/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ /* Written 1996-1998 by Donald Becker. This software may be used and distributed according to the terms of the GNU Public License, incorporated herein by reference. This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 and the EtherLink XL 3c900 and 3c905 cards. The author may be reached as becker@CESDIS.gsfc.nasa.gov, or C/O Center of Excellence in Space Data and Information Sciences Code 930.5, Goddard Space Flight Center, Greenbelt MD 20771 */ static char *version = "3c59x.c:v0.99H 11/17/98 Donald Becker http://cesdis.gsfc.nasa.gov/linux/drivers/vortex.html\n"; /* "Knobs" that adjust features and parameters. */ /* Set the copy breakpoint for the copy-only-tiny-frames scheme. Setting to > 1512 effectively disables this feature. */ static const int rx_copybreak = 200; /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */ static const int mtu = 1500; /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ static int max_interrupt_work = 20; /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */ #define vortex_debug debug #ifdef VORTEX_DEBUG static int vortex_debug = VORTEX_DEBUG; #else static int vortex_debug = 1; #endif /* Some values here only for performance evaluation and path-coverage debugging. */ static int rx_nocopy = 0, rx_copy = 0, queued_packet = 0, rx_csumhits; /* A few values that may be tweaked. */ /* Time in jiffies before concluding the transmitter is hung. */ #define TX_TIMEOUT ((400*HZ)/1000) /* Keep the ring sizes a power of two for efficiency. */ #define TX_RING_SIZE 16 #define RX_RING_SIZE 32 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ #include #include #ifdef MODULE #ifdef MODVERSIONS #include #endif #include #else #define MOD_INC_USE_COUNT #define MOD_DEC_USE_COUNT #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #if LINUX_VERSION_CODE < 0x20155 || defined(CARDBUS) #include #endif #include /* For NR_IRQS only. */ #include #include /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. This is only in the support-all-kernels source code. */ #define RUN_AT(x) (jiffies + (x)) #include #if (LINUX_VERSION_CODE <= 0x20100) #ifndef __alpha__ #define ioremap(a,b) \ (((a)<0x100000) ? (void *)((u_long)(a)) : vremap(a,b)) #define iounmap(v) \ do { if ((u_long)(v) > 0x100000) vfree(v); } while (0) #endif #endif #if LINUX_VERSION_CODE <= 0x20139 #define net_device_stats enet_statistics #define NETSTATS_VER2 #endif #if LINUX_VERSION_CODE < 0x20138 #define test_and_set_bit(val, addr) set_bit(val, addr) #define le32_to_cpu(val) (val) #define cpu_to_le32(val) (val) #endif #if LINUX_VERSION_CODE < 0x20155 #define PCI_SUPPORT_VER1 #else #define PCI_SUPPORT_VER2 #endif #if LINUX_VERSION_CODE < 0x20159 #define DEV_FREE_SKB(skb) dev_kfree_skb (skb, FREE_WRITE); #else /* Grrr, unneeded incompatible change. */ #define DEV_FREE_SKB(skb) dev_kfree_skb(skb); #endif #if defined(MODULE) && LINUX_VERSION_CODE > 0x20115 MODULE_AUTHOR("Donald Becker "); MODULE_DESCRIPTION("3Com 3c590/3c900 series Vortex/Boomerang driver"); MODULE_PARM(debug, "i"); MODULE_PARM(options, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(full_duplex, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(rx_copybreak, "i"); MODULE_PARM(max_interrupt_work, "i"); MODULE_PARM(compaq_ioaddr, "i"); MODULE_PARM(compaq_irq, "i"); MODULE_PARM(compaq_device_id, "i"); #endif /* Operational parameter that usually are not changed. */ /* The Vortex size is twice that of the original EtherLinkIII series: the runtime register window, window 1, is now always mapped in. The Boomerang size is twice as large as the Vortex -- it has additional bus master control registers. */ #define VORTEX_TOTAL_SIZE 0x20 #define BOOMERANG_TOTAL_SIZE 0x40 /* Set iff a MII transceiver on any interface requires mdio preamble. This only set with the original DP83840 on older 3c905 boards, so the extra code size of a per-interface flag is not worthwhile. */ static char mii_preamble_required = 0; /* Theory of Operation I. Board Compatibility This device driver is designed for the 3Com FastEtherLink and FastEtherLink XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs versions of the FastEtherLink cards. The supported product IDs are 3c590, 3c592, 3c595, 3c597, 3c900, 3c905 The related ISA 3c515 is supported with a separate driver, 3c515.c, included with the kernel source or available from cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html II. Board-specific settings PCI bus devices are configured by the system at boot time, so no jumpers need to be set on the board. The system BIOS should be set to assign the PCI INTA signal to an otherwise unused system IRQ line. The EEPROM settings for media type and forced-full-duplex are observed. The EEPROM media type should be left at the default "autoselect" unless using 10base2 or AUI connections which cannot be reliably detected. III. Driver operation The 3c59x series use an interface that's very similar to the previous 3c5x9 series. The primary interface is two programmed-I/O FIFOs, with an alternate single-contiguous-region bus-master transfer (see next). The 3c900 "Boomerang" series uses a full-bus-master interface with separate lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, DEC Tulip and Intel Speedo3. The first chip version retains a compatible programmed-I/O interface that has been removed in 'B' and subsequent board revisions. One extension that is advertised in a very large font is that the adapters are capable of being bus masters. On the Vortex chip this capability was only for a single contiguous region making it far less useful than the full bus master capability. There is a significant performance impact of taking an extra interrupt or polling for the completion of each transfer, as well as difficulty sharing the single transfer engine between the transmit and receive threads. Using DMA transfers is a win only with large blocks or with the flawed