* * Set the speed of the serial port */ change_speed(info, 0); /* Save the current value of RR0 */ info->read_reg_zero = read_zsreg(info->zs_channel, 0); restore_flags(flags); return 0; } /* * This routine will shutdown a serial port; interrupts are disabled, and * DTR is dropped if the hangup on close termio flag is on. */ static void shutdown(struct mac_serial * info) { #ifdef SERIAL_DEBUG_OPEN printk("Shutting down serial port %d (irq %d)....\n", info->line, info->irq); #endif if (!(info->flags & ZILOG_INITIALIZED)) { #ifdef SERIAL_DEBUG_OPEN printk("(already shutdown)\n"); #endif return; } disable_irq(info->irq); info->pendregs[1] = info->curregs[1] = 0; write_zsreg(info->zs_channel, 1, 0); /* no interrupts */ info->curregs[3] &= ~RxENABLE; info->pendregs[3] = info->curregs[3]; write_zsreg(info->zs_channel, 3, info->curregs[3]); info->curregs[5] &= ~TxENAB; if (!info->tty || C_HUPCL(info->tty)) info->curregs[5] &= ~(DTR | RTS); info->pendregs[5] = info->curregs[5]; write_zsreg(info->zs_channel, 5, info->curregs[5]); if (info->tty) set_bit(TTY_IO_ERROR, &info->tty->flags); set_scc_power(info, 0); if (info->xmit_buf) { free_page((unsigned long) info->xmit_buf); info->xmit_buf = 0; } memset(info->curregs, 0, sizeof(info->curregs)); memset(info->curregs, 0, sizeof(info->pendregs)); info->flags &= ~ZILOG_INITIALIZED; } /* * Turn power on or off to the SCC and associated stuff * (port drivers, modem, IR port, etc.) * Returns the number of milliseconds we should wait before * trying to use the port. */ static int set_scc_power(struct mac_serial * info, int state) { int delay = 0; if (feature_test(info->dev_node, FEATURE_Serial_enable) < 0) return 0; /* don't have serial power control */ /* The timings looks strange but that's the ones MacOS seems to use for the internal modem. I think we can use a lot faster ones, at least whe not using the modem, this should be tested. */ if (state) { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO "ttyS%02d: powering up hardware\n", info->line); #endif if (feature_test(info->dev_node, FEATURE_Serial_enable) == 0) { feature_clear(info->dev_node, FEATURE_Serial_reset); mdelay(5); feature_set(info->dev_node, FEATURE_Serial_enable); } if (info->zs_chan_a == info->zs_channel) feature_set(info->dev_node, FEATURE_Serial_IO_A); else feature_set(info->dev_node, FEATURE_Serial_IO_B); delay = 1; if (info->is_cobalt_modem){ feature_set(info->dev_node, FEATURE_Modem_Reset); mdelay(5); feature_clear(info->dev_node, FEATURE_Modem_Reset); delay = 1000; /* wait for 1s before using */ } #ifdef CONFIG_PMAC_PBOOK if (info->is_pwbk_ir) pmu_enable_irled(1); #endif /* CONFIG_PMAC_PBOOK */ } else { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO "ttyS%02d: shutting down hardware\n", info->line); #endif #ifdef CONFIG_KGDB if (info->kgdb_channel) { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO " (canceled by KGDB)\n"); #endif return 0; } #endif #ifdef CONFIG_XMON if (!info->is_cobalt_modem) { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO " (canceled by XMON)\n"); #endif return 0; } #endif if (info->is_cobalt_modem) { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO "ttyS%02d: shutting down modem\n", info->line); #endif feature_set(info->dev_node, FEATURE_Modem_Reset); mdelay(15); feature_clear(info->dev_node, FEATURE_Modem_Reset); mdelay(25); } #ifdef CONFIG_PMAC_PBOOK if (info->is_pwbk_ir) pmu_enable_irled(0); #endif /* CONFIG_PMAC_PBOOK */ if (info->zs_chan_a == info->zs_channel) { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO "ttyS%02d: shutting down SCC channel A\n", info->line); #endif feature_clear(info->dev_node, FEATURE_Serial_IO_A); } else { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO "ttyS%02d: shutting down SCC channel B\n", info->line); #endif feature_clear(info->dev_node, FEATURE_Serial_IO_B); } /* XXX for now, shut down SCC core only on powerbooks */ if (is_powerbook && !(feature_test(info->dev_node, FEATURE_Serial_IO_A) || feature_test(info->dev_node, FEATURE_Serial_IO_B))) { #ifdef SERIAL_DEBUG_POWER printk(KERN_INFO "ttyS%02d: shutting down SCC core\n", info->line); #endif feature_set(info->dev_node, FEATURE_Serial_reset); mdelay(10); feature_clear(info->dev_node, FEATURE_Serial_enable); mdelay(5); } } return delay; } /* * This routine is called to set the UART divisor registers to match * the specified baud rate for a serial port. */ static void change_speed(struct mac_serial *info, struct termios *old_termios) { unsigned short port; unsigned cflag; int bits; int brg, baud; unsigned long flags; if (!info->tty || !info->tty->termios) return; if (!