/* * raid5.c : Multiple Devices driver for Linux * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman * Copyright (C) 1999, 2000 Ingo Molnar * * RAID-5 management functions. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * You should have received a copy of the GNU General Public License * (for example /usr/src/linux/COPYING); if not, write to the Free * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include static mdk_personality_t raid5_personality; /* * Stripe cache */ #define NR_STRIPES 256 #define HASH_PAGES 1 #define HASH_PAGES_ORDER 0 #define NR_HASH (HASH_PAGES * PAGE_SIZE / sizeof(struct stripe_head *)) #define HASH_MASK (NR_HASH - 1) #define stripe_hash(conf, sect) ((conf)->stripe_hashtbl[((sect) / ((conf)->buffer_size >> 9)) & HASH_MASK]) /* * The following can be used to debug the driver */ #define RAID5_DEBUG 0 #define RAID5_PARANOIA 1 #if RAID5_PARANOIA && CONFIG_SMP # define CHECK_DEVLOCK() if (!spin_is_locked(&conf->device_lock)) BUG() #else # define CHECK_DEVLOCK() #endif #if RAID5_DEBUG #define PRINTK(x...) printk(x) #define inline #define __inline__ #else #define PRINTK(x...) do { } while (0) #endif static void print_raid5_conf (raid5_conf_t *conf); static inline void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh) { if (atomic_dec_and_test(&sh->count)) { if (!list_empty(&sh->lru)) BUG(); if (atomic_read(&conf->active_stripes)==0) BUG(); if (test_bit(STRIPE_HANDLE, &sh->state)) { list_add_tail(&sh->lru, &conf->handle_list); md_wakeup_thread(conf->thread); } else { list_add_tail(&sh->lru, &conf->inactive_list); atomic_dec(&conf->active_stripes); wake_up(&conf->wait_for_stripe); } } } static void release_stripe(struct stripe_head *sh) { raid5_conf_t *conf = sh->raid_conf; spin_lock_irq(&conf->device_lock); __release_stripe(conf, sh); spin_unlock_irq(&conf->device_lock); } static void remove_hash(struct stripe_head *sh) { PRINTK("remove_hash(), stripe %lu\n", sh->sector); if (sh->hash_pprev) { if (sh->hash_next) sh->hash_next->hash_pprev = sh->hash_pprev; *sh->hash_pprev = sh->hash_next; sh->hash_pprev = NULL; } } static __inline__ void insert_hash(raid5_conf_t *conf, struct stripe_head *sh) { struct stripe_head **shp = &stripe_hash(conf, sh->sector); PRINTK("insert_hash(), stripe %lu\n",sh->sector); CHECK_DEVLOCK(); if ((sh->hash_next = *shp) != NULL) (*shp)->hash_pprev = &sh->hash_next; *shp = sh; sh->hash_pprev = shp; } /* find an idle stripe, make sure it is unhashed, and return it. */ static struct stripe_head *get_free_stripe(raid5_conf_t *conf) { struct stripe_head *sh = NULL; struct list_head *first; CHECK_DEVLOCK(); if (list_empty(&conf->inactive_list)) goto out; first = conf->inactive_list.next; sh = list_entry(first, struct stripe_head, lru); list_del_init(first); remove_hash(sh); atomic_inc(&conf->active_stripes); out: return sh; } static void shrink_buffers(struct stripe_head *sh, int num) { struct buffer_head *bh; int i; for (i=0; ibh_cache[i]; if (!bh) return; sh->bh_cache[i] = NULL; free_page((unsigned long) bh->b_data); kfree(bh); } } static int grow_buffers(struct stripe_head *sh, int num, int b_size, int priority) { struct buffer_head *bh; int i; for (i=0; ib_wait); page = alloc_page(priority); bh->b_data = page_address(page); if (!bh->b_data) { kfree(bh); return 1; } atomic_set(&bh->b_count, 0); bh->b_page = page; sh->bh_cache[i] = bh; } return 0; } static struct buffer_head *raid5_build_block (struct stripe_head *sh, int i); static inline void init_stripe(struct stripe_head *sh, unsigned long sector) { raid5_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks, i; if (atomic_read(&sh->count) != 0) BUG(); if (test_bit(STRIPE_HANDLE, &sh->state)) BUG(); CHECK_DEVLOCK(); PRINTK("init_stripe called, stripe %lu\n", sh->sector); remove_hash(sh); sh->sector = sector; sh->size = conf->buffer_size; sh->state = 0; for (i=disks; i--; ) { if (sh->bh_read[i] || sh->bh_write[i] || sh->bh_written[i] || buffer_locked(sh->bh_cache[i])) { printk("sector=%lx i=%d %p %p %p %d\n", sh->sector, i, sh->bh_read[i], sh->bh_write[i], sh->bh_written[i], buffer_locked(sh->bh_cache[i])); BUG(); } clear_bit(BH_Uptodate, &sh->bh_cache[i]->b_state); raid5_build_block(sh, i); } insert_hash(conf, sh); } /* the buffer size has changed, so unhash all stripes * as active stripes complete, they will go onto inactive list */ static void shrink_stripe_cache(raid5_conf_t *conf) { int i; CHECK_DEVLOCK(); if (atomic_read(&conf->active_stripes)) BUG(); for (i=0; i < NR_HASH; i++) { struct stripe_head *sh; while ((sh = conf->stripe_hashtbl[i])) remove_hash(sh); } } static struct stripe_head *__find_stripe(raid5_conf_t *conf, unsigned long sector) { struct stripe_head *sh; CHECK_DEVLOCK(); PRINTK("__find_stripe, sector %lu\n", sector); for (sh = stripe_hash(conf, sector); sh; sh = sh->hash_next) if (sh->sector == sector) return sh; PRINTK("__stripe %lu not in cache\n", sector); return NULL; } static struct stripe_head *get_active_stripe(raid5_conf_t *conf, unsigned long sector, int size, int noblock) { struct stripe_head *sh; PRINTK("get_stripe, sector %lu\n", sector); md_spin_lock_irq(&conf->device_lock); do { if (conf->buffer_size == 0 || (size && size != conf->buffer_size)) { /* either the size is being changed (buffer_size==0) or * we need to change it. * If size==0, we can proceed as soon as buffer_size gets set. * If size>0, we can proceed when active_stripes reaches 0, or * when someone else sets the buffer_size to size. * If someone sets the buffer size to something else, we will need to * assert that we want to change it again */ int oldsize = conf->buffer_size; PRINTK("get_stripe %ld/%d buffer_size is %d, %d active\n", sector, size, conf->buffer_size, atomic_read(&conf->active_stripes)); if (size==0) wait_event_lock_irq(conf->wait_for_stripe, conf->buffer_size, conf->device_lock); else { while (conf->buffer_size != size && atomic_read(&conf->active_stripes)) { conf->buffer_size = 0; wait_event_lock_irq(conf->wait_for_stripe, atomic_read(&conf->active_stripes)==0 || conf->buffer_size, conf->device_lock); PRINTK("waited and now %ld/%d buffer_size is %d - %d active\n", sector, size, conf->buffer_size, atomic_read(&conf->active_stripes)); } if (conf->buffer_size != size) { printk("raid5: switching cache buffer size, %d --> %d\n", oldsize, size); shrink_stripe_cache(conf); if (size==0) BUG(); conf->buffer_size = size; PRINTK("size now %d\n", conf->buffer_size); } } } if (size == 0) sector -= sector & ((conf->buffer_size>>9)-1); sh = __find_stripe(conf, sector); if (!sh) { sh = get_free_stripe(conf); if (noblock && sh == NULL) break; if (!sh) { wait_event_lock_irq(conf->wait_for_stripe, !list_empty(&conf->inactive_list), conf->device_lock); } else init_stripe(sh, sector); } else { if (atomic_read(&sh->count)) { if (!list_empty(&sh->lru)) BUG(); } else { if (!test_bit(STRIPE_HANDLE, &sh->state)) atomic_inc(&conf->active_stripes); if (list_empty(&sh->lru)) BUG(); list_del_init(&sh->lru); } } } while (sh == NULL); if (sh) atomic_inc(&sh->count); md_spin_unlock_irq(&conf->device_lock); return sh; } static int grow_stripes(raid5_conf_t *conf, int num, int priority) { struct stripe_head *sh; while (num--) { sh = kmalloc(sizeof(struct stripe_head), priority); if (!sh) return 1; memset(sh, 0, sizeof(*sh)); sh->raid_conf = conf; sh->lock = SPIN_LOCK_UNLOCKED; if (grow_buffers(sh, conf->raid_disks, PAGE_SIZE, priority)) { shrink_buffers(sh, conf->raid_disks); kfree(sh); return 1; } /* we just created an active stripe so... */ atomic_set(&sh->count, 1); atomic_inc(&conf->active_stripes); INIT_LIST_HEAD(&sh->lru); release_stripe(sh); } return 0; } static void shrink_stripes(raid5_conf_t *conf, int num) { struct stripe_head *sh; while (num--) { spin_lock_irq(&conf->device_lock); sh = get_free_stripe(conf); spin_unlock_irq(&conf->device_lock); if (!sh) break; if (atomic_read(&sh->count)) BUG(); shrink_buffers(sh, conf->raid_disks); kfree(sh); atomic_dec(&conf->active_stripes); } } static inline void raid5_end_buffer_read(struct buffer_head *blist, struct buffer_head *bh) { while (blist) { struct buffer_head *new = blist; blist = new->b_reqnext; memcpy(new->b_data, bh->b_data, bh->b_size); new->b_end_io(new, 1); } } static void raid5_end_read_request (struct buffer_head * bh, int uptodate) { struct stripe_head *sh = bh->b_private; raid5_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks, i; unsigned long flags; struct buffer_head *buffers = NULL; for (i=0 ; ibh_cache[i]) break; PRINTK("end_read_request %lu/%d, %d, count: %d, uptodate %d.\n", sh->sector, i, atomic_read(&sh->count), uptodate); if (i == disks) { BUG(); return; } md_spin_lock_irqsave(&conf->device_lock, flags); if (uptodate) { #ifdef CONFIG_HIGHMEM /* cannot map highmem bufferheads from irq, * so leave it for stripe_handle if there might * be a problem */ if (sh->bh_read[i] && sh->bh_read[i]->b_reqnext == NULL && !PageHighMem(sh->bh_read[i]->b_page)) { /* it's safe */ buffers = sh->bh_read[i]; sh->bh_read[i] = NULL; } #else buffers = sh->bh_read[i]; sh->bh_read[i] = NULL; #endif set_bit(BH_Uptodate, &bh->b_state); if (buffers) { spin_unlock_irqrestore(&conf->device_lock, flags); raid5_end_buffer_read(buffers, bh); spin_lock_irqsave(&conf->device_lock, flags); } } else { md_error(mddev_to_kdev(conf->mddev), bh->b_dev); clear_bit(BH_Uptodate, &bh->b_state); } clear_bit(BH_Lock, &bh->b_state); set_bit(STRIPE_HANDLE, &sh->state); __release_stripe(conf, sh); md_spin_unlock_irqrestore(&conf->device_lock, flags); } static void raid5_end_write_request (struct buffer_head *bh, int uptodate) { struct stripe_head *sh = bh->b_private; raid5_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks, i; unsigned long flags; for (i=0 ; ibh_cache[i]) break; PRINTK("end_write_request %lu/%d, count %d, uptodate: %d.\n", sh->sector, i, atomic_read(&sh->count), uptodate); if (i == disks) { BUG(); return; } md_spin_lock_irqsave(&conf->device_lock, flags); if (!uptodate) md_error(mddev_to_kdev(conf->mddev), bh->b_dev); clear_bit(BH_Lock, &bh->b_state); set_bit(STRIPE_HANDLE, &sh->state); __release_stripe(conf, sh); md_spin_unlock_irqrestore(&conf->device_lock, flags); } static struct buffer_head *raid5_build_block (struct stripe_head *sh, int i) { raid5_conf_t *conf = sh->raid_conf; struct buffer_head *bh = sh->bh_cache[i]; unsigned long block = sh->sector / (sh->size >> 9); init_buffer(bh, raid5_end_read_request, sh); bh->b_dev = conf->disks[i].dev; bh->b_blocknr = block; bh->b_state = (1 << BH_Req) | (1 << BH_Mapped); bh->b_size = sh->size; bh->b_list = BUF_LOCKED; return bh; } static int raid5_error (mddev_t *mddev, kdev_t dev) { raid5_conf_t *conf = (raid5_conf_t *) mddev->private; mdp_super_t *sb = mddev->sb; struct disk_info *disk; int i; PRINTK("raid5_error called\n"); conf->resync_parity = 0; for (i = 0, disk = conf->disks; i < conf->raid_disks; i++, disk++) { if (disk->dev == dev && disk->operational) { disk->operational = 0; mark_disk_faulty(sb->disks+disk->number); mark_disk_nonsync(sb->disks+disk->number); mark_disk_inactive(sb->disks+disk->number); sb->active_disks--; sb->working_disks--; sb->failed_disks++; mddev->sb_dirty = 1; conf->working_disks--; conf->failed_disks++; md_wakeup_thread(conf->thread); printk (KERN_ALERT "raid5: Disk failure on %s, disabling device." " Operation continuing on %d devices\n", partition_name (dev), conf->working_disks); return 0; } } /* * handle errors in spares (during reconstruction) */ if (conf->spare) { disk = conf->spare; if (disk->dev == dev) { printk (KERN_ALERT "raid5: Disk failure on spare %s\n", partition_name (dev)); if (!conf->spare->operational) { MD_BUG(); return -EIO; } disk->operational = 0; disk->write_only = 0; conf->spare = NULL; mark_disk_faulty(sb->disks+disk->number); mark_disk_nonsync(sb->disks+disk->number); mark_disk_inactive(sb->disks+disk->number); sb->spare_disks--; sb->working_disks--; sb->failed_disks++; return 0; } } MD_BUG(); return -EIO; } /* * Input: a 'big' sector number, * Output: index of the data and parity disk, and the sector # in them. */ static unsigned long raid5_compute_sector(unsigned long r_sector, unsigned int raid_disks, unsigned int data_disks, unsigned int * dd_idx, unsigned int * pd_idx, raid5_conf_t *conf) { unsigned long stripe; unsigned long chunk_number; unsigned int chunk_offset; unsigned long new_sector; int sectors_per_chunk = conf->chunk_size >> 9; /* First compute the information on this sector */ /* * Compute the chunk number and the sector offset inside the chunk */ chunk_number = r_sector / sectors_per_chunk; chunk_offset = r_sector % sectors_per_chunk; /* * Compute the stripe number */ stripe = chunk_number / data_disks; /* * Compute the data disk and parity disk indexes inside the stripe */ *dd_idx = chunk_number % data_disks; /* * Select the parity disk based on the user selected algorithm. */ if (conf->level == 4) *pd_idx = data_disks; else switch (conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: *pd_idx = data_disks - stripe % raid_disks; if (*dd_idx >= *pd_idx) (*dd_idx)++; break; case ALGORITHM_RIGHT_ASYMMETRIC: *pd_idx = stripe % raid_disks; if (*dd_idx >= *pd_idx) (*dd_idx)++; break; case ALGORITHM_LEFT_SYMMETRIC: *pd_idx = data_disks - stripe % raid_disks; *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; break; case ALGORITHM_RIGHT_SYMMETRIC: *pd_idx = stripe % raid_disks; *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks; break; default: printk ("raid5: unsupported algorithm %d\n", conf->algorithm); } /* * Finally, compute the new sector number */ new_sector = stripe * sectors_per_chunk + chunk_offset; return new_sector; } #if 0 static unsigned long compute_blocknr(struct stripe_head *sh, int i) { raid5_conf_t *conf = sh->raid_conf; int raid_disks = conf->raid_disks, data_disks = raid_disks - 1; unsigned long new_sector = sh->sector, check; int sectors_per_chunk = conf->chunk_size >> 9; unsigned long stripe = new_sector / sectors_per_chunk; int chunk_offset = new_sector % sectors_per_chunk; int chunk_number, dummy1, dummy2, dd_idx = i; unsigned long r_sector, blocknr; switch (conf->algorithm) { case ALGORITHM_LEFT_ASYMMETRIC: case ALGORITHM_RIGHT_ASYMMETRIC: if (i > sh->pd_idx) i--; break; case ALGORITHM_LEFT_SYMMETRIC: case ALGORITHM_RIGHT_SYMMETRIC: if (i < sh->pd_idx) i += raid_disks; i -= (sh->pd_idx + 1); break; default: printk ("raid5: unsupported algorithm %d\n", conf->algorithm); } chunk_number = stripe * data_disks + i; r_sector = chunk_number * sectors_per_chunk + chunk_offset; blocknr = r_sector / (sh->size >> 9); check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf); if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) { printk("compute_blocknr: map not correct\n"); return 0; } return blocknr; } #endif #define check_xor() do { \ if (count == MAX_XOR_BLOCKS) { \ xor_block(count, bh_ptr); \ count = 1; \ } \ } while(0) static void compute_block(struct stripe_head *sh, int dd_idx) { raid5_conf_t *conf = sh->raid_conf; int i, count, disks = conf->raid_disks; struct buffer_head *bh_ptr[MAX_XOR_BLOCKS], *bh; PRINTK("compute_block, stripe %lu, idx %d\n", sh->sector, dd_idx); memset(sh->bh_cache[dd_idx]->b_data, 0, sh->size); bh_ptr[0] = sh->bh_cache[dd_idx]; count = 1; for (i = disks ; i--; ) { if (i == dd_idx) continue; bh = sh->bh_cache[i]; if (buffer_uptodate(bh)) bh_ptr[count++] = bh; else printk("compute_block() %d, stripe %lu, %d not present\n", dd_idx, sh->sector, i); check_xor(); } if (count != 1) xor_block(count, bh_ptr); set_bit(BH_Uptodate, &sh->bh_cache[dd_idx]->b_state); } static void compute_parity(struct stripe_head *sh, int method) { raid5_conf_t *conf = sh->raid_conf; int i, pd_idx = sh->pd_idx, disks = conf->raid_disks, count; struct buffer_head *bh_ptr[MAX_XOR_BLOCKS]; struct buffer_head *chosen[MD_SB_DISKS]; PRINTK("compute_parity, stripe %lu, method %d\n", sh->sector, method); memset(chosen, 0, sizeof(chosen)); count = 1; bh_ptr[0] = sh->bh_cache[pd_idx]; spin_lock_irq(&conf->device_lock); switch(method) { case READ_MODIFY_WRITE: if (!buffer_uptodate(sh->bh_cache[pd_idx])) BUG(); for (i=disks ; i-- ;) { if (i==pd_idx) continue; if (sh->bh_write[i] && buffer_uptodate(sh->bh_cache[i])) { bh_ptr[count++] = sh->bh_cache[i]; chosen[i] = sh->bh_write[i]; sh->bh_write[i] = sh->bh_write[i]->b_reqnext; chosen[i]->b_reqnext = sh->bh_written[i]; sh->bh_written[i] = chosen[i]; check_xor(); } } break; case RECONSTRUCT_WRITE: memset(sh->bh_cache[pd_idx]->b_data, 0, sh->size); for (i= disks; i-- ;) if (i!=pd_idx && sh->bh_write[i]) { chosen[i] = sh->bh_write[i]; sh->bh_write[i] = sh->bh_write[i]->b_reqnext; chosen[i]->b_reqnext = sh->bh_written[i]; sh->bh_written[i] = chosen[i]; check_xor(); } break; case CHECK_PARITY: break; } spin_unlock_irq(&conf->device_lock); for (i = disks; i--;) if (chosen[i]) { struct buffer_head *bh = sh->bh_cache[i]; char *bdata; mark_buffer_clean(chosen[i]); /* NO FIXME */ bdata = bh_kmap(chosen[i]); memcpy(bh->b_data, bdata,sh->size); bh_kunmap(chosen[i]); set_bit(BH_Lock, &bh->b_state); mark_buffer_uptodate(bh, 1); } switch(method) { case RECONSTRUCT_WRITE: case CHECK_PARITY: for (i=disks; i--;) if (i != pd_idx) { bh_ptr[count++] = sh->bh_cache[i]; check_xor(); } break; case READ_MODIFY_WRITE: for (i = disks; i--;) if (chosen[i]) { bh_ptr[count++] = sh->bh_cache[i]; check_xor(); } } if (count != 1) xor_block(count, bh_ptr); if (method != CHECK_PARITY) { mark_buffer_uptodate(sh->bh_cache[pd_idx], 1); set_bit(BH_Lock, &sh->bh_cache[pd_idx]->b_state); } else mark_buffer_uptodate(sh->bh_cache[pd_idx], 0); } static void add_stripe_bh (struct stripe_head *sh, struct buffer_head *bh, int dd_idx, int rw) { struct buffer_head **bhp; raid5_conf_t *conf = sh->raid_conf; PRINTK("adding bh b#%lu to stripe s#%lu\n", bh->b_blocknr, sh->sector); spin_lock_irq(&conf->device_lock); bh->b_reqnext = NULL; if (rw == READ) bhp = &sh->bh_read[dd_idx]; else bhp = &sh->bh_write[dd_idx]; while (*bhp) { printk(KERN_NOTICE "raid5: multiple %d requests for sector %ld\n", rw, sh->sector); bhp = & (*bhp)->b_reqnext; } *bhp = bh; spin_unlock_irq(&conf->device_lock); PRINTK("added bh b#%lu to stripe s#%lu, disk %d.