versions of the Intel Orion motherboard PCI controller. The Boomerang chip's full-bus-master interface is useful, and has the currently-unused advantages over other similar chips that queued transmit packets may be reordered and receive buffer groups are associated with a single frame. With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. Rather than a fixed intermediate receive buffer, this scheme allocates full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as the copying breakpoint: it is chosen to trade-off the memory wasted by passing the full-sized skbuff to the queue layer for all frames vs. the copying cost of copying a frame to a correctly-sized skbuff. IIIC. Synchronization The driver runs as two independent, single-threaded flows of control. One is the send-packet routine, which enforces single-threaded use by the dev->tbusy flag. The other thread is the interrupt handler, which is single threaded by the hardware and other software. IV. Notes Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 3c590, 3c595, and 3c900 boards. The name "Vortex" is the internal 3Com project name for the PCI ASIC, and the EISA version is called "Demon". According to Terry these names come from rides at the local amusement park. The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes! This driver only supports ethernet packets because of the skbuff allocation limit of 4K. */ /* This table drives the PCI probe routines. It's mostly boilerplate in all of the drivers, and will likely be provided by some future kernel. */ enum pci_flags_bit { PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4, PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3, }; struct pci_id_info { const char *name; u16 vendor_id, device_id, device_id_mask, flags; int drv_flags, io_size; struct device *(*probe1)(int pci_bus, int pci_devfn, struct device *dev, long ioaddr, int irq, int chip_idx, int fnd_cnt); }; enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, HAS_PWR_CTRL=0x10, HAS_MII=0x20, HAS_NWAY=0x40, HAS_CB_FNS=0x80, }; static struct device *vortex_probe1(int pci_bus, int pci_devfn, struct device *dev, long ioaddr, int irq, int dev_id, int card_idx); static struct pci_id_info pci_tbl[] = { {"3c590 Vortex 10Mbps", 0x10B7, 0x5900, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, vortex_probe1}, {"3c595 Vortex 100baseTx", 0x10B7, 0x5950, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, vortex_probe1}, {"3c595 Vortex 100baseT4", 0x10B7, 0x5951, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, vortex_probe1}, {"3c595 Vortex 100base-MII", 0x10B7, 0x5952, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, vortex_probe1}, {"3Com Vortex", 0x10B7, 0x5900, 0xff00, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG, 64, vortex_probe1}, {"3c900 Boomerang 10baseT", 0x10B7, 0x9000, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG, 64, vortex_probe1}, {"3c900 Boomerang 10Mbps Combo", 0x10B7, 0x9001, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG, 64, vortex_probe1}, {"3c900 Cyclone 10Mbps Combo", 0x10B7, 0x9005, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE, 128, vortex_probe1}, {"3c900B-FL Cyclone 10base-FL", 0x10B7, 0x900A, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE, 128, vortex_probe1}, {"3c905 Boomerang 100baseTx", 0x10B7, 0x9050, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII, 64, vortex_probe1}, {"3c905 Boomerang 100baseT4", 0x10B7, 0x9051, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII, 64, vortex_probe1}, {"3c905B Cyclone 100baseTx", 0x10B7, 0x9055, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY, 128, vortex_probe1}, {"3c905B-FX Cyclone 100baseFx", 0x10B7, 0x905A, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE, 128, vortex_probe1}, {"3c980 Cyclone", 0x10B7, 0x9800, 0xfff0, PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE, 128, vortex_probe1}, {"3c575 Boomerang CardBus", 0x10B7, 0x5057, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII, 64, vortex_probe1}, {"3CCFE575 Cyclone CardBus", 0x10B7, 0x5157, 0xffff, PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS, 128, vortex_probe1}, {"3c575 series CardBus (unknown version)", 0x10B7, 0x5057, 0xf0ff, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII, 64, vortex_probe1}, {"3Com Boomerang (unknown version)", 0x10B7, 0x9000, 0xff00, PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG, 64, vortex_probe1}, {0,}, /* 0 terminated list. */ }; /* Operational definitions. These are not used by other compilation units and thus are not exported in a ".h" file. First the windows. There are eight register windows, with the command and status registers available in each. */ #define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD) #define EL3_CMD 0x0e #define EL3_STATUS 0x0e /* The top five bits written to EL3_CMD are a command, the lower 11 bits are the parameter, if applicable. Note that 11 parameters bits was fine for ethernet, but the new chip can handle FDDI length frames (~4500 octets) and now parameters count 32-bit 'Dwords' rather than octets. */ enum vortex_cmd { TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, UpStall = 6<<11, UpUnstall = (6<<11)+1, DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, SetTxThreshold = 18<<11, SetTxStart = 19<<11, StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; /* The SetRxFilter command accepts the following classes: */ enum RxFilter { RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 }; /* Bits in the general status register. */ enum vortex_status { IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, IntReq = 0x0040, StatsFull = 0x0080, DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, DMAInProgress = 1<<11, /* DMA controller is still busy.