(port = info->port)) return; cflag = info->tty->termios->c_cflag; baud = tty_get_baud_rate(info->tty); if (baud == 0) { if (old_termios) { info->tty->termios->c_cflag &= ~CBAUD; info->tty->termios->c_cflag |= (old_termios->c_cflag & CBAUD); cflag = info->tty->termios->c_cflag; baud = tty_get_baud_rate(info->tty); } else baud = info->zs_baud; } if (baud > 230400) baud = 230400; else if (baud == 0) baud = 38400; save_flags(flags); cli(); info->zs_baud = baud; info->clk_divisor = 16; #ifdef SERIAL_DEBUG_BAUDS printk("set speed to %d bds, ", baud); #endif switch (baud) { case ZS_CLOCK/16: /* 230400 */ info->curregs[4] = X16CLK; info->curregs[11] = 0; break; case ZS_CLOCK/32: /* 115200 */ info->curregs[4] = X32CLK; info->curregs[11] = 0; break; default: info->curregs[4] = X16CLK; info->curregs[11] = TCBR | RCBR; brg = BPS_TO_BRG(baud, ZS_CLOCK/info->clk_divisor); info->curregs[12] = (brg & 255); info->curregs[13] = ((brg >> 8) & 255); info->curregs[14] = BRENABL; } /* byte size and parity */ info->curregs[3] &= ~RxNBITS_MASK; info->curregs[5] &= ~TxNBITS_MASK; switch (cflag & CSIZE) { case CS5: info->curregs[3] |= Rx5; info->curregs[5] |= Tx5; #ifdef SERIAL_DEBUG_BAUDS printk("5 bits, "); #endif bits = 7; break; case CS6: info->curregs[3] |= Rx6; info->curregs[5] |= Tx6; #ifdef SERIAL_DEBUG_BAUDS printk("6 bits, "); #endif bits = 8; break; case CS7: info->curregs[3] |= Rx7; info->curregs[5] |= Tx7; #ifdef SERIAL_DEBUG_BAUDS printk("7 bits, "); #endif bits = 9; break; case CS8: default: /* defaults to 8 bits */ info->curregs[3] |= Rx8; info->curregs[5] |= Tx8; #ifdef SERIAL_DEBUG_BAUDS printk("8 bits, "); #endif bits = 10; break; } info->pendregs[3] = info->curregs[3]; info->pendregs[5] = info->curregs[5]; info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN); if (cflag & CSTOPB) { info->curregs[4] |= SB2; bits++; #ifdef SERIAL_DEBUG_BAUDS printk("2 stop, "); #endif } else { info->curregs[4] |= SB1; #ifdef SERIAL_DEBUG_BAUDS printk("1 stop, "); #endif } if (cflag & PARENB) { bits++; info->curregs[4] |= PAR_ENA; #ifdef SERIAL_DEBUG_BAUDS printk("parity, "); #endif } if (!(cflag & PARODD)) { info->curregs[4] |= PAR_EVEN; } info->pendregs[4] = info->curregs[4]; if (!(cflag & CLOCAL)) { if (!(info->curregs[15] & DCDIE)) info->read_reg_zero = read_zsreg(info->zs_channel, 0); info->curregs[15] |= DCDIE; } else info->curregs[15] &= ~DCDIE; if (cflag & CRTSCTS) { info->curregs[15] |= CTSIE; if ((read_zsreg(info->zs_channel, 0) & CTS) != 0) info->tx_stopped = 1; } else { info->curregs[15] &= ~CTSIE; info->tx_stopped = 0; } info->pendregs[15] = info->curregs[15]; /* Calc timeout value. This is pretty broken with high baud rates with HZ=100. This code would love a larger HZ and a >1 fifo size, but this is not a priority. The resulting value must be >HZ/2 */ info->timeout = ((info->xmit_fifo_size*HZ*bits) / baud); info->timeout += HZ/50+1; /* Add .02 seconds of slop */ #ifdef SERIAL_DEBUG_BAUDS printk("timeout=%d/%ds, base:%d\n", (int)info->timeout, (int)HZ, (int)info->baud_base); #endif /* Load up the new values */ load_zsregs(info->zs_channel, info->curregs); restore_flags(flags); } static void rs_flush_chars(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_flush_chars")) return; if (info->xmit_cnt <= 0 || tty->stopped || info->tx_stopped || !info->xmit_buf) return; /* Enable transmitter */ transmit_chars(info); } static int rs_write(struct tty_struct * tty, int from_user, const unsigned char *buf, int count) { int c, ret = 0; struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_write")) return 0; if (!tty || !info->xmit_buf || !tmp_buf) return 0; save_flags(flags); if (from_user) { down(&tmp_buf_sem); while (1) { c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) break; c -= copy_from_user(tmp_buf, buf, c); if (!c) { if (!ret) ret = -EFAULT; break; } cli(); c = MIN(c, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); memcpy(info->xmit_buf + info->xmit_head, tmp_buf, c); info->xmit_head = ((info->xmit_head + c) & (SERIAL_XMIT_SIZE-1)); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; ret += c; } up(&tmp_buf_sem); } else { while (1) { cli(); c = MIN(count, MIN(SERIAL_XMIT_SIZE - info->xmit_cnt - 1, SERIAL_XMIT_SIZE - info->xmit_head)); if (c <= 0) { restore_flags(flags); break; } memcpy(info->xmit_buf + info->xmit_head, buf, c); info->xmit_head = ((info->xmit_head + c) & (SERIAL_XMIT_SIZE-1)); info->xmit_cnt += c; restore_flags(flags); buf += c; count -= c; ret += c; } } if (info->xmit_cnt && !tty->stopped && !info->tx_stopped && !info->tx_active) transmit_chars(info); restore_flags(flags); return ret; } static int rs_write_room(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; int ret; if (serial_paranoia_check(info, tty->device, "rs_write_room")) return 0; ret = SERIAL_XMIT_SIZE - info->xmit_cnt - 1; if (ret < 0) ret = 0; return ret; } static int rs_chars_in_buffer(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_chars_in_buffer")) return 0; return info->xmit_cnt; } static void rs_flush_buffer(struct tty_struct *tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_flush_buffer")) return; cli(); info->xmit_cnt = info->xmit_head = info->xmit_tail = 0; sti(); wake_up_interruptible(&tty->write_wait); if ((tty->flags & (1 << TTY_DO_WRITE_WAKEUP)) && tty->ldisc.write_wakeup) (tty->ldisc.write_wakeup)(tty); } /* * ------------------------------------------------------------ * rs_throttle() * * This routine is called by the upper-layer tty layer to signal that * incoming characters should be throttled. * ------------------------------------------------------------ */ static void rs_throttle(struct tty_struct * tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("throttle %ld....