\n", bh->b_blocknr, sh->sector, dd_idx); } /* * handle_stripe - do things to a stripe. * * We lock the stripe and then examine the state of various bits * to see what needs to be done. * Possible results: * return some read request which now have data * return some write requests which are safely on disc * schedule a read on some buffers * schedule a write of some buffers * return confirmation of parity correctness * * Parity calculations are done inside the stripe lock * buffers are taken off read_list or write_list, and bh_cache buffers * get BH_Lock set before the stripe lock is released. * */ static void handle_stripe(struct stripe_head *sh) { raid5_conf_t *conf = sh->raid_conf; int disks = conf->raid_disks; struct buffer_head *return_ok= NULL, *return_fail = NULL; int action[MD_SB_DISKS]; int i; int syncing; int locked=0, uptodate=0, to_read=0, to_write=0, failed=0, written=0; int failed_num=0; struct buffer_head *bh; PRINTK("handling stripe %ld, cnt=%d, pd_idx=%d\n", sh->sector, atomic_read(&sh->count), sh->pd_idx); memset(action, 0, sizeof(action)); spin_lock(&sh->lock); clear_bit(STRIPE_HANDLE, &sh->state); syncing = test_bit(STRIPE_SYNCING, &sh->state); /* Now to look around and see what can be done */ for (i=disks; i--; ) { bh = sh->bh_cache[i]; PRINTK("check %d: state %lx read %p write %p written %p\n", i, bh->b_state, sh->bh_read[i], sh->bh_write[i], sh->bh_written[i]); /* maybe we can reply to a read */ if (buffer_uptodate(bh) && sh->bh_read[i]) { struct buffer_head *rbh, *rbh2; PRINTK("Return read for disc %d\n", i); spin_lock_irq(&conf->device_lock); rbh = sh->bh_read[i]; sh->bh_read[i] = NULL; spin_unlock_irq(&conf->device_lock); while (rbh) { char *bdata; bdata = bh_kmap(rbh); memcpy(bdata, bh->b_data, bh->b_size); bh_kunmap(rbh); rbh2 = rbh->b_reqnext; rbh->b_reqnext = return_ok; return_ok = rbh; rbh = rbh2; } } /* now count some things */ if (buffer_locked(bh)) locked++; if (buffer_uptodate(bh)) uptodate++; if (sh->bh_read[i]) to_read++; if (sh->bh_write[i]) to_write++; if (sh->bh_written[i]) written++; if (!conf->disks[i].operational) { failed++; failed_num = i; } } PRINTK("locked=%d uptodate=%d to_read=%d to_write=%d failed=%d failed_num=%d\n", locked, uptodate, to_read, to_write, failed, failed_num); /* check if the array has lost two devices and, if so, some requests might * need to be failed */ if (failed > 1 && to_read+to_write) { spin_lock_irq(&conf->device_lock); for (i=disks; i--; ) { /* fail all writes first */ if (sh->bh_write[i]) to_write--; while ((bh = sh->bh_write[i])) { sh->bh_write[i] = bh->b_reqnext; bh->b_reqnext = return_fail; return_fail = bh; } /* fail any reads if this device is non-operational */ if (!conf->disks[i].operational) { if (sh->bh_read[i]) to_read--; while ((bh = sh->bh_read[i])) { sh->bh_read[i] = bh->b_reqnext; bh->b_reqnext = return_fail; return_fail = bh; } } } spin_unlock_irq(&conf->device_lock); if (syncing) { md_done_sync(conf->mddev, (sh->size>>10) - sh->sync_redone,0); clear_bit(STRIPE_SYNCING, &sh->state); syncing = 0; } } /* might be able to return some write requests if the parity block * is safe, or on a failed drive */ bh = sh->bh_cache[sh->pd_idx]; if ( written && ( (conf->disks[sh->pd_idx].operational && !buffer_locked(bh) && buffer_uptodate(bh)) || (failed == 1 && failed_num == sh->pd_idx)) ) { /* any written block on a uptodate or failed drive can be returned */ for (i=disks; i--; ) if (sh->bh_written[i]) { bh = sh->bh_cache[i]; if (!conf->disks[sh->pd_idx].operational || (!buffer_locked(bh) && buffer_uptodate(bh)) ) { /* maybe we can return some write requests */ struct buffer_head *wbh, *wbh2; PRINTK("Return write for disc %d\n", i); spin_lock_irq(&conf->device_lock); wbh = sh->bh_written[i]; sh->bh_written[i] = NULL; spin_unlock_irq(&conf->device_lock); while (wbh) { wbh2 = wbh->b_reqnext; wbh->b_reqnext = return_ok; return_ok = wbh; wbh = wbh2; } } } } /* Now we might consider reading some blocks, either to check/generate * parity, or to satisfy requests */ if (to_read || (syncing && (uptodate+failed < disks))) { for (i=disks; i--;) { bh = sh->bh_cache[i]; if (!buffer_locked(bh) && !buffer_uptodate(bh) && (sh->bh_read[i] || syncing || (failed && sh->bh_read[failed_num]))) { /* we would like to get this block, possibly * by computing it, but we might not be able to */ if (uptodate == disks-1) { PRINTK("Computing block %d\n", i); compute_block(sh, i); uptodate++; } else if (conf->disks[i].operational) { set_bit(BH_Lock, &bh->b_state); action[i] = READ+1; locked++; PRINTK("Reading block %d (sync=%d)\n", i, syncing); if (syncing) md_sync_acct(conf->disks[i].dev, bh->b_size>>9); } } } set_bit(STRIPE_HANDLE, &sh->state); } /* now to consider writing and what else, if anything should be read */ if (to_write) { int rmw=0, rcw=0; for (i=disks ; i--;) { /* would I have to read this buffer for read_modify_write */ bh = sh->bh_cache[i]; if ((sh->bh_write[i] || i == sh->pd_idx) && !buffer_locked(bh) && !buffer_uptodate(bh)) { if (conf->disks[i].operational /* && !