*/ CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ }; /* Register window 1 offsets, the window used in normal operation. On the Vortex this window is always mapped at offsets 0x10-0x1f. */ enum Window1 { TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ }; enum Window0 { Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ Wn0EepromData = 12, /* Window 0: EEPROM results register. */ IntrStatus=0x0E, /* Valid in all windows. */ }; enum Win0_EEPROM_bits { EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0, EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */ EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */ }; /* EEPROM locations. */ enum eeprom_offset { PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, DriverTune=13, Checksum=15}; enum Window2 { /* Window 2. */ Wn2_ResetOptions=12, }; enum Window3 { /* Window 3: MAC/config bits. */ Wn3_Config=0, Wn3_MAC_Ctrl=6, Wn3_Options=8, }; union wn3_config { int i; struct w3_config_fields { unsigned int ram_size:3, ram_width:1, ram_speed:2, rom_size:2; int pad8:8; unsigned int ram_split:2, pad18:2, xcvr:4, autoselect:1; int pad24:7; } u; }; enum Window4 { /* Window 4: Xcvr/media bits. */ Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, }; enum Win4_Media_bits { Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ Media_LnkBeat = 0x0800, }; enum Window7 { /* Window 7: Bus Master control. */ Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12, }; /* Boomerang bus master control registers. */ enum MasterCtrl { PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, }; /* The Rx and Tx descriptor lists. Caution Alpha hackers: these types are 32 bits! Note also the 8 byte alignment contraint on tx_ring[] and rx_ring[]. */ #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ struct boom_rx_desc { u32 next; /* Last entry points to 0. */ s32 status; u32 addr; /* Up to 63 addr/len pairs possible. */ s32 length; /* Set LAST_FRAG to indicate last pair. */ }; /* Values for the Rx status entry. */ enum rx_desc_status { RxDComplete=0x00008000, RxDError=0x4000, /* See boomerang_rx() for actual error bits */ IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, }; struct boom_tx_desc { u32 next; /* Last entry points to 0. */ s32 status; /* bits 0:12 length, others see below. */ u32 addr; s32 length; }; /* Values for the Tx status entry. */ enum tx_desc_status { CRCDisable=0x2000, TxDComplete=0x8000, AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ }; /* Chip features we care about in vp->capabilities, read from the EEPROM. */ enum ChipCaps { CapBusMaster=0x20 }; struct vortex_private { /* The Rx and Tx rings should be quad-word-aligned. */ struct boom_rx_desc rx_ring[RX_RING_SIZE]; struct boom_tx_desc tx_ring[TX_RING_SIZE]; /* The addresses of transmit- and receive-in-place skbuffs. */ struct sk_buff* rx_skbuff[RX_RING_SIZE]; struct sk_buff* tx_skbuff[TX_RING_SIZE]; struct device *next_module; void *priv_addr; unsigned int cur_rx, cur_tx; /* The next free ring entry */ unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ struct net_device_stats stats; struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ /* PCI configuration space information. */ u8 pci_bus, pci_devfn; /* PCI bus location, for power management. */ char *cb_fn_base; /* CardBus function status addr space. */ int chip_id; /* The remainder are related to chip state, mostly media selection. */ unsigned long in_interrupt; struct timer_list timer; /* Media selection timer. */ int options; /* User-settable misc. driver options. */ unsigned int media_override:3, /* Passed-in media type. */ default_media:4, /* Read from the EEPROM/Wn3_Config. */ full_duplex:1, force_fd:1, autoselect:1, bus_master:1, /* Vortex can only do a fragment bus-m. */ full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ hw_csums:1, /* Has hardware checksums. */ tx_full:1; u16 status_enable; u16 intr_enable; u16 available_media; /* From Wn3_Options. */ u16 capabilities, info1, info2; /* Various, from EEPROM. */ u16 advertising; /* NWay media advertisement */ unsigned char phys[2]; /* MII device addresses. */ }; /* The action to take with a media selection timer tick. Note that we deviate from the 3Com order by checking 10base2 before AUI. */ enum xcvr_types { XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, }; static struct media_table { char *name; unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ mask:8, /* The transceiver-present bit in Wn3_Config.*/ next:8; /* The media type to try next. */ int wait; /* Time before we check media status. */ } media_tbl[] = { { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, { "undefined", 0, 0x80, XCVR_10baseT, 10000}, { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, { "undefined", 0, 0x01, XCVR_10baseT, 10000}, { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, { "Default", 0, 0xFF, XCVR_10baseT, 10000}, }; #ifndef CARDBUS static int vortex_scan(struct device *dev, struct pci_id_info pci_tbl[]); #endif static int vortex_open(struct device *dev); static void mdio_sync(long ioaddr, int bits); static int mdio_read(long ioaddr, int phy_id, int location); static void mdio_write(long ioaddr, int phy_id, int location, int value); static void vortex_timer(unsigned long arg); static int vortex_start_xmit(struct sk_buff *skb, struct device *dev); static int boomerang_start_xmit(struct sk_buff *skb, struct device *dev); static int vortex_rx(struct device *dev); static int boomerang_rx(struct device *dev); static void vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int vortex_close(struct device *dev); static void update_stats(long ioaddr, struct device *dev); static struct net_device_stats *vortex_get_stats(struct device *dev); static void set_rx_mode(struct device *dev); static int vortex_ioctl(struct device *dev, struct ifreq *rq, int cmd); /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */ /* Option count limit only -- unlimited interfaces are supported. */ #define MAX_UNITS 8 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1,}; static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; /* A list of all installed Vortex devices, for