/* 3c527.c: 3Com Etherlink/MC32 driver for Linux * * (c) Copyright 1998 Red Hat Software Inc * Written by Alan Cox. * * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c * (for the MCA stuff) written by Wim Dumon. * * Thanks to 3Com for making this possible by providing me with the * documentation. * * This software may be used and distributed according to the terms * of the GNU Public License, incorporated herein by reference. * */ static const char *version = "3c527.c:v0.05 1999/09/06 Alan Cox (alan@redhat.com)\n"; /* * Things you need * o The databook. * * Traps for the unwary * * The diagram (Figure 1-1) and the POS summary disagree with the * "Interrupt Level" section in the manual. * * The documentation in places seems to miss things. In actual fact * I've always eventually found everything is documented, it just * requires careful study. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "3c527.h" /* * The name of the card. Is used for messages and in the requests for * io regions, irqs and dma channels */ static const char* cardname = "3c527"; /* use 0 for production, 1 for verification, >2 for debug */ #ifndef NET_DEBUG #define NET_DEBUG 2 #endif static unsigned int mc32_debug = NET_DEBUG; /* The number of low I/O ports used by the ethercard. */ #define NETCARD_IO_EXTENT 8 struct mc32_mailbox { u16 mbox __attribute((packed)); u16 data[1] __attribute((packed)); }; /* Information that need to be kept for each board. */ #define TX_RING_MAX 16 /* Typically the card supports 37 */ #define RX_RING_MAX 32 /* " " " */ struct mc32_local { struct net_device_stats net_stats; int slot; volatile struct mc32_mailbox *rx_box; volatile struct mc32_mailbox *tx_box; volatile struct mc32_mailbox *exec_box; volatile u16 *stats; u16 tx_chain; u16 rx_chain; u16 tx_len; u16 rx_len; u32 base; u16 rx_halted; u16 tx_halted; u16 exec_pending; u16 mc_reload_wait; /* a multicast load request is pending */ atomic_t tx_count; /* buffers left */ wait_queue_head_t event; struct sk_buff *tx_skb[TX_RING_MAX]; /* Transmit ring */ u16 tx_skb_top; u16 tx_skb_end; struct sk_buff *rx_skb[RX_RING_MAX]; /* Receive ring */ void *rx_ptr[RX_RING_MAX]; /* Data pointers */ u32 mc_list_valid; /* True when the mclist is set */ }; /* The station (ethernet) address prefix, used for a sanity check. */ #define SA_ADDR0 0x02 #define SA_ADDR1 0x60 #define SA_ADDR2 0xAC struct mca_adapters_t { unsigned int id; char *name; }; const struct mca_adapters_t mc32_adapters[] = { { 0x0041, "3COM EtherLink MC/32" }, { 0x8EF5, "IBM High Performance Lan Adapter" }, { 0x0000, NULL } }; /* Index to functions, as function prototypes. */ extern int mc32_probe(struct net_device *dev); static int mc32_probe1(struct net_device *dev, int ioaddr); static int mc32_open(struct net_device *dev); static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev); static void mc32_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int mc32_close(struct net_device *dev); static struct net_device_stats *mc32_get_stats(struct net_device *dev); static void mc32_set_multicast_list(struct net_device *dev); static void mc32_reset_multicast_list(struct net_device *dev); /* * Check for a network adaptor of this type, and return '0' iff one exists. * If dev->base_addr == 0, probe all likely locations. * If dev->base_addr == 1, always return failure. * If dev->base_addr == 2, allocate space for the device and return success * (detachable devices only). */ int __init mc32_probe(struct net_device *dev) { static int current_mca_slot = -1; int i; int adapter_found = 0; /* Do not check any supplied i/o locations. POS registers usually don't fail :) */ /* MCA cards have POS registers. Autodetecting MCA cards is extremely simple. Just search for the card. */ for(i = 