(conf->resync_parity && i == sh->pd_idx) */ ) rmw++; else rmw += 2*disks; /* cannot read it */ } /* Would I have to read this buffer for reconstruct_write */ if (!sh->bh_write[i] && i != sh->pd_idx && !buffer_locked(bh) && !buffer_uptodate(bh)) { if (conf->disks[i].operational) rcw++; else rcw += 2*disks; } } PRINTK("for sector %ld, rmw=%d rcw=%d\n", sh->sector, rmw, rcw); set_bit(STRIPE_HANDLE, &sh->state); if (rmw < rcw && rmw > 0) /* prefer read-modify-write, but need to get some data */ for (i=disks; i--;) { bh = sh->bh_cache[i]; if ((sh->bh_write[i] || i == sh->pd_idx) && !buffer_locked(bh) && !buffer_uptodate(bh) && conf->disks[i].operational) { PRINTK("Read_old block %d for r-m-w\n", i); set_bit(BH_Lock, &bh->b_state); action[i] = READ+1; locked++; } } if (rcw <= rmw && rcw > 0) /* want reconstruct write, but need to get some data */ for (i=disks; i--;) { bh = sh->bh_cache[i]; if (!sh->bh_write[i] && i != sh->pd_idx && !buffer_locked(bh) && !buffer_uptodate(bh) && conf->disks[i].operational) { PRINTK("Read_old block %d for Reconstruct\n", i); set_bit(BH_Lock, &bh->b_state); action[i] = READ+1; locked++; } } /* now if nothing is locked, and if we have enough data, we can start a write request */ if (locked == 0 && (rcw == 0 ||rmw == 0)) { PRINTK("Computing parity...\n"); compute_parity(sh, rcw==0 ? RECONSTRUCT_WRITE : READ_MODIFY_WRITE); /* now every locked buffer is ready to be written */ for (i=disks; i--;) if (buffer_locked(sh->bh_cache[i])) { PRINTK("Writing block %d\n", i); locked++; action[i] = WRITE+1; if (!conf->disks[i].operational || (i==sh->pd_idx && failed == 0)) set_bit(STRIPE_INSYNC, &sh->state); } } } /* maybe we need to check and possibly fix the parity for this stripe * Any reads will already have been scheduled, so we just see if enough data * is available */ if (syncing && locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state) && failed <= 1) { set_bit(STRIPE_HANDLE, &sh->state); if (failed == 0) { if (uptodate != disks) BUG(); compute_parity(sh, CHECK_PARITY); uptodate--; bh = sh->bh_cache[sh->pd_idx]; if ((*(u32*)bh->b_data) == 0 && !memcmp(bh->b_data, bh->b_data+4, bh->b_size-4)) { /* parity is correct (on disc, not in buffer any more) */ set_bit(STRIPE_INSYNC, &sh->state); } } if (!test_bit(STRIPE_INSYNC, &sh->state)) { if (failed==0) failed_num = sh->pd_idx; /* should be able to compute the missing block and write it to spare */ if (!buffer_uptodate(sh->bh_cache[failed_num])) { if (uptodate+1 != disks) BUG(); compute_block(sh, failed_num); uptodate++; } if (uptodate != disks) BUG(); bh = sh->bh_cache[failed_num]; set_bit(BH_Lock, &bh->b_state); action[failed_num] = WRITE+1; locked++; set_bit(STRIPE_INSYNC, &sh->state); if (conf->disks[i].operational) md_sync_acct(conf->disks[i].dev, bh->b_size>>9); else if (conf->spare) md_sync_acct(conf->spare->dev, bh->b_size>>9); } } if (syncing && locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) { md_done_sync(conf->mddev, (sh->size>>10) - sh->sync_redone,1); clear_bit(STRIPE_SYNCING, &sh->state); } spin_unlock(&sh->lock); while ((bh=return_ok)) { return_ok = bh->b_reqnext; bh->b_reqnext = NULL; bh->b_end_io(bh, 1); } while ((bh=return_fail)) { return_ok = bh->b_reqnext; bh->b_reqnext = NULL; bh->b_end_io(bh, 0); } for (i=disks; i-- ;) if (action[i]) { struct buffer_head *bh = sh->bh_cache[i]; int skip = 0; if (action[i] == READ+1) bh->b_end_io = raid5_end_read_request; else bh->b_end_io = raid5_end_write_request; if (conf->disks[i].operational) bh->b_dev = conf->disks[i].dev; else if (conf->spare && action[i] == WRITE+1) bh->b_dev = conf->spare->dev; else if (action[i] == READ+1) BUG(); else skip=1; if (!skip) { PRINTK("for %ld schedule op %d on disc %d\n", sh->sector, action[i]-1, i); atomic_inc(&sh->count); bh->b_rdev = bh->b_dev; bh->b_rsector = bh->b_blocknr * (bh->b_size>>9); generic_make_request(action[i]-1, bh); } else { PRINTK("skip op %d on disc %d for sector %ld\n", action[i]-1, i, sh->sector); clear_bit(BH_Lock, &bh->b_state); set_bit(STRIPE_HANDLE, &sh->state); } } } static int raid5_make_request (mddev_t *mddev, int rw, struct buffer_head * bh) { raid5_conf_t *conf = (raid5_conf_t *) mddev->private; const unsigned int raid_disks = conf->raid_disks; const unsigned int data_disks = raid_disks - 1; unsigned int dd_idx, pd_idx; unsigned long new_sector; int read_ahead = 0; struct stripe_head *sh; if (rw == READA) { rw = READ; read_ahead=1; } new_sector = raid5_compute_sector(bh->b_rsector, raid_disks, data_disks, &dd_idx, &pd_idx, conf); PRINTK("raid5_make_request, sector %lu\n", new_sector); sh = get_active_stripe(conf, new_sector, bh->b_size, read_ahead); if (sh) { sh->pd_idx = pd_idx; add_stripe_bh(sh, bh, dd_idx, rw); handle_stripe(sh); release_stripe(sh); } else bh->b_end_io(bh, test_bit(BH_Uptodate, &bh->b_state)); return 0; } /* * Determine correct block size for this device. */ unsigned int device_bsize (kdev_t dev) { unsigned int i, correct_size; correct_size = BLOCK_SIZE; if (blksize_size[MAJOR(dev)]) { i = blksize_size[MAJOR(dev)][MINOR(dev)]; if (i) correct_size = i; } return correct_size; } static int raid5_sync_request (mddev_t *mddev, unsigned long block_nr) { raid5_conf_t *conf = (raid5_conf_t *) mddev->private; struct stripe_head *sh; int sectors_per_chunk = conf->chunk_size >> 9; unsigned long stripe = (block_nr<<1)/sectors_per_chunk; int chunk_offset = (block_nr<<1) % sectors_per_chunk; int dd_idx, pd_idx; unsigned long first_sector; int raid_disks = conf->raid_disks; int data_disks = raid_disks-1; int redone = 0; int bufsize; sh = get_active_stripe(conf, block_nr<<1, 0, 0); bufsize = sh->size; redone = block_nr-(sh->sector>>1); first_sector = raid5_compute_sector(stripe*data_disks*sectors_per_chunk + chunk_offset, raid_disks, data_disks, &dd_idx, &pd_idx, conf); sh->pd_idx = pd_idx; spin_lock(&sh->lock); set_bit(STRIPE_SYNCING, &sh->state); clear_bit(STRIPE_INSYNC, &sh->state); sh->sync_redone = redone; spin_unlock(&sh->lock); handle_stripe(sh); release_stripe(sh); return (bufsize>>10)-redone; } /* * This is our raid5 kernel thread. * * We scan the hash table for stripes which can be handled now. * During the scan, completed stripes are saved for us by the interrupt * handler, so that they will not have to wait for our next wakeup. */ static void raid5d (void *data) { struct stripe_head *sh; raid5_conf_t *conf = data; mddev_t *mddev = conf->mddev; int handled; PRINTK("+++ raid5d active\n"); handled = 0; if (mddev->sb_dirty) { mddev->sb_dirty = 0; md_update_sb(mddev); } md_spin_lock_irq(&conf->device_lock); while (!list_empty(&conf->handle_list)) { struct list_head *first = conf->handle_list.next; sh = list_entry(first, struct stripe_head, lru); list_del_init(first); atomic_inc(&sh->count); if (atomic_read(&sh->count)!