removing the driver module. */ static struct device *root_vortex_dev = NULL; #ifdef MODULE #ifndef CARDBUS /* Variables to work-around the Compaq PCI BIOS32 problem. */ static int compaq_ioaddr = 0, compaq_irq = 0, compaq_device_id = 0x5900; #endif #ifdef CARDBUS #include static dev_node_t *vortex_attach(dev_locator_t *loc) { u16 dev_id, vendor_id; u32 io; u8 bus, devfn, irq; struct device *dev; int chip_idx; if (loc->bus != LOC_PCI) return NULL; bus = loc->b.pci.bus; devfn = loc->b.pci.devfn; pcibios_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0, &io); pcibios_read_config_byte(bus, devfn, PCI_INTERRUPT_LINE, &irq); pcibios_read_config_word(bus, devfn, PCI_VENDOR_ID, &vendor_id); pcibios_read_config_word(bus, devfn, PCI_DEVICE_ID, &dev_id); printk(KERN_INFO "vortex_attach(bus %d, function %d, device %4.4x)\n", bus, devfn, dev_id); io &= ~3; if (io == 0 || irq == 0) { printk(KERN_ERR "The 3Com CardBus Ethernet interface was not " "assigned an %s.\n" KERN_ERR " It will not be activated.\n", io == 0 ? "I/O address" : "IRQ"); return NULL; } for (chip_idx = 0; pci_tbl[chip_idx].vendor_id; chip_idx++) if (vendor_id == pci_tbl[chip_idx].vendor_id && (dev_id & pci_tbl[chip_idx].device_id_mask) == pci_tbl[chip_idx].device_id) break; if (pci_tbl[chip_idx].vendor_id == 0) { /* Compiled out! */ printk(KERN_INFO "Unable to match chip type %4.4x %4.4x in " "vortex_attach().\n", vendor_id, dev_id); return NULL; } dev = vortex_probe1(bus, devfn, NULL, io, irq, chip_idx, MAX_UNITS+1); if (dev) { dev_node_t *node = kmalloc(sizeof(dev_node_t), GFP_KERNEL); strcpy(node->dev_name, dev->name); node->major = node->minor = 0; node->next = NULL; MOD_INC_USE_COUNT; return node; } return NULL; } static void vortex_detach(dev_node_t *node) { struct device **devp, **next; printk(KERN_INFO "vortex_detach(%s)\n", node->dev_name); for (devp = &root_vortex_dev; *devp; devp = next) { next = &((struct vortex_private *)(*devp)->priv)->next_module; if (strcmp((*devp)->name, node->dev_name) == 0) break; } if (*devp) { struct device *dev = *devp; struct vortex_private *vp = dev->priv; if (dev->flags & IFF_UP) vortex_close(dev); dev->flags &= ~(IFF_UP|IFF_RUNNING); unregister_netdev(dev); if (vp->cb_fn_base) iounmap(vp->cb_fn_base); kfree(dev); *devp = *next; kfree(vp); kfree(node); MOD_DEC_USE_COUNT; } } struct driver_operations vortex_ops = { "3c575_cb", vortex_attach, NULL, NULL, vortex_detach }; #endif /* Cardbus support */ int init_module(void) { if (vortex_debug) printk(KERN_INFO "%s", version); #ifdef CARDBUS register_driver(&vortex_ops); return 0; #else return vortex_scan(0, pci_tbl); #endif } #else int tc59x_probe(struct device *dev) { static int scanned=0; if(scanned++) return -ENODEV; printk(KERN_INFO "%s", version); return vortex_scan(dev, pci_tbl); } #endif /* not MODULE */ #ifndef CARDBUS static int vortex_scan(struct device *dev, struct pci_id_info pci_tbl[]) { int cards_found = 0; /* Allow an EISA-only driver. */ #if defined(CONFIG_PCI) || (defined(MODULE) && !defined(NO_PCI)) /* Ideally we would detect all cards in slot order. That would be best done a central PCI probe dispatch, which wouldn't work well with the current structure. So instead we detect 3Com cards in slot order. */ if (pcibios_present()) { static int pci_index = 0; unsigned char pci_bus, pci_device_fn; for (;pci_index < 0xff; pci_index++) { u16 vendor, device, pci_command, new_command, pwr_cmd; int chip_idx, irq; long ioaddr; if (pcibios_find_class (PCI_CLASS_NETWORK_ETHERNET << 8, pci_index, &pci_bus, &pci_device_fn) != PCIBIOS_SUCCESSFUL) break; pcibios_read_config_word(pci_bus, pci_device_fn, PCI_VENDOR_ID, &vendor); pcibios_read_config_word(pci_bus, pci_device_fn, PCI_DEVICE_ID, &device); for (chip_idx = 0; pci_tbl[chip_idx].vendor_id; chip_idx++) if (vendor == pci_tbl[chip_idx].vendor_id && (device & pci_tbl[chip_idx].device_id_mask) == pci_tbl[chip_idx].device_id) break; if (pci_tbl[chip_idx].vendor_id == 0) /* Compiled out! */ continue; { #if LINUX_VERSION_CODE >= 0x20155 struct pci_dev *pdev = pci_find_slot(pci_bus, pci_device_fn); ioaddr = pdev->base_address[0] & ~3; irq = pdev->irq; #else u32 pci_ioaddr; u8 pci_irq_line; pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_INTERRUPT_LINE, &pci_irq_line); pcibios_read_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_0, &pci_ioaddr); ioaddr = pci_ioaddr & ~3;; irq = pci_irq_line; #endif } /* Power-up the card. */ pcibios_read_config_word(pci_bus, pci_device_fn, 0xe0, &pwr_cmd); if (pwr_cmd & 0x3) { /* Save the ioaddr and IRQ info! */ printk(KERN_INFO " A 3Com network adapter is powered down!" " Setting the power state %4.4x->%4.4x.\n", pwr_cmd, pwr_cmd & ~3); pcibios_write_config_word(pci_bus, pci_device_fn, 0xe0, pwr_cmd & ~3); printk(KERN_INFO " Setting the IRQ to %d, IOADDR to %#lx.\n", irq, ioaddr); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_INTERRUPT_LINE, irq); pcibios_write_config_dword(pci_bus, pci_device_fn, PCI_BASE_ADDRESS_0, ioaddr); } if (ioaddr == 0) { printk(KERN_WARNING " A 3Com network adapter has been found, " "however it has not been assigned an I/O address.\n" " You may need to power-cycle the machine for this " "device to work!\n"); continue; } if (check_region(ioaddr, pci_tbl[chip_idx].io_size)) continue; /* Activate the card. */ pcibios_read_config_word(pci_bus, pci_device_fn, PCI_COMMAND, &pci_command); new_command = pci_command | PCI_COMMAND_MASTER|PCI_COMMAND_IO; if (pci_command != new_command) { printk(KERN_INFO " The PCI BIOS has not enabled the device " "at %d/%d. Updating PCI command %4.4x->%4.4x.\n", pci_bus, pci_device_fn, pci_command, new_command); pcibios_write_config_word(pci_bus, pci_device_fn, PCI_COMMAND, new_command); } dev = vortex_probe1(pci_bus, pci_device_fn, dev, ioaddr, irq, chip_idx, cards_found); if (dev) { /* Get and check the latency values. On the 3c590 series the latency timer must be set to the maximum value to avoid data corruption that occurs when the timer expires during a transfer -- a bug in the Vortex chip only. */ u8 pci_latency; u8 new_latency = (device & 0xff00) == 0x5900 ? 