0; (mc32_adapters[i].name != NULL) && !adapter_found; i++) { current_mca_slot = mca_find_unused_adapter(mc32_adapters[i].id, 0); if((current_mca_slot != MCA_NOTFOUND) && !adapter_found) { if(!mc32_probe1(dev, current_mca_slot)) { mca_set_adapter_name(current_mca_slot, mc32_adapters[i].name); mca_mark_as_used(current_mca_slot); return 0; } } } return -ENODEV; } /* * This is the real probe routine. Linux has a history of friendly device * probes on the ISA bus. A good device probes avoids doing writes, and * verifies that the correct device exists and functions. */ static int __init mc32_probe1(struct net_device *dev, int slot) { static unsigned version_printed = 0; int i; u8 POS; u32 base; struct mc32_local *lp; static u16 mca_io_bases[]={ 0x7280,0x7290, 0x7680,0x7690, 0x7A80,0x7A90, 0x7E80,0x7E90 }; static u32 mca_mem_bases[]={ 0x00C0000, 0x00C4000, 0x00C8000, 0x00CC000, 0x00D0000, 0x00D4000, 0x00D8000, 0x00DC000 }; static char *failures[]={ "Processor instruction", "Processor data bus", "Processor data bus", "Processor data bus", "Adapter bus", "ROM checksum", "Base RAM", "Extended RAM", "82586 internal loopback", "82586 initialisation failure", "Adapter list configuration error" }; /* Time to play MCA games */ if (mc32_debug && version_printed++ == 0) printk(KERN_DEBUG "%s", version); printk(KERN_INFO "%s: %s found in slot %d:", dev->name, cardname, slot); POS = mca_read_stored_pos(slot, 2); if(!(POS&1)) { printk(" disabled.\n"); return -ENODEV; } /* Allocate a new 'dev' if needed. */ if (dev == NULL) { /* * Don't allocate the private data here, it is done later * This makes it easier to free the memory when this driver * is used as a module. */ dev = init_etherdev(0, 0); if (dev == NULL) return -ENOMEM; } /* Fill in the 'dev' fields. */ dev->base_addr = mca_io_bases[(POS>>1)&7]; dev->mem_start = mca_mem_bases[(POS>>4)&7]; POS = mca_read_stored_pos(slot, 4); if(!(POS&1)) { printk("memory window disabled.\n"); return -ENODEV; } POS = mca_read_stored_pos(slot, 5); i=(POS>>4)&3; if(i==3) { printk("invalid memory window.\n"); return -ENODEV; } i*=16384; i+=16384; dev->mem_end=dev->mem_start + i; dev->irq = ((POS>>2)&3)+9; printk("io 0x%3lX irq %d mem 0x%lX (%dK)\n", dev->base_addr, dev->irq, dev->mem_start, i/1024); /* We ought to set the cache line size here.. */ /* * Go PROM browsing */ printk("%s: Address ", dev->name); /* Retrieve and print the ethernet address. */ for (i = 0; i < 6; i++) { mca_write_pos(slot, 6, i+12); mca_write_pos(slot, 7, 0); printk(" %2.2x", dev->dev_addr[i] = mca_read_pos(slot,3)); } mca_write_pos(slot, 6, 0); mca_write_pos(slot, 7, 0); POS = mca_read_stored_pos(slot, 4); if(POS&2) printk(" : BNC port selected.\n"); else printk(" : AUI port selected.\n"); POS=inb(dev->base_addr+HOST_CTRL); POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET; POS&=~HOST_CTRL_INTE; outb(POS, dev->base_addr+HOST_CTRL); /* Reset adapter */ udelay(100); /* Reset off */ POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET); outb(POS, dev->base_addr+HOST_CTRL); udelay(300); /* * Grab the IRQ */ if(request_irq(dev->irq, &mc32_interrupt, 0, cardname, dev)) { printk("%s: unable to get IRQ %d.\n", dev->name, dev->irq); return -EAGAIN; } /* Initialize the device structure. */ if (dev->priv == NULL) { dev->priv = kmalloc(sizeof(struct mc32_local), GFP_KERNEL); if (dev->priv == NULL) { free_irq(dev->irq, dev); return -ENOMEM; } } memset(dev->priv, 0, sizeof(struct mc32_local)); lp = (struct mc32_local *)dev->priv; lp->slot = slot; i=0; base = inb(dev->base_addr); while(base==0xFF) { i++; if(i==1000) { printk("%s: failed to boot adapter.\n", dev->name); free_irq(dev->irq, dev); return -ENODEV; } udelay(1000); if(inb(dev->base_addr+2)&(1<<5)) base = inb(dev->base_addr); } if(base>0) { if(base < 0x0C) printk("%s: %s%s.