= 1) BUG(); md_spin_unlock_irq(&conf->device_lock); handled++; handle_stripe(sh); release_stripe(sh); md_spin_lock_irq(&conf->device_lock); } PRINTK("%d stripes handled\n", handled); md_spin_unlock_irq(&conf->device_lock); PRINTK("--- raid5d inactive\n"); } /* * Private kernel thread for parity reconstruction after an unclean * shutdown. Reconstruction on spare drives in case of a failed drive * is done by the generic mdsyncd. */ static void raid5syncd (void *data) { raid5_conf_t *conf = data; mddev_t *mddev = conf->mddev; if (!conf->resync_parity) return; if (conf->resync_parity == 2) return; down(&mddev->recovery_sem); if (md_do_sync(mddev,NULL)) { up(&mddev->recovery_sem); printk("raid5: resync aborted!\n"); return; } conf->resync_parity = 0; up(&mddev->recovery_sem); printk("raid5: resync finished.\n"); } static int __check_consistency (mddev_t *mddev, int row) { raid5_conf_t *conf = mddev->private; kdev_t dev; struct buffer_head *bh[MD_SB_DISKS], *tmp = NULL; int i, ret = 0, nr = 0, count; struct buffer_head *bh_ptr[MAX_XOR_BLOCKS]; if (conf->working_disks != conf->raid_disks) goto out; tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); tmp->b_size = 4096; tmp->b_page = alloc_page(GFP_KERNEL); tmp->b_data = page_address(tmp->b_page); if (!tmp->b_data) goto out; md_clear_page(tmp->b_data); memset(bh, 0, MD_SB_DISKS * sizeof(struct buffer_head *)); for (i = 0; i < conf->raid_disks; i++) { dev = conf->disks[i].dev; set_blocksize(dev, 4096); bh[i] = bread(dev, row / 4, 4096); if (!bh[i]) break; nr++; } if (nr == conf->raid_disks) { bh_ptr[0] = tmp; count = 1; for (i = 1; i < nr; i++) { bh_ptr[count++] = bh[i]; if (count == MAX_XOR_BLOCKS) { xor_block(count, &bh_ptr[0]); count = 1; } } if (count != 1) { xor_block(count, &bh_ptr[0]); } if (memcmp(tmp->b_data, bh[0]->b_data, 4096)) ret = 1; } for (i = 0; i < conf->raid_disks; i++) { dev = conf->disks[i].dev; if (bh[i]) { bforget(bh[i]); bh[i] = NULL; } fsync_dev(dev); invalidate_buffers(dev); } free_page((unsigned long) tmp->b_data); out: if (tmp) kfree(tmp); return ret; } static int check_consistency (mddev_t *mddev) { if (__check_consistency(mddev, 0)) /* * We are not checking this currently, as it's legitimate to have * an inconsistent array, at creation time. */ return 0; return 0; } static int raid5_run (mddev_t *mddev) { raid5_conf_t *conf; int i, j, raid_disk, memory; mdp_super_t *sb = mddev->sb; mdp_disk_t *desc; mdk_rdev_t *rdev; struct disk_info *disk; struct md_list_head *tmp; int start_recovery = 0; MOD_INC_USE_COUNT; if (sb->level != 5 && sb->level != 4) { printk("raid5: md%d: raid level not set to 4/5 (%d)\n", mdidx(mddev), sb->level); MOD_DEC_USE_COUNT; return -EIO; } mddev->private = kmalloc (sizeof (raid5_conf_t), GFP_KERNEL); if ((conf = mddev->private) == NULL) goto abort; memset (conf, 0, sizeof (*conf)); conf->mddev = mddev; if ((conf->stripe_hashtbl = (struct stripe_head **) md__get_free_pages(GFP_ATOMIC, HASH_PAGES_ORDER)) == NULL) goto abort; memset(conf->stripe_hashtbl, 0, HASH_PAGES * PAGE_SIZE); conf->device_lock = MD_SPIN_LOCK_UNLOCKED; md_init_waitqueue_head(&conf->wait_for_stripe); INIT_LIST_HEAD(&conf->handle_list); INIT_LIST_HEAD(&conf->inactive_list); atomic_set(&conf->active_stripes, 0); conf->buffer_size = PAGE_SIZE; /* good default for rebuild */ PRINTK("raid5_run(md%d) called.\n", mdidx(mddev)); ITERATE_RDEV(mddev,rdev,tmp) { /* * This is important -- we are using the descriptor on * the disk only to get a pointer to the descriptor on * the main superblock, which might be more recent. */ desc = sb->disks + rdev->desc_nr; raid_disk = desc->raid_disk; disk = conf->disks + raid_disk; if (disk_faulty(desc)) { printk(KERN_ERR "raid5: disabled device %s (errors detected)\n", partition_name(rdev->dev)); if (!rdev->faulty) { MD_BUG(); goto abort; } disk->number = desc->number; disk->raid_disk = raid_disk; disk->dev = rdev->dev; disk->operational = 0; disk->write_only = 0; disk->spare = 0; disk->used_slot = 1; continue; } if (disk_active(desc)) { if (!disk_sync(desc)) { printk(KERN_ERR "raid5: disabled device %s (not in sync)\n", partition_name(rdev->dev)); MD_BUG(); goto abort; } if (raid_disk > sb->raid_disks) { printk(KERN_ERR "raid5: disabled device %s (inconsistent descriptor)\n", partition_name(rdev->dev)); continue; } if (disk->operational) { printk(KERN_ERR "raid5: disabled device %s (device %d already operational)\n", partition_name(rdev->dev), raid_disk); continue; } printk(KERN_INFO "raid5: device %s operational as raid disk %d\n", partition_name(rdev->dev), raid_disk); disk->number = desc->number; disk->raid_disk = raid_disk; disk->dev = rdev->dev; disk->operational = 1; disk->used_slot = 1; conf->working_disks++; } else { /* * Must be a spare disk .. */ printk(KERN_INFO "raid5: spare disk %s\n", partition_name(rdev->dev)); disk->number = desc->number; disk->raid_disk = raid_disk; disk->dev = rdev->dev; disk->operational = 0; disk->write_only = 0; disk->spare = 1; disk->used_slot = 1; } } for (i = 0; i < MD_SB_DISKS; i++) { desc = sb->disks + i; raid_disk = desc->raid_disk; disk = conf->disks + raid_disk; if (disk_faulty(desc) && (raid_disk < sb->raid_disks) && !conf->disks[raid_disk].used_slot) { disk->number = desc->number; disk->raid_disk = raid_disk; disk->dev = MKDEV(0,0); disk->operational = 0; disk->write_only = 0; disk->spare = 0; disk->used_slot = 1; } } conf->raid_disks = sb->raid_disks; /* * 0 for a fully