248 : 32; pcibios_read_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency < new_latency) { printk(KERN_INFO "%s: Overriding PCI latency" " timer (CFLT) setting of %d, new value is %d.\n", dev->name, pci_latency, new_latency); pcibios_write_config_byte(pci_bus, pci_device_fn, PCI_LATENCY_TIMER, new_latency); } dev = 0; cards_found++; } } } #endif /* NO_PCI */ /* Now check all slots of the EISA bus. */ if (EISA_bus) { static long ioaddr = 0x1000; for ( ; ioaddr < 0x9000; ioaddr += 0x1000) { int device_id; if (check_region(ioaddr, VORTEX_TOTAL_SIZE)) continue; /* Check the standard EISA ID register for an encoded '3Com'. */ if (inw(ioaddr + 0xC80) != 0x6d50) continue; /* Check for a product that we support, 3c59{2,7} any rev. */ device_id = (inb(ioaddr + 0xC82)<<8) + inb(ioaddr + 0xC83); if ((device_id & 0xFF00) != 0x5900) continue; vortex_probe1(0, 0, dev, ioaddr, inw(ioaddr + 0xC88) >> 12, 4, cards_found); dev = 0; cards_found++; } } #ifdef MODULE /* Special code to work-around the Compaq PCI BIOS32 problem. */ if (compaq_ioaddr) { vortex_probe1(0, 0, dev, compaq_ioaddr, compaq_irq, compaq_device_id, cards_found++); dev = 0; } #endif return cards_found ? 0 : -ENODEV; } #endif /* ! Cardbus */ static struct device *vortex_probe1(int pci_bus, int pci_devfn, struct device *dev, long ioaddr, int irq, int chip_idx, int card_idx) { struct vortex_private *vp; int option; unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ int i; dev = init_etherdev(dev, 0); printk(KERN_INFO "%s: 3Com %s at 0x%lx, ", dev->name, pci_tbl[chip_idx].name, ioaddr); dev->base_addr = ioaddr; dev->irq = irq; dev->mtu = mtu; /* Make certain the descriptor lists are aligned. */ { void *mem = kmalloc(sizeof(*vp) + 15, GFP_KERNEL); vp = (void *)(((long)mem + 15) & ~15); vp->priv_addr = mem; } memset(vp, 0, sizeof(*vp)); dev->priv = vp; vp->next_module = root_vortex_dev; root_vortex_dev = dev; vp->chip_id = chip_idx; vp->pci_bus = pci_bus; vp->pci_devfn = pci_devfn; /* The lower four bits are the media type. */ if (dev->mem_start) option = dev->mem_start; else if (card_idx < MAX_UNITS) option = options[card_idx]; else option = -1; if (option >= 0) { vp->media_override = ((option & 7) == 2) ? 0 : option & 7; vp->full_duplex = (option & 8) ? 1 : 0; vp->bus_master = (option & 16) ? 1 : 0; } else { vp->media_override = 7; vp->full_duplex = 0; vp->bus_master = 0; } if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) vp->full_duplex = 1; vp->force_fd = vp->full_duplex; vp->options = option; /* Read the station address from the EEPROM. */ EL3WINDOW(0); for (i = 0; i < 0x40; i++) { int timer; #ifdef CARDBUS outw(0x230 + i, ioaddr + Wn0EepromCmd); #else outw(EEPROM_Read + i, ioaddr + Wn0EepromCmd); #endif /* Pause for at least 162 us. for the read to take place. */ for (timer = 10; timer >= 0; timer--) { udelay(162); if ((inw(ioaddr + Wn0EepromCmd) & 0x8000) == 0) break; } eeprom[i] = inw(ioaddr + Wn0EepromData); } for (i = 0; i < 0x18; i++) checksum ^= eeprom[i]; checksum = (checksum ^ (checksum >> 8)) & 0xff; if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ while (i < 0x21) checksum ^= eeprom[i++]; checksum = (checksum ^ (checksum >> 8)) & 0xff; } if (checksum != 0x00) printk(" ***INVALID CHECKSUM %4.4x*** ", checksum); for (i = 0; i < 3; i++) ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); for (i = 0; i < 6; i++) printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]); #ifdef __sparc__ printk(", IRQ %s\n", __irq_itoa(dev->irq)); #else printk(", IRQ %d\n", dev->irq); /* Tell them about an invalid IRQ. */ if (vortex_debug && (dev->irq <= 0 || dev->irq >= NR_IRQS)) printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n", dev->irq); #endif if (pci_tbl[vp->chip_id].drv_flags & HAS_CB_FNS) { u32 fn_st_addr; /* Cardbus function status space */ pcibios_read_config_dword(pci_bus, pci_devfn, PCI_BASE_ADDRESS_2, &fn_st_addr); if (fn_st_addr) vp->cb_fn_base = ioremap(fn_st_addr & ~3, 128); printk("%s: CardBus functions mapped %8.8x->%p (PCMCIA committee" " brain-damage).\n", dev->name, fn_st_addr, vp->cb_fn_base); EL3WINDOW(2); outw(0x10 | inw(ioaddr + Wn2_ResetOptions), ioaddr + Wn2_ResetOptions); } /* Extract our information from the EEPROM data. */ vp->info1 = eeprom[13]; vp->info2 = eeprom[15]; vp->capabilities = eeprom[16]; if (vp->info1 & 0x8000) vp->full_duplex = 1; { char *ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; union wn3_config config; EL3WINDOW(3); vp->available_media = inw(ioaddr + Wn3_Options); if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ vp->available_media = 0x40; config.i = inl(ioaddr + Wn3_Config); if (vortex_debug > 1) printk(KERN_DEBUG " Internal config register is %4.4x, " "transceivers %#x.\n", config.i, inw(ioaddr + Wn3_Options)); printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n", 8 << config.u.ram_size, config.u.ram_width ? "word" : "byte", ram_split[config.u.ram_split], config.u.autoselect ? "autoselect/" : "", config.u.xcvr > XCVR_ExtMII ? "" : media_tbl[config.u.xcvr].name); vp->default_media = config.u.xcvr; vp->autoselect = config.u.autoselect; } if (vp->media_override != 7) { printk(KERN_INFO " Media override to transceiver type %d (%s).\n", vp->media_override, media_tbl[vp->media_override].name); dev->if_port = vp->media_override; } else dev->if_port = vp->default_media; if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { int phy, phy_idx = 0; EL3WINDOW(4); mii_preamble_required++; mii_preamble_required++; mdio_read(ioaddr, 24, 1); for (phy = 1; phy <= 32 && phy_idx < sizeof(vp->phys); phy++) { int mii_status, phyx = phy & 0x1f; mii_status = mdio_read(ioaddr, phyx, 1); if (mii_status && mii_status != 0xffff) { vp->phys[phy_idx++] = phyx; printk(KERN_INFO " MII transceiver found at address %d," " status %4x.