\n",tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_throttle")) return; if (I_IXOFF(tty)) { save_flags(flags); cli(); info->x_char = STOP_CHAR(tty); if (!info->tx_active) transmit_chars(info); restore_flags(flags); } if (C_CRTSCTS(tty)) { /* * Here we want to turn off the RTS line. On Macintoshes, * we only get the DTR line, which goes to both DTR and * RTS on the modem. RTS doesn't go out to the serial * port socket. So you should make sure your modem is * set to ignore DTR if you're using CRTSCTS. */ save_flags(flags); cli(); info->curregs[5] &= ~(DTR | RTS); info->pendregs[5] &= ~(DTR | RTS); write_zsreg(info->zs_channel, 5, info->curregs[5]); restore_flags(flags); } } static void rs_unthrottle(struct tty_struct * tty) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; unsigned long flags; #ifdef SERIAL_DEBUG_THROTTLE char buf[64]; printk("unthrottle %s: %d....\n",tty->ldisc.chars_in_buffer(tty)); #endif if (serial_paranoia_check(info, tty->device, "rs_unthrottle")) return; if (I_IXOFF(tty)) { save_flags(flags); cli(); if (info->x_char) info->x_char = 0; else { info->x_char = START_CHAR(tty); if (!info->tx_active) transmit_chars(info); } restore_flags(flags); } if (C_CRTSCTS(tty)) { /* Assert RTS and DTR lines */ save_flags(flags); cli(); info->curregs[5] |= DTR | RTS; info->pendregs[5] |= DTR | RTS; write_zsreg(info->zs_channel, 5, info->curregs[5]); restore_flags(flags); } } /* * ------------------------------------------------------------ * rs_ioctl() and friends * ------------------------------------------------------------ */ static int get_serial_info(struct mac_serial * info, struct serial_struct * retinfo) { struct serial_struct tmp; if (!retinfo) return -EFAULT; memset(&tmp, 0, sizeof(tmp)); tmp.type = info->type; tmp.line = info->line; tmp.port = info->port; tmp.irq = info->irq; tmp.flags = info->flags; tmp.baud_base = info->baud_base; tmp.close_delay = info->close_delay; tmp.closing_wait = info->closing_wait; tmp.custom_divisor = info->custom_divisor; if (copy_to_user(retinfo,&tmp,sizeof(*retinfo))) return -EFAULT; return 0; } static int set_serial_info(struct mac_serial * info, struct serial_struct * new_info) { struct serial_struct new_serial; struct mac_serial old_info; int retval = 0; if (copy_from_user(&new_serial,new_info,sizeof(new_serial))) return -EFAULT; old_info = *info; if (!capable(CAP_SYS_ADMIN)) { if ((new_serial.baud_base != info->baud_base) || (new_serial.type != info->type) || (new_serial.close_delay != info->close_delay) || ((new_serial.flags & ~ZILOG_USR_MASK) != (info->flags & ~ZILOG_USR_MASK))) return -EPERM; info->flags = ((info->flags & ~ZILOG_USR_MASK) | (new_serial.flags & ZILOG_USR_MASK)); info->custom_divisor = new_serial.custom_divisor; goto check_and_exit; } if (info->count > 1) return -EBUSY; /* * OK, past this point, all the error checking has been done. * At this point, we start making changes..... */ info->baud_base = new_serial.baud_base; info->flags = ((info->flags & ~ZILOG_FLAGS) | (new_serial.flags & ZILOG_FLAGS)); info->type = new_serial.type; info->close_delay = new_serial.close_delay; info->closing_wait = new_serial.closing_wait; check_and_exit: if (info->flags & ZILOG_INITIALIZED) retval = setup_scc(info); return retval; } /* * get_lsr_info - get line status register info * * Purpose: Let user call ioctl() to get info when the UART physically * is emptied. On bus types like RS485, the transmitter must * release the bus after transmitting. This must be done when * the transmit shift register is empty, not be done when the * transmit holding register is empty. This functionality * allows an RS485 driver to be written in user space. */ static int get_lsr_info(struct mac_serial * info, unsigned int *value) { unsigned char status; unsigned long flags; save_flags(flags); cli(); status = read_zsreg(info->zs_channel, 0); restore_flags(flags); status = (status & Tx_BUF_EMP)? TIOCSER_TEMT: 0; return put_user(status,value); } static int get_modem_info(struct mac_serial *info, unsigned int *value) { unsigned char control, status; unsigned int result; unsigned long flags; save_flags(flags); cli(); control = info->curregs[5]; status = read_zsreg(info->zs_channel, 0); restore_flags(flags); result = ((control & RTS) ? TIOCM_RTS: 0) | ((control & DTR) ? TIOCM_DTR: 0) | ((status & DCD) ? TIOCM_CAR: 0) | ((status & CTS) ? 0: TIOCM_CTS); return put_user(result,value); } static int set_modem_info(struct mac_serial *info, unsigned int cmd, unsigned int *value) { int error; unsigned int arg, bits; unsigned long flags; error = get_user(arg, value); if (error) return error; bits = (arg & TIOCM_RTS? RTS: 0) + (arg & TIOCM_DTR? DTR: 0); save_flags(flags); cli(); switch (cmd) { case TIOCMBIS: info->curregs[5] |= bits; break; case TIOCMBIC: info->curregs[5] &= ~bits; break; case TIOCMSET: info->curregs[5] = (info->curregs[5] & ~(DTR | RTS)) | bits; break; default: restore_flags(flags); return -EINVAL; } info->pendregs[5] = info->curregs[5]; write_zsreg(info->zs_channel, 5, info->curregs[5]); restore_flags(flags); return 0; } /* * rs_break - turn transmit break condition on/off */ static void rs_break(struct tty_struct *tty, int break_state) { struct mac_serial *info = (struct mac_serial *) tty->driver_data; unsigned long flags; if (serial_paranoia_check(info, tty->device, "rs_break")) return; if (!info->port) return; save_flags(flags); cli(); if (break_state == -1) info->curregs[5] |= SND_BRK; else info->curregs[5] &= ~SND_BRK; write_zsreg(info->zs_channel, 5, info->curregs[5]); restore_flags(flags); } static int rs_ioctl(struct tty_struct *tty, struct file * file, unsigned int cmd, unsigned long arg) { struct mac_serial * info = (struct mac_serial *)tty->driver_data; #ifdef CONFIG_KGDB if (info->kgdb_channel) return -ENODEV; #endif if (serial_paranoia_check(info, tty->device, "rs_ioctl")) return -ENODEV; if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) && (cmd != TIOCSERCONFIG) && (cmd != TIOCSERGSTRUCT)) { if (tty->flags & (1 << TTY_IO_ERROR)) return -EIO; } switch (cmd) { case TIOCMGET: return get_modem_info(info, (unsigned int *) arg); case TIOCMBIS: case TIOCMBIC: case TIOCMSET: return set_modem_info(info, cmd, (unsigned int *) arg); case TIOCGSERIAL: return get_serial_info(info, (struct serial_struct *) arg); case TIOCSSERIAL: return set_serial_info(info, (struct serial_struct *) arg); case TIOCSERGETLSR: /* Get line status register */ return get_lsr_info(info, (unsigned int *) arg); case TIOCSERGSTRUCT: if (copy_to_user((struct mac_serial *) arg, info, sizeof(struct mac_serial))) return -EFAULT; return 0; default: return -ENOIOCTLCMD; } return 0; } static void rs_set_termios(struct tty_struct *tty, struct termios *old_termios) { struct mac_serial *info = (struct mac_serial *)tty->driver_data; int was_stopped; if (tty->termios->c_cflag == old_termios->c_cflag) return; was_stopped = info->tx_stopped; change_speed(info, old_termios); if (was_stopped && !info->tx_stopped) { tty->hw_stopped = 0; rs_start(tty); } } /* * ------------------------------------------------------------ * rs_close() * * This routine is called when the serial port gets closed. * Wait for the last remaining data to be sent. * ------------------------------------------------------------ */ static void rs_close(struct tty_struct *tty, struct file * filp) { struct mac_serial * info = (struct mac_serial *)tty->driver_data; unsigned long flags; if (!info || serial_paranoia_check(info, tty->device, "rs_close")) return; save_flags(flags); cli(); if (tty_hung_up_p(filp)) { restore_flags(flags); return; } #ifdef SERIAL_DEBUG_OPEN printk("rs_close ttys%d, count = %d\n", info->line, info->count); #endif if ((tty->count == 1) && (info->count != 1)) { /* * Uh, oh. tty->count is 1, which means that the tty * structure will be freed. Info->count should always * be one in these conditions. If it's greater than * one, we've got real problems, since it means the * serial port won't be shutdown. */ printk("rs_close: bad serial port count; tty->count is 1, " "info->count is %d\n", info->count); info->count = 1; } if (--info->count < 0) { printk("rs_close: bad serial port count for ttys%d: %d\n", info->line, info->count); info->count = 0; } if (info->count) { restore_flags(flags); return; } info->flags |= ZILOG_CLOSING; /* * Save the termios structure, since this port may have * separate termios for callout and dialin. */ if (info->flags & ZILOG_NORMAL_ACTIVE) info->normal_termios = *tty->termios; if (info->flags & ZILOG_CALLOUT_ACTIVE) info->callout_termios = *tty->termios; /* * Now we wait for the transmit buffer to clear; and we notify * the line discipline to only process XON/XOFF characters. */ #ifdef SERIAL_DEBUG_OPEN printk("waiting end of Tx... (timeout:%d)\n", info->closing_wait); #endif tty->closing = 1; if (info->closing_wait != ZILOG_CLOSING_WAIT_NONE) tty_wait_until_sent(tty, info->closing_wait); /* * At this point we stop accepting input. To do this, we * disable the receiver and receive interrupts. */ info->curregs[3] &= ~RxENABLE; info->pendregs[3] = info->curregs[3]; write_zsreg(info->zs_channel, 3, info->curregs[3]); info->curregs[1] &= ~(0x18); /* disable any rx ints */ info->pendregs[1] = info->curregs[1]; write_zsreg(info->zs_channel, 1, info->curregs[1]); ZS_CLEARFIFO(info->zs_channel); if (info->flags & ZILOG_INITIALIZED) { /* * Before we drop DTR, make sure the SCC transmitter * has completely drained. */ #ifdef SERIAL_DEBUG_OPEN printk("waiting end of Rx...\n"); #endif rs_wait_until_sent(tty, info->timeout); } shutdown(info); /* restore flags now since shutdown() will have disabled this port's specific irqs */ restore_flags(flags); if (tty->driver.flush_buffer) tty->driver.flush_buffer(tty); if (tty->ldisc.flush_buffer) tty->ldisc.flush_buffer(tty); tty->closing = 0; info->event = 0; info->tty = 0; if (info->blocked_open) { if (info->close_delay) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(info->close_delay); } wake_up_interruptible(&info->open_wait); } info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE| ZILOG_CLOSING); wake_up_interruptible(&info->close_wait); } /* * rs_wait_until_sent() --- wait until the transmitter is empty */ static void rs_wait_until_sent(struct tty_struct *tty, int timeout) { struct mac_serial *info = (struct mac_serial *) tty->driver_data; unsigned long orig_jiffies, char_time; if (serial_paranoia_check(info, tty->device, "rs_wait_until_sent")) return; /* printk("rs_wait_until_sent, timeout:%d, tty_stopped:%d, tx_stopped:%d\n", timeout, tty->stopped, info->tx_stopped); */ orig_jiffies = jiffies; /* * Set the check interval to be 1/5 of the estimated time to * send a single character, and make it at least 1. The check * interval should also be less than the timeout. */ if (info->timeout <= HZ/50) { printk("macserial: invalid info->timeout=%d\n", info->timeout); info->timeout = HZ/50+1; } char_time = (info->timeout - HZ/50) / info->xmit_fifo_size; char_time = char_time / 5; if (char_time > HZ) { printk("macserial: char_time %ld >HZ !!!