\n", dev->name, failures[base-1], base<0x0A?" test failure":""); else printk("%s: unknown failure %d.\n", dev->name, base); free_irq(dev->irq, dev); return -ENODEV; } base=0; for(i=0;i<4;i++) { int n=0; while(!(inb(dev->base_addr+2)&(1<<5))) { n++; udelay(50); if(n>100) { printk(KERN_ERR "%s: mailbox read fail (%d).\n", dev->name, i); free_irq(dev->irq, dev); return -ENODEV; } } base|=(inb(dev->base_addr)<<(8*i)); } lp->exec_box=bus_to_virt(dev->mem_start+base); base=lp->exec_box->data[1]<<16|lp->exec_box->data[0]; lp->base = dev->mem_start+base; lp->rx_box=bus_to_virt(lp->base + lp->exec_box->data[2]); lp->tx_box=bus_to_virt(lp->base + lp->exec_box->data[3]); lp->stats = bus_to_virt(lp->base + lp->exec_box->data[5]); /* * Descriptor chains (card relative) */ lp->tx_chain = lp->exec_box->data[8]; lp->rx_chain = lp->exec_box->data[10]; lp->tx_len = lp->exec_box->data[9]; lp->rx_len = lp->exec_box->data[11]; init_waitqueue_head(&lp->event); printk("%s: %d RX buffers, %d TX buffers. Base of 0x%08X.\n", dev->name, lp->rx_len, lp->tx_len, lp->base); dev->open = mc32_open; dev->stop = mc32_close; dev->hard_start_xmit = mc32_send_packet; dev->get_stats = mc32_get_stats; dev->set_multicast_list = mc32_set_multicast_list; lp->rx_halted = 1; lp->tx_halted = 1; /* Fill in the fields of the device structure with ethernet values. */ ether_setup(dev); return 0; } /* * Polled command stuff */ static void mc32_ring_poll(struct net_device *dev) { int ioaddr = dev->base_addr; while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); } /* * Send exec commands */ /* * Send command from interrupt state */ static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int ioaddr = dev->base_addr; if(lp->exec_pending) return -1; lp->exec_pending=1; lp->exec_box->mbox=0; lp->exec_box->mbox=cmd; memcpy((void *)lp->exec_box->data, data, len); barrier(); /* the memcpy forgot the volatile so be sure */ /* Send the command */ while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); outb(1<<6, ioaddr+HOST_CMD); return 0; } /* * Send command and block for results. On completion spot and reissue * multicasts */ static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int ioaddr = dev->base_addr; unsigned long flags; int ret = 0; /* * Wait for a command */ while(lp->exec_pending) sleep_on(&lp->event); /* * Issue mine */ lp->exec_pending=1; lp->exec_box->mbox=0; lp->exec_box->mbox=cmd; memcpy((void *)lp->exec_box->data, data, len); barrier(); /* the memcpy forgot the volatile so be sure */ /* Send the command */ while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); outb(1<<6, ioaddr+HOST_CMD); save_flags(flags); cli(); while(lp->exec_pending!=2) sleep_on(&lp->event); lp->exec_pending=0; restore_flags(flags); if(lp->exec_box->data[0]&(1<<13)) ret = -1; /* * A multicast set got blocked - do it now */ if(lp->mc_reload_wait) mc32_reset_multicast_list(dev); return ret; } /* * RX abort */ static void mc32_rx_abort(struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int ioaddr = dev->base_addr; while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); lp->rx_box->mbox=0; outb(3<<3, ioaddr+HOST_CMD); /* Suspend reception */ } /* * RX enable */ static void mc32_rx_begin(struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int ioaddr = dev->base_addr; while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); lp->rx_box->mbox=0; outb(1<<3, ioaddr+HOST_CMD); /* GO */ mc32_ring_poll(dev); lp->rx_halted=0; } static void mc32_tx_abort(struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int ioaddr = dev->base_addr; while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); lp->tx_box->mbox=0; outb(3, ioaddr+HOST_CMD); /* Suspend */ /* Ring empty */ atomic_set(&lp->tx_count, lp->tx_len); /* Flush */ if(lp->tx_skb_top!