functional array, 1 for a degraded array. */ conf->failed_disks = conf->raid_disks - conf->working_disks; conf->mddev = mddev; conf->chunk_size = sb->chunk_size; conf->level = sb->level; conf->algorithm = sb->layout; conf->max_nr_stripes = NR_STRIPES; #if 0 for (i = 0; i < conf->raid_disks; i++) { if (!conf->disks[i].used_slot) { MD_BUG(); goto abort; } } #endif if (!conf->chunk_size || conf->chunk_size % 4) { printk(KERN_ERR "raid5: invalid chunk size %d for md%d\n", conf->chunk_size, mdidx(mddev)); goto abort; } if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) { printk(KERN_ERR "raid5: unsupported parity algorithm %d for md%d\n", conf->algorithm, mdidx(mddev)); goto abort; } if (conf->failed_disks > 1) { printk(KERN_ERR "raid5: not enough operational devices for md%d (%d/%d failed)\n", mdidx(mddev), conf->failed_disks, conf->raid_disks); goto abort; } if (conf->working_disks != sb->raid_disks) { printk(KERN_ALERT "raid5: md%d, not all disks are operational -- trying to recover array\n", mdidx(mddev)); start_recovery = 1; } if (!start_recovery && (sb->state & (1 << MD_SB_CLEAN)) && check_consistency(mddev)) { printk(KERN_ERR "raid5: detected raid-5 superblock xor inconsistency -- running resync\n"); sb->state &= ~(1 << MD_SB_CLEAN); } { const char * name = "raid5d"; conf->thread = md_register_thread(raid5d, conf, name); if (!conf->thread) { printk(KERN_ERR "raid5: couldn't allocate thread for md%d\n", mdidx(mddev)); goto abort; } } memory = conf->max_nr_stripes * (sizeof(struct stripe_head) + conf->raid_disks * ((sizeof(struct buffer_head) + PAGE_SIZE))) / 1024; if (grow_stripes(conf, conf->max_nr_stripes, GFP_KERNEL)) { printk(KERN_ERR "raid5: couldn't allocate %dkB for buffers\n", memory); shrink_stripes(conf, conf->max_nr_stripes); goto abort; } else printk(KERN_INFO "raid5: allocated %dkB for md%d\n", memory, mdidx(mddev)); /* * Regenerate the "device is in sync with the raid set" bit for * each device. */ for (i = 0; i < MD_SB_DISKS ; i++) { mark_disk_nonsync(sb->disks + i); for (j = 0; j < sb->raid_disks; j++) { if (!conf->disks[j].operational) continue; if (sb->disks[i].number == conf->disks[j].number) mark_disk_sync(sb->disks + i); } } sb->active_disks = conf->working_disks; if (sb->active_disks == sb->raid_disks) printk("raid5: raid level %d set md%d active with %d out of %d devices, algorithm %d\n", conf->level, mdidx(mddev), sb->active_disks, sb->raid_disks, conf->algorithm); else printk(KERN_ALERT "raid5: raid level %d set md%d active with %d out of %d devices, algorithm %d\n", conf->level, mdidx(mddev), sb->active_disks, sb->raid_disks, conf->algorithm); if (!start_recovery && !(sb->state & (1 << MD_SB_CLEAN))) { const char * name = "raid5syncd"; conf->resync_thread = md_register_thread(raid5syncd, conf,name); if (!conf->resync_thread) { printk(KERN_ERR "raid5: couldn't allocate thread for md%d\n", mdidx(mddev)); goto abort; } printk("raid5: raid set md%d not clean; reconstructing parity\n", mdidx(mddev)); conf->resync_parity = 1; md_wakeup_thread(conf->resync_thread); } print_raid5_conf(conf); if (start_recovery) md_recover_arrays(); print_raid5_conf(conf); /* Ok, everything is just fine now */ return (0); abort: if (conf) { print_raid5_conf(conf); if (conf->stripe_hashtbl) free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); kfree(conf); } mddev->private = NULL; printk(KERN_ALERT "raid5: failed to run raid set md%d\n", mdidx(mddev)); MOD_DEC_USE_COUNT; return -EIO; } static int raid5_stop_resync (mddev_t *mddev) { raid5_conf_t *conf = mddev_to_conf(mddev); mdk_thread_t *thread = conf->resync_thread; if (thread) { if (conf->resync_parity) { conf->resync_parity = 2; md_interrupt_thread(thread); printk(KERN_INFO "raid5: parity resync was not fully finished, restarting next time.\n"); return 1; } return 0; } return 0; } static int raid5_restart_resync (mddev_t *mddev) { raid5_conf_t *conf = mddev_to_conf(mddev); if (conf->resync_parity) { if (!conf->resync_thread) { MD_BUG(); return 0; } printk("raid5: waking up raid5resync.\n"); conf->resync_parity = 1; md_wakeup_thread(conf->resync_thread); return 1; } else printk("raid5: no restart-resync needed.\n"); return 0; } static int raid5_stop (mddev_t *mddev) { raid5_conf_t *conf = (raid5_conf_t *) mddev->private; if (conf->resync_thread) md_unregister_thread(conf->resync_thread); md_unregister_thread(conf->thread); shrink_stripes(conf, conf->max_nr_stripes); free_pages((unsigned long) conf->stripe_hashtbl, HASH_PAGES_ORDER); kfree(conf); mddev->private = NULL; MOD_DEC_USE_COUNT; return 0; } #if RAID5_DEBUG static void print_sh (struct stripe_head *sh) { int i; printk("sh %lu, size %d, pd_idx %d, state %ld.\n", sh->sector, sh->size, sh->pd_idx, sh->state); printk("sh %lu, count %d.\n", sh->sector, atomic_read(&sh->count)); printk("sh %lu, ", sh->sector); for (i = 0; i < MD_SB_DISKS; i++) { if (sh->bh_cache[i]) printk("(cache%d: %p %ld) ", i, sh->bh_cache[i], sh->bh_cache[i]->b_state); } printk("\n"); } static void printall (raid5_conf_t *conf) { struct stripe_head *sh; int i; md_spin_lock_irq(&conf->device_lock); for (i = 0; i < NR_HASH; i++) { sh = conf->stripe_hashtbl[i]; for (; sh; sh = sh->hash_next) { if (sh->raid_conf != conf) continue; print_sh(sh); } } md_spin_unlock_irq(&conf->device_lock); PRINTK("--- raid5d inactive\n"); } #endif static int raid5_status (char *page, mddev_t *mddev) { raid5_conf_t *conf = (raid5_conf_t *) mddev->private; mdp_super_t *sb = mddev->sb; int sz = 0, i; sz += sprintf (page+sz, " level %d, %dk chunk, algorithm %d", sb->level, sb->chunk_size >> 10, sb->layout); sz += sprintf (page+sz, " [%d/%d] [", conf->raid_disks, conf->working_disks); for (i = 0; i < conf->raid_disks; i++) sz += sprintf (page+sz, "%s", conf->disks[i].operational ? "U" : "_"); sz += sprintf (page+sz, "]"); #if RAID5_DEBUG #define D(x) \ sz += sprintf (page+sz, "<"#x":%d>", atomic_read(&conf->x)) printall(conf); #endif