\n", char_time); char_time = 1; } else if (char_time == 0) char_time = 1; if (timeout) char_time = MIN(char_time, timeout); while ((read_zsreg(info->zs_channel, 1) & ALL_SNT) == 0) { current->state = TASK_INTERRUPTIBLE; schedule_timeout(char_time); if (signal_pending(current)) break; if (timeout && time_after(jiffies, orig_jiffies + timeout)) break; } current->state = TASK_RUNNING; } /* * rs_hangup() --- called by tty_hangup() when a hangup is signaled. */ static void rs_hangup(struct tty_struct *tty) { struct mac_serial * info = (struct mac_serial *)tty->driver_data; if (serial_paranoia_check(info, tty->device, "rs_hangup")) return; rs_flush_buffer(tty); shutdown(info); info->event = 0; info->count = 0; info->flags &= ~(ZILOG_NORMAL_ACTIVE|ZILOG_CALLOUT_ACTIVE); info->tty = 0; wake_up_interruptible(&info->open_wait); } /* * ------------------------------------------------------------ * rs_open() and friends * ------------------------------------------------------------ */ static int block_til_ready(struct tty_struct *tty, struct file * filp, struct mac_serial *info) { DECLARE_WAITQUEUE(wait,current); int retval; int do_clocal = 0; /* * If the device is in the middle of being closed, then block * until it's done, and then try again. */ if (info->flags & ZILOG_CLOSING) { interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ZILOG_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * If this is a callout device, then just make sure the normal * device isn't being used. */ if (tty->driver.subtype == SERIAL_TYPE_CALLOUT) { if (info->flags & ZILOG_NORMAL_ACTIVE) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_SESSION_LOCKOUT) && (info->session != current->session)) return -EBUSY; if ((info->flags & ZILOG_CALLOUT_ACTIVE) && (info->flags & ZILOG_PGRP_LOCKOUT) && (info->pgrp != current->pgrp)) return -EBUSY; info->flags |= ZILOG_CALLOUT_ACTIVE; return 0; } /* * If non-blocking mode is set, or the port is not enabled, * then make the check up front and then exit. */ if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) { if (info->flags & ZILOG_CALLOUT_ACTIVE) return -EBUSY; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } if (info->flags & ZILOG_CALLOUT_ACTIVE) { if (info->normal_termios.c_cflag & CLOCAL) do_clocal = 1; } else { if (tty->termios->c_cflag & CLOCAL) do_clocal = 1; } /* * Block waiting for the carrier detect and the line to become * free (i.e., not in use by the callout). While we are in * this loop, info->count is dropped by one, so that * rs_close() knows when to free things. We restore it upon * exit, either normal or abnormal. */ retval = 0; add_wait_queue(&info->open_wait, &wait); #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready before block: ttys%d, count = %d\n", info->line, info->count); #endif cli(); if (!tty_hung_up_p(filp)) info->count--; sti(); info->blocked_open++; while (1) { cli(); if (!(info->flags & ZILOG_CALLOUT_ACTIVE) && (tty->termios->c_cflag & CBAUD)) zs_rtsdtr(info, 1); sti(); set_current_state(TASK_INTERRUPTIBLE); if (tty_hung_up_p(filp) || !(info->flags & ZILOG_INITIALIZED)) { #ifdef SERIAL_DO_RESTART if (info->flags & ZILOG_HUP_NOTIFY) retval = -EAGAIN; else retval = -ERESTARTSYS; #else retval = -EAGAIN; #endif break; } if (!(info->flags & ZILOG_CALLOUT_ACTIVE) && !(info->flags & ZILOG_CLOSING) && (do_clocal || (read_zsreg(info->zs_channel, 0) & DCD))) break; if (signal_pending(current)) { retval = -ERESTARTSYS; break; } #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready blocking: ttys%d, count = %d\n", info->line, info->count); #endif schedule(); } current->state = TASK_RUNNING; remove_wait_queue(&info->open_wait, &wait); if (!tty_hung_up_p(filp)) info->count++; info->blocked_open--; #ifdef SERIAL_DEBUG_OPEN printk("block_til_ready after blocking: ttys%d, count = %d\n", info->line, info->count); #endif if (retval) return retval; info->flags |= ZILOG_NORMAL_ACTIVE; return 0; } /* * This routine is called whenever a serial port is opened. It * enables interrupts for a serial port, linking in its ZILOG structure into * the IRQ chain. It also performs the serial-specific * initialization for the tty structure. */ static int rs_open(struct tty_struct *tty, struct file * filp) { struct mac_serial *info; int retval, line; unsigned long page; line = MINOR(tty->device) - tty->driver.minor_start; if ((line < 0) || (line >= zs_channels_found)) return -ENODEV; info = zs_soft + line; #ifdef CONFIG_KGDB if (info->kgdb_channel) return -ENODEV; #endif if (serial_paranoia_check(info, tty->device, "rs_open")) return -ENODEV; #ifdef SERIAL_DEBUG_OPEN printk("rs_open %s%d, count = %d\n", tty->driver.name, info->line, info->count); #endif info->count++; tty->driver_data = info; info->tty = tty; if (!tmp_buf) { page = get_free_page(GFP_KERNEL); if (!page) return -ENOMEM; if (tmp_buf) free_page(page); else tmp_buf = (unsigned char *) page; } /* * If the port is the middle of closing, bail out now */ if (tty_hung_up_p(filp) || (info->flags & ZILOG_CLOSING)) { if (info->flags & ZILOG_CLOSING) interruptible_sleep_on(&info->close_wait); #ifdef SERIAL_DO_RESTART return ((info->flags & ZILOG_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS); #else