=lp->tx_skb_end) { int i; if(lp->tx_skb_top<=lp->tx_skb_end) { for(i=lp->tx_skb_top;itx_skb_end;i++) { dev_kfree_skb(lp->tx_skb[i]); lp->tx_skb[i]=NULL; } } else { for(i=lp->tx_skb_end;itx_skb[i]); lp->tx_skb[i]=NULL; } for(i=0;itx_skb_top;i++) { dev_kfree_skb(lp->tx_skb[i]); lp->tx_skb[i]=NULL; } } } lp->tx_skb_top=lp->tx_skb_end=0; } /* * TX enable */ static void mc32_tx_begin(struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int ioaddr = dev->base_addr; while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); lp->tx_box->mbox=0; #if 0 outb(5, ioaddr+HOST_CMD); /* GO */ printk("TX=>5\n"); mc32_ring_poll(dev); if(lp->tx_box->mbox&(1<<13)) printk("TX begin error!\n"); #endif lp->tx_halted=0; } /* * Load the rx ring */ static int mc32_load_rx_ring(struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int i; u16 base; volatile struct skb_header *p; base = lp->rx_box->data[0]; /* Fix me - should use card size - also fix flush ! */ for(i=0;irx_skb[i]=alloc_skb(1532, GFP_KERNEL); if(lp->rx_skb[i]==NULL) { for(;i>=0;i--) kfree_skb(lp->rx_skb[i]); return -ENOBUFS; } lp->rx_ptr[i]=lp->rx_skb[i]->data+18; p=bus_to_virt(lp->base+base); p->control=0; p->data = virt_to_bus(lp->rx_ptr[i]); p->status=0; p->length = 1532; base = p->next; } p->control = (1<<6); lp->rx_box->mbox = 0; return 0; } static void mc32_flush_rx_ring(struct mc32_local *lp) { int i; for(i=0;irx_skb[i]); } static void mc32_flush_tx_ring(struct mc32_local *lp) { int i; if(lp->tx_skb_top <= lp->tx_skb_end) { for(i=lp->tx_skb_top;itx_skb_end;i++) dev_kfree_skb(lp->tx_skb[i]); } else { for(i=0;itx_skb_end;i++) dev_kfree_skb(lp->tx_skb[i]); for(i=lp->tx_skb_top;itx_skb[i]); } } /* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. */ static int mc32_open(struct net_device *dev) { int ioaddr = dev->base_addr; u16 zero_word=0; u8 one=1; u8 regs; dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; /* * Interrupts enabled */ regs=inb(ioaddr+HOST_CTRL); regs|=HOST_CTRL_INTE; outb(regs, ioaddr+HOST_CTRL); /* * Send the indications on command */ mc32_command(dev, 4, &one, 2); /* * Send the command sequence "abort, resume" for RX and TX. * The abort cleans up the buffer chains if needed. */ mc32_rx_abort(dev); mc32_tx_abort(dev); /* Set Network Address */ mc32_command(dev, 1, dev->dev_addr, 6); /* Set the filters */ mc32_set_multicast_list(dev); /* Issue the 82586 workaround command - this is for "busy lans", but basically means for all lans now days - has a performance cost but best set */ mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */ /* Load the ring we just initialised */ if(mc32_load_rx_ring(dev)) { mc32_close(dev); return -ENOBUFS; } /* And the resume command goes last */ mc32_rx_begin(dev); mc32_tx_begin(dev); MOD_INC_USE_COUNT; return 0; } static int mc32_send_packet(struct sk_buff *skb, struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; if (dev->tbusy) { /* * If we get here, some higher level has decided we are broken. * There should really be a "kick me" function call instead. */ int tickssofar = jiffies - dev->trans_start; if (tickssofar < 5) return 1; printk(KERN_WARNING "%s: transmit timed out?\n", dev->name); /* Try to restart the adaptor. */ dev->tbusy=0; dev->trans_start = jiffies; } /* * Block a timer-based transmit from overlapping. This could better be * done with atomic_swap(1, dev->tbusy), but set_bit() works as well. */ if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { printk(KERN_WARNING "%s: Transmitter access conflict.