\n", phyx, mii_status); if ((mii_status & 0x0040) == 0) mii_preamble_required++; } } mii_preamble_required--; if (phy_idx == 0) { printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n"); vp->phys[0] = 24; } else { vp->advertising = mdio_read(ioaddr, vp->phys[0], 4); if (vp->full_duplex) { /* Only advertise the FD media types. */ vp->advertising &= ~0x02A0; mdio_write(ioaddr, vp->phys[0], 4, vp->advertising); } } } if (vp->capabilities & CapBusMaster) { vp->full_bus_master_tx = 1; printk(KERN_INFO" Enabling bus-master transmits and %s receives.\n", (vp->info2 & 1) ? "early" : "whole-frame" ); vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; } /* We do a request_region() to register /proc/ioports info. */ request_region(ioaddr, pci_tbl[chip_idx].io_size, dev->name); /* The 3c59x-specific entries in the device structure. */ dev->open = &vortex_open; dev->hard_start_xmit = &vortex_start_xmit; dev->stop = &vortex_close; dev->get_stats = &vortex_get_stats; dev->do_ioctl = &vortex_ioctl; dev->set_multicast_list = &set_rx_mode; return dev; } static int vortex_open(struct device *dev) { long ioaddr = dev->base_addr; struct vortex_private *vp = (struct vortex_private *)dev->priv; union wn3_config config; int i; /* Before initializing select the active media port. */ EL3WINDOW(3); config.i = inl(ioaddr + Wn3_Config); if (vp->media_override != 7) { if (vortex_debug > 1) printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n", dev->name, vp->media_override, media_tbl[vp->media_override].name); dev->if_port = vp->media_override; } else if (vp->autoselect && pci_tbl[vp->chip_id].drv_flags & HAS_NWAY) { dev->if_port = XCVR_NWAY; } else if (vp->autoselect) { /* Find first available media type, starting with 100baseTx. */ dev->if_port = XCVR_100baseTx; while (! (vp->available_media & media_tbl[dev->if_port].mask)) dev->if_port = media_tbl[dev->if_port].next; } else dev->if_port = vp->default_media; init_timer(&vp->timer); vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait); vp->timer.data = (unsigned long)dev; vp->timer.function = &vortex_timer; /* timer handler */ add_timer(&vp->timer); if (vortex_debug > 1) printk(KERN_DEBUG "%s: Initial media type %s.\n", dev->name, media_tbl[dev->if_port].name); vp->full_duplex = vp->force_fd; config.u.xcvr = dev->if_port; outl(config.i, ioaddr + Wn3_Config); if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { int mii_reg1, mii_reg5; EL3WINDOW(4); /* Read BMSR (reg1) only to clear old status. */ mii_reg1 = mdio_read(ioaddr, vp->phys[0], 1); mii_reg5 = mdio_read(ioaddr, vp->phys[0], 5); if (mii_reg5 == 0xffff || mii_reg5 == 0x0000) ; /* No MII device or no link partner report */ else if ((mii_reg5 & 0x0100) != 0 /* 100baseTx-FD */ || (mii_reg5 & 0x00C0) == 0x0040) /* 10T-FD, but not 100-HD */ vp->full_duplex = 1; if (vortex_debug > 1) printk(KERN_INFO "%s: MII #%d status %4.4x, link partner capability %4.4x," " setting %s-duplex.\n", dev->name, vp->phys[0], mii_reg1, mii_reg5, vp->full_duplex ? "full" : "half"); EL3WINDOW(3); } /* Set the full-duplex bit. */ outb(((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) | (dev->mtu > 1500 ? 0x40 : 0), ioaddr + Wn3_MAC_Ctrl); if (vortex_debug > 1) { printk(KERN_DEBUG "%s: vortex_open() InternalConfig %8.8x.\n", dev->name, config.i); } outw(TxReset, ioaddr + EL3_CMD); for (i = 2000; i >= 0 ; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; outw(RxReset, ioaddr + EL3_CMD); /* Wait a few ticks for the RxReset command to complete. */ for (i = 2000; i >= 0 ; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD); /* Use the now-standard shared IRQ implementation. */ if (request_irq(dev->irq, &vortex_interrupt, SA_SHIRQ, dev->name, dev)) { return -EAGAIN; } if (vortex_debug > 1) { EL3WINDOW(4); printk(KERN_DEBUG "%s: vortex_open() irq %d media status %4.4x.\n", dev->name, dev->irq, inw(ioaddr + Wn4_Media)); } /* Set the station address and mask in window 2 each time opened. */ EL3WINDOW(2); for (i = 0; i < 6; i++) outb(dev->dev_addr[i], ioaddr + i); for (; i < 12; i+=2) outw(0, ioaddr + i); if (dev->if_port == XCVR_10base2) /* Start the thinnet transceiver. We should really wait 50ms...*/ outw(StartCoax, ioaddr + EL3_CMD); if (dev->if_port != XCVR_NWAY) { EL3WINDOW(4); outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) | media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media); } /* Switch to the stats window, and clear all stats by reading. */ outw(StatsDisable, ioaddr + EL3_CMD); EL3WINDOW(6); for (i = 0; i < 10; i++) inb(ioaddr + i); inw(ioaddr + 10); inw(ioaddr + 12); /* New: On the Vortex we must also clear the BadSSD counter. */ EL3WINDOW(4); inb(ioaddr + 12); /* ..and on the Boomerang we enable the extra statistics bits. */ outw(0x0040, ioaddr + Wn4_NetDiag); /* Switch to register set 7 for normal use. */ EL3WINDOW(7); if (vp->full_bus_master_rx) { /* Boomerang bus master. */ vp->cur_rx = vp->dirty_rx = 0; /* Initialize the RxEarly register as recommended. */ outw(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); outl(0x0020, ioaddr + PktStatus); if (vortex_debug > 2) printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name); for (i = 0; i < RX_RING_SIZE; i++) { struct sk_buff *skb; vp->rx_ring[i].next = cpu_to_le32(virt_to_bus(&vp->rx_ring[i+1])); vp->rx_ring[i].status = 0; /* Clear complete bit. */ vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG); skb = dev_alloc_skb(PKT_BUF_SZ); vp->rx_skbuff[i] = skb; if (skb == NULL) break; /* Bad news! */ skb->dev = dev; /* Mark as being used by this device. */ #if LINUX_VERSION_CODE >= 0x10300 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ vp->rx_ring[i].addr = cpu_to_le32(virt_to_bus(skb->tail)); #else vp->rx_ring[i].addr = virt_to_bus(skb->data); #endif } /* Wrap the ring. */ vp->rx_ring[i-1].next = cpu_to_le32(virt_to_bus(&vp->rx_ring[0])); outl(virt_to_bus(&vp->rx_ring[0]), ioaddr + UpListPtr); } if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ dev->hard_start_xmit = &boomerang_start_xmit; vp->cur_tx = vp->dirty_tx = 0; outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */ /* Clear the Tx ring. */ for (i = 0; i < TX_RING_SIZE; i++) vp->tx_skbuff[i] = 0; outl(0, ioaddr + DownListPtr); } /* Set reciever mode: presumably accept b-case and phys addr only. */ set_rx_mode(dev); outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ vp->in_interrupt = 0; dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ /* Allow status bits to be seen. */ vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| (vp->full_bus_master_tx ? DownComplete : TxAvailable) | (vp->full_bus_master_rx ? UpComplete : RxComplete) | (vp->bus_master ? DMADone : 0); vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull | HostError | TxComplete | IntReq | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; outw(vp->status_enable, ioaddr + EL3_CMD); /* Ack all pending events, and set active indicator mask. */ outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, ioaddr + EL3_CMD); outw(vp->intr_enable, ioaddr + EL3_CMD); if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ writel(0x8000, vp->cb_fn_base + 4); MOD_INC_USE_COUNT; return 0; } static void vortex_timer(unsigned long data) { struct device *dev = (struct device *)data; struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int next_tick = 0; int ok = 0; int media_status, mii_status, old_window; if (vortex_debug > 1) printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n", dev->name, media_tbl[dev->if_port].name); disable_irq(dev->irq); old_window = inw(ioaddr + EL3_CMD) >> 13; EL3WINDOW(4); media_status = inw(ioaddr + Wn4_Media); switch (dev->if_port) { case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: if (media_status & Media_LnkBeat) { ok = 1; if (vortex_debug > 1) printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n", dev->name, media_tbl[dev->if_port].name, media_status); } else if (vortex_debug > 1) printk(KERN_DEBUG "%s: Media %s is has no link beat, %x.\n", dev->name, media_tbl[dev->if_port].name, media_status); break; case XCVR_MII: case XCVR_NWAY: mii_status = mdio_read(ioaddr, vp->phys[0], 1); ok = 1; if (debug > 1) printk(KERN_DEBUG "%s: MII transceiver has status %4.4x.\n", dev->name, mii_status); if (mii_status & 0x0004) { int mii_reg5 = mdio_read(ioaddr, vp->phys[0], 5); if (! vp->force_fd && mii_reg5 != 0xffff) { int duplex = (mii_reg5&0x0100) || (mii_reg5 & 0x01C0) == 0x0040; if (vp->full_duplex != duplex) { vp->full_duplex = duplex; printk(KERN_INFO "%s: Setting %s-duplex based on MII " "#%d link partner capability of %4.4x.\n", dev->name, vp->full_duplex ? "full" : "half", vp->phys[0], mii_reg5); /* Set the full-duplex bit. */ outb((vp->full_duplex ? 0x20 : 0) | (dev->mtu > 1500 ? 0x40 : 0), ioaddr + Wn3_MAC_Ctrl); } next_tick = 60*HZ; } } break; default: /* Other media types handled by Tx timeouts. */ if (vortex_debug > 1) printk(KERN_DEBUG "%s: Media %s is has no indication, %x.\n", dev->name, media_tbl[dev->if_port].name, media_status); ok = 1; } if ( ! ok) { union wn3_config config; do { dev->if_port = media_tbl[dev->if_port].next; } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); if (dev->if_port == XCVR_Default) { /* Go back to default. */ dev->if_port = vp->default_media; if (vortex_debug > 1) printk(KERN_DEBUG "%s: Media selection failing, using default " "%s port.\n", dev->name, media_tbl[dev->if_port].name); } else { if (vortex_debug > 1) printk(KERN_DEBUG "%s: Media selection failed, now trying " "%s port.\n", dev->name, media_tbl[dev->if_port].name); next_tick = media_tbl[dev->if_port].wait; } outw((media_status & ~(Media_10TP|Media_SQE)) | media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media); EL3WINDOW(3); config.i = inl(ioaddr + Wn3_Config); config.u.xcvr = dev->if_port; outl(config.i, ioaddr + Wn3_Config); outw(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, ioaddr + EL3_CMD); } EL3WINDOW(old_window); enable_irq(dev->irq); if (vortex_debug > 2) printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n", dev->name, media_tbl[dev->if_port].name); if (next_tick) { vp->timer.expires = RUN_AT(next_tick); add_timer(&vp->timer); } return; } static void vortex_tx_timeout(struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int j; printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n", dev->name, inb(ioaddr + TxStatus), inw(ioaddr + EL3_STATUS)); /* Slight code bloat to be user friendly. */ if ((inb(ioaddr + TxStatus) & 0x88) == 0x88) printk(KERN_ERR "%s: Transmitter encountered 16 collisions --" " network cable problem?\n", dev->name); if (inw(ioaddr + EL3_STATUS) & IntLatch) { printk(KERN_ERR "%s: Interrupt posted but not delivered --" " IRQ blocked by another device?\n", dev->name); /* Bad idea here.. but we might as well handle a few events. */ vortex_interrupt(dev->irq, dev, 0); } outw(TxReset, ioaddr + EL3_CMD); for (j = 200; j >= 0 ; j--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; #if ! defined(final_version) && LINUX_VERSION_CODE >= 0x10300 if (vp->full_bus_master_tx) { int i; printk(KERN_DEBUG " Flags; bus-master %d, full %d; dirty %d " "current %d.\n", vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx, vp->cur_tx); printk(KERN_DEBUG " Transmit list %8.8x vs. %p.