/* * Simple MTD partitioning layer * * (C) 2000 Nicolas Pitre * * This code is GPL * * $Id: mtdpart.c,v 1.7 2000/12/09 23:29:47 dwmw2 Exp $ */ #include #include #include #include #include #include #include /* Our partition linked list */ static LIST_HEAD(mtd_partitions); /* Our partition node structure */ struct mtd_part { struct mtd_info mtd; struct mtd_info *master; loff_t offset; int index; struct list_head list; }; /* * Given a pointer to the MTD object in the mtd_part structure, we can retrieve * the pointer to that structure with this macro. */ #define PART(x) ((struct mtd_part *)(x)) /* * MTD methods which simply translate the effective address and pass through * to the _real_ device. */ static int part_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf) { struct mtd_part *part = PART(mtd); if (from >= mtd->size) len = 0; else if (from + len > mtd->size) len = mtd->size - from; return part->master->read (part->master, from + part->offset, len, retlen, buf); } static int part_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (to >= mtd->size) len = 0; else if (to + len > mtd->size) len = mtd->size - to; return part->master->write (part->master, to + part->offset, len, retlen, buf); } static int part_writev (struct mtd_info *mtd, const struct iovec *vecs, unsigned long count, loff_t to, size_t *retlen) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; return part->master->writev (part->master, vecs, count, to + part->offset, retlen); } static int part_readv (struct mtd_info *mtd, struct iovec *vecs, unsigned long count, loff_t from, size_t *retlen) { struct mtd_part *part = PART(mtd); return part->master->readv (part->master, vecs, count, from + part->offset, retlen); } static int part_erase (struct mtd_info *mtd, struct erase_info *instr) { struct mtd_part *part = PART(mtd); if (!(mtd->flags & MTD_WRITEABLE)) return -EROFS; if (instr->addr >= mtd->size) return -EINVAL; instr->addr += part->offset; return part->master->erase(part->master, instr); } static int part_lock (struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_part *part = PART(mtd); return part->master->lock(part->master, ofs + part->offset, len); } static int part_unlock (struct mtd_info *mtd, loff_t ofs, size_t len) { struct mtd_part *part = PART(mtd); return part->master->unlock(part->master, ofs + part->offset, len); } /* * This function unregisters and destroy all slave MTD objects which are * attached to the given master MTD object. */ int del_mtd_partitions(struct mtd_info *master) { struct list_head *node; struct mtd_part *slave; for (node = mtd_partitions.next; node != &mtd_partitions; node = node->next) { slave = list_entry(node, struct mtd_part, list); if (slave->master == master) { struct list_head *prev = node->prev; __list_del(prev, node->next); del_mtd_device(&slave->mtd); kfree(slave); node = prev; MOD_DEC_USE_COUNT; } } return 0; } /* * This function, given a master MTD object and a partition table, creates * and registers slave MTD objects which are bound to the master according to * the partition definitions. * (Q: should we register the master MTD object as well?) */ int add_mtd_partitions(struct mtd_info *master, struct mtd_partition *parts, int nbparts) { struct mtd_part *slave; u_long cur_offset = 0; int i; for (i = 0; i < nbparts; i++) { /* allocate the partition structure */ slave = kmalloc (sizeof(*slave), GFP_KERNEL); if (!slave) { printk ("memory allocation error while creating partitions for \"%s\"\n", master->name); del_mtd_partitions(master); return -ENOMEM; } list_add(&slave->list, &mtd_partitions); /* set up the MTD object for this partition */ slave->mtd = *master; slave->mtd.name = parts[i].name; slave->mtd.size = parts[i].size; slave->mtd.flags &= ~parts[i].mask_flags; slave->mtd.read = part_read; slave->mtd.write = part_write; if (slave->mtd.writev) slave->mtd.writev = part_writev; if (slave->mtd.readv) slave->mtd.readv = part_readv; if (slave->mtd.lock) slave->mtd.lock = part_lock; if (slave->mtd.unlock) slave->mtd.unlock = part_unlock; slave->mtd.erase = part_erase; slave->master = master; slave->offset = parts[i].offset; slave->index = i; if (slave->offset == 0) slave->offset = cur_offset; if (slave->mtd.size == 0) slave->mtd.size = master->size - slave->offset; cur_offset = slave->offset + slave->mtd.size; /* let's do some sanity checks */ if ((slave->mtd.flags & MTD_WRITEABLE) && (parts[i].offset % master->erasesize)) { slave->mtd.flags &= ~MTD_WRITEABLE; printk ("mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n", parts[i].name); } if ((slave->mtd.flags & MTD_WRITEABLE) && (parts[i].size % master->erasesize)) { slave->mtd.flags &= ~MTD_WRITEABLE; printk ("mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n", parts[i].name); } if (parts[i].offset >= master->size) { /* let's register it anyway to preserve ordering */ slave->offset = 0; slave->mtd.size = 0; printk ("mtd: partition \"%s\" is out of reach -- disabled\n", parts[i].name); } if (parts[i].offset + parts[i].size > master->size) { slave->mtd.size = master->size - parts[i].offset; printk ("mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#lx\n", parts[i].name, master->name, slave->mtd.size); } /* register our partition */ add_mtd_device(&slave->mtd); MOD_INC_USE_COUNT; } return 0; } EXPORT_SYMBOL(add_mtd_partitions); EXPORT_SYMBOL(del_mtd_partitions);