return -EAGAIN; #endif } /* * Start up serial port */ retval = startup(info, 1); if (retval) return retval; retval = block_til_ready(tty, filp, info); if (retval) { #ifdef SERIAL_DEBUG_OPEN printk("rs_open returning after block_til_ready with %d\n", retval); #endif return retval; } if ((info->count == 1) && (info->flags & ZILOG_SPLIT_TERMIOS)) { if (tty->driver.subtype == SERIAL_TYPE_NORMAL) *tty->termios = info->normal_termios; else *tty->termios = info->callout_termios; change_speed(info, 0); } #ifdef CONFIG_SERIAL_CONSOLE if (sercons.cflag && sercons.index == line) { tty->termios->c_cflag = sercons.cflag; sercons.cflag = 0; change_speed(info, 0); } #endif info->session = current->session; info->pgrp = current->pgrp; #ifdef SERIAL_DEBUG_OPEN printk("rs_open ttys%d successful...\n", info->line); #endif return 0; } /* Finally, routines used to initialize the serial driver. */ static void show_serial_version(void) { printk("PowerMac Z8530 serial driver version 1.01\n"); } /* Ask the PROM how many Z8530s we have and initialize their zs_channels */ static void probe_sccs() { struct device_node *dev, *ch; struct mac_serial **pp; int n, lenp; char *conn; n = 0; pp = &zs_chain; for (dev = find_devices("escc"); dev != 0; dev = dev->next) { if (n >= NUM_CHANNELS) { printk("Sorry, can't use %s: no more channels\n", dev->full_name); continue; } for (ch = dev->child; ch != 0; ch = ch->sibling) { if (ch->n_addrs < 1 || (ch ->n_intrs < 1)) { printk("Can't use %s: %d addrs %d intrs\n", ch->full_name, ch->n_addrs, ch->n_intrs); continue; } zs_channels[n].control = (volatile unsigned char *) ioremap(ch->addrs[0].address, 0x1000); zs_channels[n].data = zs_channels[n].control + 0x10; spin_lock_init(&zs_channels[n].lock); zs_soft[n].zs_channel = &zs_channels[n]; zs_soft[n].dev_node = ch; zs_soft[n].irq = ch->intrs[0].line; zs_soft[n].zs_channel->parent = &zs_soft[n]; zs_soft[n].is_cobalt_modem = device_is_compatible(ch, "cobalt"); /* XXX tested only with wallstreet PowerBook, should do no harm anyway */ conn = get_property(ch, "AAPL,connector", &lenp); zs_soft[n].is_pwbk_ir = conn && (strcmp(conn, "infrared") == 0); /* XXX this assumes the prom puts chan A before B */ if (n & 1) zs_soft[n].zs_chan_a = &zs_channels[n-1]; else zs_soft[n].zs_chan_a = &zs_channels[n]; *pp = &zs_soft[n]; pp = &zs_soft[n].zs_next; ++n; } } *pp = 0; zs_channels_found = n; #ifdef CONFIG_PMAC_PBOOK if (n) pmu_register_sleep_notifier(&serial_sleep_notifier); #endif /* CONFIG_PMAC_PBOOK */ } /* rs_init inits the driver */ int macserial_init(void) { int channel, i; unsigned long flags; struct mac_serial *info; /* Setup base handler, and timer table. */ init_bh(MACSERIAL_BH, do_serial_bh); timer_table[RS_TIMER].fn = rs_timer; timer_table[RS_TIMER].expires = 0; /* Find out how many Z8530 SCCs we have */ if (zs_chain == 0) probe_sccs(); /* XXX assume it's a powerbook if we have a via-pmu */ is_powerbook = find_devices("via-pmu") != 0; /* Register the interrupt handler for each one */ save_flags(flags); cli(); for (i = 0; i < zs_channels_found; ++i) { if (request_irq(zs_soft[i].irq, rs_interrupt, 0, "SCC", &zs_soft[i])) printk(KERN_ERR "macserial: can't get irq %d\n", zs_soft[i].irq); disable_irq(zs_soft[i].irq); } restore_flags(flags); show_serial_version(); /* Initialize the tty_driver structure */ /* Not all of this is exactly right for us. */ memset(&serial_driver, 0, sizeof(struct tty_driver)); serial_driver.magic = TTY_DRIVER_MAGIC; serial_driver.name = "ttyS"; serial_driver.major = TTY_MAJOR; serial_driver.minor_start = 64; serial_driver.num = zs_channels_found; serial_driver.type = TTY_DRIVER_TYPE_SERIAL; serial_driver.subtype = SERIAL_TYPE_NORMAL; serial_driver.init_termios = tty_std_termios; serial_driver.init_termios.c_cflag = B38400 | CS8 | CREAD | HUPCL | CLOCAL; serial_driver.flags = TTY_DRIVER_REAL_RAW; serial_driver.refcount = &serial_refcount; serial_driver.table = serial_table; serial_driver.termios = serial_termios; serial_driver.termios_locked = serial_termios_locked; serial_driver.open = rs_open; serial_driver.close = rs_close; serial_driver.write = rs_write; serial_driver.flush_chars = rs_flush_chars; serial_driver.write_room = rs_write_room; serial_driver.chars_in_buffer = rs_chars_in_buffer; serial_driver.flush_buffer = rs_flush_buffer; serial_driver.ioctl = rs_ioctl; serial_driver.throttle = rs_throttle; serial_driver.unthrottle = rs_unthrottle; serial_driver.set_termios = rs_set_termios; serial_driver.stop = rs_stop; serial_driver.start = rs_start; serial_driver.hangup = rs_hangup; serial_driver.break_ctl = rs_break; serial_driver.wait_until_sent = rs_wait_until_sent; /* * The callout device is just like normal device except for * major number and the subtype code. */ callout_driver = serial_driver; callout_driver.name = "cua"; callout_driver.major = TTYAUX_MAJOR; callout_driver.subtype = SERIAL_TYPE_CALLOUT; if (tty_register_driver(&serial_driver)) panic("Couldn't register serial driver\n"); if (tty_register_driver(&callout_driver)) panic("Couldn't register callout driver\n"); for (channel = 0; channel < zs_channels_found; ++channel) { #ifdef CONFIG_KGDB if (zs_soft[channel].kgdb_channel) { kgdb_interruptible(1); continue; } #endif zs_soft[channel].clk_divisor = 16; /* -- we are not sure the SCC