\n", dev->name); dev_kfree_skb(skb); } else { unsigned long flags; u16 tx_head; volatile struct skb_header *p, *np; save_flags(flags); cli(); if(atomic_read(&lp->tx_count)==0) { dev->tbusy=1; restore_flags(flags); return 1; } tx_head = lp->tx_box->data[0]; atomic_dec(&lp->tx_count); /* We will need this to flush the buffer out */ lp->tx_skb[lp->tx_skb_end] = skb; lp->tx_skb_end++; lp->tx_skb_end&=(TX_RING_MAX-1); /* P is the last sending/sent buffer as a pointer */ p=(struct skb_header *)bus_to_virt(lp->base+tx_head); /* NP is the buffer we will be loading */ np=(struct skb_header *)bus_to_virt(lp->base+p->next); np->control |= (1<<6); /* EOL */ wmb(); np->length = skb->len; np->data = virt_to_bus(skb->data); np->status = 0; np->control = (1<<7)|(1<<6); /* EOP EOL */ wmb(); p->status = 0; p->control &= ~(1<<6); dev->tbusy = 0; /* Keep feeding me */ lp->tx_box->mbox=0; restore_flags(flags); } return 0; } static void mc32_update_stats(struct net_device *dev) { } static void mc32_rx_ring(struct net_device *dev) { struct mc32_local *lp=dev->priv; int ioaddr = dev->base_addr; int x=0; volatile struct skb_header *p; u16 base; u16 top; top = base = lp->rx_box->data[0]; do { p=(struct skb_header *)bus_to_virt(base+lp->base); if(!(p->status & (1<<7))) break; if(p->status & (1<<6)) { u16 length = p->length; struct sk_buff *skb=dev_alloc_skb(length+2); if(skb!=NULL) { skb_reserve(skb,2); /*printk("Frame at %p\n", bus_to_virt(p->data)); */ memcpy(skb_put(skb, length), bus_to_virt(p->data), length); skb->protocol=eth_type_trans(skb,dev); skb->dev=dev; lp->net_stats.rx_packets++; lp->net_stats.rx_bytes+=skb->len; netif_rx(skb); } else lp->net_stats.rx_dropped++; } else { lp->net_stats.rx_errors++; switch(p->status&0x0F) { case 1: lp->net_stats.rx_crc_errors++;break; case 2: lp->net_stats.rx_fifo_errors++;break; case 3: lp->net_stats.rx_frame_errors++;break; case 4: lp->net_stats.rx_missed_errors++;break; case 5: lp->net_stats.rx_length_errors++;break; } } p->length = 1532; p->control &= ~(1<<6); p->status = 0; base = p->next; } while(x++<48); /* * This is curious. It seems the receive stop and receive continue * commands race against each other, even though we poll for * command ready to be issued. The delay is hackish but is a workaround * while I investigate in depth */ while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR)); lp->rx_box->mbox=0; lp->rx_box->data[0] = top; outb(1<<3, ioaddr+HOST_CMD); } /* * The typical workload of the driver: * Handle the network interface interrupts. */ static void mc32_interrupt(int irq, void *dev_id, struct pt_regs * regs) { struct net_device *dev = dev_id; struct mc32_local *lp; int ioaddr, status, boguscount = 0; int rx_event = 0; if (dev == NULL) { printk(KERN_WARNING "%s: irq %d for unknown device.\n", cardname, irq); return; } dev->interrupt = 1; ioaddr = dev->base_addr; lp = (struct mc32_local *)dev->priv; /* See whats cooking */ while((inb(ioaddr+2)&(1<<5)) && boguscount++<2000) { status=inb(ioaddr+HOST_CMD); #ifdef DEBUG_IRQ printk("Status TX%d RX%d EX%d OV%d\n", (status&7), (status>>3)&7, (status>>6)&1, (status>>7)&1); #endif switch(status&7) { case 0: break; case 6: /* TX fail */ lp->net_stats.tx_errors++; case 2: /* TX ok */ lp->net_stats.tx_packets++; /* Packets are sent in order - this is basically a FIFO queue of buffers matching the card ring */ lp->net_stats.tx_bytes+=lp->tx_skb[lp->tx_skb_top]->len; dev_kfree_skb(lp->tx_skb[lp->tx_skb_top]); lp->tx_skb[lp->tx_skb_top]=NULL; lp->tx_skb_top++; lp->tx_skb_top&=(TX_RING_MAX-1); atomic_inc(&lp->tx_count); dev->tbusy=0; mark_bh(NET_BH); break; case 3: /* Halt */ case 4: /* Abort */ lp->tx_halted=1; wake_up(&lp->event); break; case 5: lp->tx_halted=0; wake_up(&lp->event); break; default: printk("%s: strange tx ack %d\n", dev->name, status&7); } status>>=3; switch(status&7) { case 0: break; case 2: /* RX */ rx_event=1; break; case 3: case 4: lp->rx_halted=1; wake_up(&lp->event); break; case 