return sz; } static void print_raid5_conf (raid5_conf_t *conf) { int i; struct disk_info *tmp; printk("RAID5 conf printout:\n"); if (!conf) { printk("(conf==NULL)\n"); return; } printk(" --- rd:%d wd:%d fd:%d\n", conf->raid_disks, conf->working_disks, conf->failed_disks); #if RAID5_DEBUG for (i = 0; i < MD_SB_DISKS; i++) { #else for (i = 0; i < conf->working_disks+conf->failed_disks; i++) { #endif tmp = conf->disks + i; printk(" disk %d, s:%d, o:%d, n:%d rd:%d us:%d dev:%s\n", i, tmp->spare,tmp->operational, tmp->number,tmp->raid_disk,tmp->used_slot, partition_name(tmp->dev)); } } static int raid5_diskop(mddev_t *mddev, mdp_disk_t **d, int state) { int err = 0; int i, failed_disk=-1, spare_disk=-1, removed_disk=-1, added_disk=-1; raid5_conf_t *conf = mddev->private; struct disk_info *tmp, *sdisk, *fdisk, *rdisk, *adisk; mdp_super_t *sb = mddev->sb; mdp_disk_t *failed_desc, *spare_desc, *added_desc; print_raid5_conf(conf); md_spin_lock_irq(&conf->device_lock); /* * find the disk ... */ switch (state) { case DISKOP_SPARE_ACTIVE: /* * Find the failed disk within the RAID5 configuration ... * (this can only be in the first conf->raid_disks part) */ for (i = 0; i < conf->raid_disks; i++) { tmp = conf->disks + i; if ((!tmp->operational && !tmp->spare) || !tmp->used_slot) { failed_disk = i; break; } } /* * When we activate a spare disk we _must_ have a disk in * the lower (active) part of the array to replace. */ if ((failed_disk == -1) || (failed_disk >= conf->raid_disks)) { MD_BUG(); err = 1; goto abort; } /* fall through */ case DISKOP_SPARE_WRITE: case DISKOP_SPARE_INACTIVE: /* * Find the spare disk ... (can only be in the 'high' * area of the array) */ for (i = conf->raid_disks; i < MD_SB_DISKS; i++) { tmp = conf->disks + i; if (tmp->spare && tmp->number == (*d)->number) { spare_disk = i; break; } } if (spare_disk == -1) { MD_BUG(); err = 1; goto abort; } break; case DISKOP_HOT_REMOVE_DISK: for (i = 0; i < MD_SB_DISKS; i++) { tmp = conf->disks + i; if (tmp->used_slot && (tmp->number == (*d)->number)) { if (tmp->operational) { err = -EBUSY; goto abort; } removed_disk = i; break; } } if (removed_disk == -1) { MD_BUG(); err = 1; goto abort; } break; case DISKOP_HOT_ADD_DISK: for (i = conf->raid_disks; i < MD_SB_DISKS; i++) { tmp = conf->disks + i; if (!tmp->used_slot) { added_disk = i; break; } } if (added_disk == -1) { MD_BUG(); err = 1; goto abort; } break; } switch (state) { /* * Switch the spare disk to write-only mode: */ case DISKOP_SPARE_WRITE: if (conf->spare) { MD_BUG(); err = 1; goto abort; } sdisk = conf->disks + spare_disk; sdisk->operational = 1; sdisk->write_only = 1; conf->spare = sdisk; break; /* * Deactivate a spare disk: */ case DISKOP_SPARE_INACTIVE: sdisk = conf->disks + spare_disk; sdisk->operational = 0; sdisk->write_only = 0; /* * Was the spare being resynced? */ if (conf->spare == sdisk) conf->spare = NULL; break; /* * Activate (mark read-write) the (now sync) spare disk, * which means we switch it's 'raid position' (->raid_disk) * with the failed disk. (only the first 'conf->raid_disks' * slots are used for 'real' disks and we must preserve this * property) */ case DISKOP_SPARE_ACTIVE: if (!conf->spare) { MD_BUG(); err = 1; goto abort; } sdisk = conf->disks + spare_disk; fdisk = conf->disks + failed_disk; spare_desc = &sb->disks[sdisk->number]; failed_desc = &sb->disks[fdisk->number]; if (spare_desc != *d) { MD_BUG(); err = 1; goto abort; } if (spare_desc->raid_disk != sdisk->raid_disk) { MD_BUG(); err = 1; goto abort; } if (sdisk->raid_disk != spare_disk) { MD_BUG(); err = 1; goto abort; } if (failed_desc->raid_disk != fdisk->raid_disk) { MD_BUG(); err = 1; goto abort; } if (fdisk->raid_disk != failed_disk) { MD_BUG(); err = 1; goto abort; } /* * do the switch finally */ xchg_values(*spare_desc, *failed_desc); xchg_values(*fdisk, *sdisk); /* * (careful, 'failed' and 'spare' are switched from now on) * * we want to preserve linear numbering and we want to * give the proper raid_disk number to the now activated * disk. (this means we switch back these values) */ xchg_values(spare_desc->raid_disk, failed_desc->raid_disk); xchg_values(sdisk->raid_disk, fdisk->raid_disk); xchg_values(spare_desc->number, failed_desc->number); xchg_values(sdisk->number, fdisk->number); *d = failed_desc; if (sdisk->dev == MKDEV(0,0)) sdisk->used_slot = 0; /* * this really activates the spare. */ fdisk->spare = 0; fdisk->write_only = 0; /* * if we activate a spare, we definitely replace a * non-operational disk slot in the 'low' area of * the disk array. */ conf->failed_disks--; conf->working_disks++; conf->spare = NULL; break; case DISKOP_HOT_REMOVE_DISK: rdisk = conf->disks + removed_disk; if (rdisk->spare && (removed_disk < conf->raid_disks)) { MD_BUG(); err = 1; goto abort; } rdisk->dev = MKDEV(0,0); rdisk->used_slot = 0; break; case DISKOP_HOT_ADD_DISK: adisk = conf->disks + added_disk; added_desc = *d; if (added_disk != added_desc->number) { MD_BUG(); err = 1; goto abort; } adisk->number = added_desc->number; adisk->raid_disk = added_desc->raid_disk; adisk->dev = MKDEV(added_desc->major,added_desc->minor); adisk->operational = 0; adisk->write_only = 0; adisk->spare = 1; adisk->used_slot = 1; break; default: MD_BUG(); err = 1; goto abort; } abort: md_spin_unlock_irq(&conf->device_lock); print_raid5_conf(conf); return err; } static mdk_personality_t raid5_personality= { name: "raid5", make_request: raid5_make_request, run: raid5_run, stop: raid5_stop, status: raid5_status, error_handler: raid5_error, diskop: raid5_diskop, stop_resync: raid5_stop_resync, restart_resync: raid5_restart_resync, sync_request: raid5_sync_request }; static int md__init raid5_init (void) { return register_md_personality (RAID5, &raid5_personality); } static void raid5_exit (void) { unregister_md_personality (RAID5); } module_init(raid5_init); module_exit(raid5_exit);