is powered ON at this point zs_soft[channel].zs_baud = get_zsbaud(&zs_soft[channel]); */ zs_soft[channel].zs_baud = 38400; /* If console serial line, then enable interrupts. */ if (zs_soft[channel].is_cons) { printk("macserial: console line, enabling interrupt %d\n", zs_soft[channel].irq); panic("macserial: console not supported yet !"); write_zsreg(zs_soft[channel].zs_channel, R1, (EXT_INT_ENAB | INT_ALL_Rx | TxINT_ENAB)); write_zsreg(zs_soft[channel].zs_channel, R9, (NV | MIE)); } } for (info = zs_chain, i = 0; info; info = info->zs_next, i++) { unsigned char* connector; int lenp; #ifdef CONFIG_KGDB if (info->kgdb_channel) { continue; } #endif info->magic = SERIAL_MAGIC; info->port = (int) info->zs_channel->control; info->line = i; info->tty = 0; info->custom_divisor = 16; info->timeout = 0; info->close_delay = 50; info->closing_wait = 3000; info->x_char = 0; info->event = 0; info->count = 0; info->blocked_open = 0; info->tqueue.routine = do_softint; info->tqueue.data = info; info->callout_termios =callout_driver.init_termios; info->normal_termios = serial_driver.init_termios; init_waitqueue_head(&info->open_wait); init_waitqueue_head(&info->close_wait); info->timeout = HZ; printk("tty%02d at 0x%08x (irq = %d)", info->line, info->port, info->irq); printk(" is a Z8530 ESCC"); connector = get_property(info->dev_node, "AAPL,connector", &lenp); if (connector) printk(", port = %s", connector); if (info->is_cobalt_modem) printk(" (cobalt modem)"); if (info->is_pwbk_ir) printk(" (powerbook IR)"); printk("\n"); #ifdef CONFIG_KGDB if (info->kgdb_channel) continue; #endif #ifdef CONFIG_XMON if (!info->is_cobalt_modem) continue; #endif /* By default, disable the port */ set_scc_power(info, 0); } return 0; } #ifdef MODULE int init_module(void) { macserial_init(); return 0; } void cleanup_module(void) { int i; unsigned long flags; struct mac_serial *info; for (info = zs_chain, i = 0; info; info = info->zs_next, i++) set_scc_power(info, 0); save_flags(flags); cli(); for (i = 0; i < zs_channels_found; ++i) free_irq(zs_soft[i].irq, &zs_soft[i]); restore_flags(flags); tty_unregister_driver(&callout_driver); tty_unregister_driver(&serial_driver); } #endif /* MODULE */ #if 0 /* * register_serial and unregister_serial allows for serial ports to be * configured at run-time, to support PCMCIA modems. */ /* PowerMac: Unused at this time, just here to make things link. */ int register_serial(struct serial_struct *req) { return -1; } void unregister_serial(int line) { return; } #endif /* * ------------------------------------------------------------ * Serial console driver * ------------------------------------------------------------ */ #ifdef CONFIG_SERIAL_CONSOLE /* * Print a string to the serial port trying not to disturb * any possible real use of the port... */ static void serial_console_write(struct console *co, const char *s, unsigned count) { struct mac_serial *info = zs_soft + co->index; int i; /* Turn of interrupts and enable the transmitter. */ write_zsreg(info->zs_channel, R1, info->curregs[1] & ~TxINT_ENAB); write_zsreg(info->zs_channel, R5, info->curregs[5] | TxENAB | RTS | DTR); for (i=0; izs_channel, 0) & Tx_BUF_EMP) == 0) { eieio(); } write_zsdata(info->zs_channel, s[i]); if (s[i] == 10) { while ((read_zsreg(info->zs_channel, 0) & Tx_BUF_EMP) == 0) eieio(); write_zsdata(info->zs_channel, 13); } } /* Restore the values in the registers. */ write_zsreg(info->zs_channel, R1, info->curregs[1]); /* Don't disable the transmitter. */ } /* * Receive character from the serial port */ static int serial_console_wait_key(struct console *co) { struct mac_serial *info = zs_soft + co->index; int val; /* Turn of interrupts and enable the transmitter. */ write_zsreg(info->zs_channel, R1, info->curregs[1] & ~INT_ALL_Rx); write_zsreg(info->zs_channel, R3, info->curregs[3] | RxENABLE); /* Wait for something in the receive buffer. */ while((read_zsreg(info->zs_channel, 0) & Rx_CH_AV) == 0) eieio(); val = read_zsdata(info->zs_channel); /* Restore the values in the registers. */ write_zsreg(info->zs_channel, R1, info->curregs[1]); write_zsreg(info->zs_channel, R3, info->curregs[3]); return val; } static kdev_t serial_console_device(struct console *c) { return MKDEV(TTY_MAJOR, 64 + c->index); } /* * Setup initial baud/bits/parity. We do two things here: * - construct a cflag setting for the first rs_open() * - initialize the serial port * Return non-zero if we didn't find a serial port. */ static int __init serial_console_setup(struct console *co, char *options) { struct mac_serial *info = zs_soft + co->index; int baud = 38400; int bits = 8; int parity = 'n'; int cflag = CREAD | HUPCL | CLOCAL; int brg; char *s; long flags; /* Find out how many Z8530 SCCs we have */ if (zs_chain == 0) probe_sccs(); if (zs_chain == 0) return -1; /* Reset the channel */ write_zsreg(info->zs_channel, R9, CHRA); if (options) { baud = simple_strtoul(options, NULL, 10); s = options; while(*s >= '0' && *s <= '9') s++; if (*s) parity = *s++; if (*s) bits = *s - '0'; } /* * Now construct a cflag setting. */ switch(baud) { case 1200: cflag |= B1200; break; case 2400: cflag |= B2400; break; case 4800: cflag |= B4800; break; case 9600: cflag |= B9600; break; case 19200: cflag |= B19200; break; case 57600: cflag |= B57600; break; case 115200: cflag |= B115200; break; case 38400: default: cflag |= B38400; break; } switch(bits) { case 7: cflag |= CS7; break; default: case 8: cflag |= CS8; break; } switch(parity) { case 'o': case 'O': cflag |= PARENB | PARODD; break; case 'e': case 'E': cflag |= PARENB; break; } co->cflag = cflag; save_flags(flags); cli(); memset(info->curregs, 0, sizeof(info->curregs)); info->zs_baud = baud; info->clk_divisor = 16; switch (info->zs_baud) { case ZS_CLOCK/16: /* 230400 */ info->curregs[4] = X16CLK; info->curregs[11] = 0; break; case ZS_CLOCK/32: /* 115200 */ info->curregs[4] = X32CLK; info->curregs[11] = 0; break; default: info->curregs[4] = X16CLK; info->curregs[11] = TCBR | RCBR; brg = BPS_TO_BRG(info->zs_baud, ZS_CLOCK/info->clk_divisor); info->curregs[12] = (brg & 255); info->curregs[13] = ((brg >> 8) & 255); info->curregs[14] = BRENABL; } /* byte size and parity */ info->curregs[3] &= ~RxNBITS_MASK; info->curregs[5] &= ~TxNBITS_MASK; switch (cflag & CSIZE) { case CS5: info->curregs[3] |= Rx5; info->curregs[5] |= Tx5; break; case CS6: info->curregs[3] |= Rx6; info->curregs[5] |= Tx6; break; case CS7: info->curregs[3] |= Rx7; info->curregs[5] |= Tx7; break; case CS8: default: /* defaults to 8 bits */ info->curregs[3] |= Rx8; info->curregs[5] |= Tx8; break; } info->curregs[5] |= TxENAB | RTS | DTR; info->pendregs[3] = info->curregs[3]; info->pendregs[5] = info->curregs[5]; info->curregs[4] &= ~(SB_MASK | PAR_ENA | PAR_EVEN); if (cflag & CSTOPB) { info->curregs[4] |= SB2; } else { info->curregs[4] |= SB1; } if (cflag & PARENB) { info->curregs[4] |= PAR_ENA; if (!(cflag & PARODD)) { info->curregs[4] |= PAR_EVEN; } } info->pendregs[4] = info->curregs[4]; if (!(cflag & CLOCAL)) { if (!(info->curregs[15] & DCDIE)) info->read_reg_zero = read_zsreg(info->zs_channel, 0); info->curregs[15] |= DCDIE; } else info->curregs[15] &= ~DCDIE; if (cflag & CRTSCTS) { info->curregs[15] |= CTSIE; if ((read_zsreg(info->zs_channel, 0) & CTS) != 0) info->tx_stopped = 1; } else { info->curregs[15] &= ~CTSIE; info->tx_stopped = 0; } info->pendregs[15] = info->curregs[15]; /* Load up the new values */ load_zsregs(info->zs_channel, info->curregs); restore_flags(flags); return 0; } static struct console sercons = { "ttyS", serial_console_write, NULL, serial_console_device, serial_console_wait_key, NULL, serial_console_setup, CON_PRINTBUFFER, -1, 0, NULL }; /* * Register console. */ long __init serial_console_init(long kmem_start, long kmem_end) { register_console(&sercons); return kmem_start; } #endif /* ifdef CONFIG_SERIAL_CONSOLE */ #ifdef CONFIG_KGDB /* These are for receiving and sending characters under the kgdb * source level kernel debugger. */ void putDebugChar(char kgdb_char) { struct mac_zschannel *chan = zs_kgdbchan; while ((read_zsreg(chan, 0) & Tx_BUF_EMP) == 0) udelay(5); write_zsdata(chan, kgdb_char); } char getDebugChar(void) { struct mac_zschannel *chan = zs_kgdbchan; while((read_zsreg(chan, 0) & Rx_CH_AV) == 0) eieio(); /*barrier();*/ return read_zsdata(chan); } void kgdb_interruptible(int yes) { struct mac_zschannel *chan = zs_kgdbchan; int one, nine; nine = read_zsreg(chan, 9); if (yes == 1) { one = EXT_INT_ENAB|INT_ALL_Rx; nine |= MIE; printk("turning serial ints on\n"); } else { one = RxINT_DISAB; nine &= ~MIE; printk("turning serial ints off\n"); } write_zsreg(chan, 1, one); write_zsreg(chan, 9, nine); } /* This sets up the serial port we're using, and turns on * interrupts for that channel, so kgdb is usable once we're done. */ static inline void kgdb_chaninit(struct mac_zschannel *ms, int intson, int bps) { int brg; int i, x; volatile char *sccc = ms->control; brg = BPS_TO_BRG(bps, ZS_CLOCK/16); printk("setting bps on kgdb line to %d [brg=%x]\n", bps, brg); for (i = 20000; i != 0; --i) { x = *sccc; eieio(); } for (i = 0; i < sizeof(scc_inittab); ++i) { write_zsreg(ms, scc_inittab[i], scc_inittab[i+1]); i++; } } /* This is called at boot time to prime the kgdb serial debugging * serial line. The 'tty_num' argument is 0 for /dev/ttya and 1 * for /dev/ttyb which is determined in setup_arch() from the * boot command line flags. * XXX at the moment probably only channel A will work */ void __init zs_kgdb_hook(int tty_num) { /* Find out how many Z8530 SCCs we have */ if (zs_chain == 0) probe_sccs(); set_scc_power(&zs_soft[n], 1); zs_kgdbchan = zs_soft[tty_num].zs_channel; zs_soft[tty_num].change_needed = 0; zs_soft[tty_num].clk_divisor = 16; zs_soft[tty_num].zs_baud = 38400; zs_soft[tty_num].kgdb_channel = 1; /* This runs kgdb */ zs_soft[tty_num ^ 1].kgdb_channel = 0; /* This does not */ /* Turn on transmitter/receiver at 8-bits/char */ kgdb_chaninit(zs_soft[tty_num].zs_channel, 1, 38400); printk("KGDB: on channel %d initialized\n", tty_num); set_debug_traps(); /* init stub */ } #endif /* ifdef CONFIG_KGDB */ #ifdef CONFIG_PMAC_PBOOK /* * notify clients before sleep and reset bus afterwards */ int serial_notify_sleep(struct pmu_sleep_notifier *self, int when) { int i; switch (when) { case PBOOK_SLEEP_REQUEST: case PBOOK_SLEEP_REJECT: break; case PBOOK_SLEEP_NOW: for (i=0; iflags & ZILOG_INITIALIZED) { shutdown(info); info->flags |= ZILOG_SLEEPING; } } break; case PBOOK_WAKE: for (i=0; iflags & ZILOG_SLEEPING) { info->flags &= ~ZILOG_SLEEPING; startup(info, 0); } } break; } return PBOOK_SLEEP_OK; } #endif /* CONFIG_PMAC_PBOOK */