5: lp->rx_halted=0; wake_up(&lp->event); break; case 6: /* Out of RX buffers stat */ /* Must restart */ lp->net_stats.rx_dropped++; rx_event = 1; /* To restart */ break; default: printk("%s: strange rx ack %d\n", dev->name, status&7); } status>>=3; if(status&1) { /* 0=no 1=yes 2=reply clearing */ lp->exec_pending=2; wake_up(&lp->event); } if(status&2) { /* * Update the stats as soon as * we have it flagged and can * send an immediate reply (CRR set) */ if(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR) { mc32_update_stats(dev); outb(0, ioaddr+HOST_CMD); } } } /* * Process and restart the receive ring. */ if(rx_event) mc32_rx_ring(dev); dev->interrupt = 0; return; } /* The inverse routine to mc32_open(). */ static int mc32_close(struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; int ioaddr = dev->base_addr; u8 regs; u16 one=1; /* * Send the indications on command (handy debug check) */ mc32_command(dev, 4, &one, 2); /* Abort RX and Abort TX */ mc32_rx_abort(dev); mc32_tx_abort(dev); /* Catch any waiting commands */ while(lp->exec_pending==1) sleep_on(&lp->event); /* Ok the card is now stopping */ regs=inb(ioaddr+HOST_CTRL); regs&=~HOST_CTRL_INTE; outb(regs, ioaddr+HOST_CTRL); mc32_flush_rx_ring(lp); mc32_flush_tx_ring(lp); dev->tbusy = 1; dev->start = 0; /* Update the statistics here. */ MOD_DEC_USE_COUNT; return 0; } /* * Get the current statistics. * This may be called with the card open or closed. */ static struct net_device_stats *mc32_get_stats(struct net_device *dev) { struct mc32_local *lp = (struct mc32_local *)dev->priv; return &lp->net_stats; } /* * Set or clear the multicast filter for this adaptor. * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, clear multicast list * num_addrs > 0 Multicast mode, receive normal and MC packets, * and do best-effort filtering. */ static void do_mc32_set_multicast_list(struct net_device *dev, int retry) { struct mc32_local *lp = (struct mc32_local *)dev->priv; u16 filt; if (dev->flags&IFF_PROMISC) /* Enable promiscuous mode */ filt = 1; else if((dev->flags&IFF_ALLMULTI) || dev->mc_count > 10) { dev->flags|=IFF_PROMISC; filt = 1; } else if(dev->mc_count) { unsigned char block[62]; unsigned char *bp; struct dev_mc_list *dmc=dev->mc_list; int i; filt = 0; if(retry==0) lp->mc_list_valid = 0; if(!lp->mc_list_valid) { block[1]=0; block[0]=dev->mc_count; bp=block+2; for(i=0;imc_count;i++) { memcpy(bp, dmc->dmi_addr, 6); bp+=6; dmc=dmc->next; } if(mc32_command_nowait(dev, 2, block, 2+6*dev->mc_count)==-1) { lp->mc_reload_wait = 1; return; } lp->mc_list_valid=1; } } else { filt = 0; } if(mc32_command_nowait(dev, 0, &filt, 2)==-1) { lp->mc_reload_wait = 1; } } static void mc32_set_multicast_list(struct net_device *dev) { do_mc32_set_multicast_list(dev,0); } static void mc32_reset_multicast_list(struct net_device *dev) { do_mc32_set_multicast_list(dev,1); } #ifdef MODULE static char devicename[9] = { 0, }; static struct net_device this_device = { devicename, /* will be inserted by linux/drivers/net/mc32_init.c */ 0, 0, 0, 0, 0, 0, /* I/O address, IRQ */ 0, 0, 0, NULL, mc32_probe }; int init_module(void) { int result; if ((result = register_netdev(&this_device)) != 0) return result; return 0; } void cleanup_module(void) { int slot; /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ unregister_netdev(&this_device); /* * If we don't do this, we can't re-insmod it later. * Release irq/dma here, when you have jumpered versions and * allocate them in mc32_probe1(). */ if (this_device.priv) { struct mc32_local *lp=this_device.priv; slot = lp->slot; mca_mark_as_unused(slot); mca_set_adapter_name(slot, NULL); kfree_s(this_device.priv, sizeof(struct mc32_local)); } free_irq(this_device.irq, &this_device); } #endif /* MODULE */