\n", inl(ioaddr + DownListPtr), &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]); for (i = 0; i < TX_RING_SIZE; i++) { printk(KERN_DEBUG " %d: @%p length %8.8x status %8.8x\n", i, &vp->tx_ring[i], le32_to_cpu(vp->tx_ring[i].length), le32_to_cpu(vp->tx_ring[i].status)); } } #endif vp->stats.tx_errors++; if (vp->full_bus_master_tx) { if (vortex_debug > 0) printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name); if (vp->cur_tx - vp->dirty_tx > 0 && inl(ioaddr + DownListPtr) == 0) outl(virt_to_bus(&vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]), ioaddr + DownListPtr); if (vp->tx_full && (vp->cur_tx - vp->dirty_tx <= TX_RING_SIZE - 1)) { vp->tx_full = 0; clear_bit(0, (void*)&dev->tbusy); } outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); outw(DownUnstall, ioaddr + EL3_CMD); } else vp->stats.tx_dropped++; /* Issue Tx Enable */ outw(TxEnable, ioaddr + EL3_CMD); dev->trans_start = jiffies; /* Switch to register set 7 for normal use. */ EL3WINDOW(7); } /* * Handle uncommon interrupt sources. This is a separate routine to minimize * the cache impact. */ static void vortex_error(struct device *dev, int status) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int do_tx_reset = 0; int i; if (status & TxComplete) { /* Really "TxError" for us. */ unsigned char tx_status = inb(ioaddr + TxStatus); /* Presumably a tx-timeout. We must merely re-enable. */ if (vortex_debug > 2 || (tx_status != 0x88 && vortex_debug > 0)) printk(KERN_DEBUG"%s: Transmit error, Tx status register %2.2x.\n", dev->name, tx_status); if (tx_status & 0x14) vp->stats.tx_fifo_errors++; if (tx_status & 0x38) vp->stats.tx_aborted_errors++; outb(0, ioaddr + TxStatus); if (tx_status & 0x30) do_tx_reset = 1; else /* Merely re-enable the transmitter. */ outw(TxEnable, ioaddr + EL3_CMD); } if (status & RxEarly) { /* Rx early is unused. */ vortex_rx(dev); outw(AckIntr | RxEarly, ioaddr + EL3_CMD); } if (status & StatsFull) { /* Empty statistics. */ static int DoneDidThat = 0; if (vortex_debug > 4) printk(KERN_DEBUG "%s: Updating stats.\n", dev->name); update_stats(ioaddr, dev); /* HACK: Disable statistics as an interrupt source. */ /* This occurs when we have the wrong media type! */ if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) { printk(KERN_WARNING "%s: Updating statistics failed, disabling " "stats as an interrupt source.\n", dev->name); EL3WINDOW(5); outw(SetIntrEnb | (inw(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD); EL3WINDOW(7); DoneDidThat++; } } if (status & IntReq) { /* Restore all interrupt sources. */ outw(vp->status_enable, ioaddr + EL3_CMD); outw(vp->intr_enable, ioaddr + EL3_CMD); } if (status & HostError) { u16 fifo_diag; EL3WINDOW(4); fifo_diag = inw(ioaddr + Wn4_FIFODiag); if (vortex_debug > 0) printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n", dev->name, fifo_diag); /* Adapter failure requires Tx/Rx reset and reinit. */ if (vp->full_bus_master_tx) { outw(TotalReset | 0xff, ioaddr + EL3_CMD); for (i = 2000; i >= 0 ; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; /* Re-enable the receiver. */ outw(RxEnable, ioaddr + EL3_CMD); outw(TxEnable, ioaddr + EL3_CMD); } else if (fifo_diag & 0x0400) do_tx_reset = 1; if (fifo_diag & 0x3000) { outw(RxReset, ioaddr + EL3_CMD); for (i = 2000; i >= 0 ; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; /* Set the Rx filter to the current state. */ set_rx_mode(dev); outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ outw(AckIntr | HostError, ioaddr + EL3_CMD); } } if (do_tx_reset) { int j; outw(TxReset, ioaddr + EL3_CMD); for (j = 200; j >= 0 ; j--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; outw(TxEnable, ioaddr + EL3_CMD); } } static int vortex_start_xmit(struct sk_buff *skb, struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { if (jiffies - dev->trans_start >= TX_TIMEOUT) vortex_tx_timeout(dev); return 1; } /* Put out the doubleword header... */ outl(skb->len, ioaddr + TX_FIFO); if (vp->bus_master) { /* Set the bus-master controller to transfer the packet. */ outl(virt_to_bus(skb->data), ioaddr + Wn7_MasterAddr); outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); vp->tx_skb = skb; outw(StartDMADown, ioaddr + EL3_CMD); /* dev->tbusy will be cleared at the DMADone interrupt. */ } else { /* ... and the packet rounded to a doubleword. */ outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); DEV_FREE_SKB(skb); if (inw(ioaddr + TxFree) > 1536) { clear_bit(0, (void*)&dev->tbusy); } else /* Interrupt us when the FIFO has room for max-sized packet. */ outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); } dev->trans_start = jiffies; /* Clear the Tx status stack. */ { int tx_status; int i = 32; while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) { if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ if (vortex_debug > 2) printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n", dev->name, tx_status); if (tx_status & 0x04) vp->stats.tx_fifo_errors++; if (tx_status & 0x38) vp->stats.tx_aborted_errors++; if (tx_status & 0x30) { int j; outw(TxReset, ioaddr + EL3_CMD); for (j = 200; j >= 0 ; j--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; } outw(TxEnable, ioaddr + EL3_CMD); } outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */ } } vp->stats.tx_bytes += skb->len; return 0; } static int boomerang_start_xmit(struct sk_buff *skb, struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; if (test_and_set_bit(0, (void*)&dev->tbusy) != 0) { if (jiffies - dev->trans_start >= TX_TIMEOUT) vortex_tx_timeout(dev); return 1; } else { /* Calculate the next Tx descriptor entry. */ int entry = vp->cur_tx % TX_RING_SIZE; struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; unsigned long flags; int i; if (vortex_debug > 3) printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n", dev->name, vp->cur_tx); if (vp->tx_full) { if (vortex_debug >0) printk(KERN_WARNING "%s: Tx Ring full, refusing to send buffer.\n", dev->name); return 1; } vp->tx_skbuff[entry] = skb; vp->tx_ring[entry].next = 0; vp->tx_ring[entry].addr = cpu_to_le32(virt_to_bus(skb->data)); vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); save_flags(flags); cli(); outw(DownStall, ioaddr + EL3_CMD); /* Wait for the stall to complete. */ for (i = 600; i >= 0 ; i--) if ( (inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0) break; prev_entry->next = cpu_to_le32(virt_to_bus(&vp->tx_ring[entry])); if (inl(ioaddr + DownListPtr) == 0) { outl(virt_to_bus(&vp->tx_ring[entry]), ioaddr + DownListPtr); queued_packet++; } outw(DownUnstall, ioaddr + EL3_CMD); restore_flags(flags); vp->cur_tx++; if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) vp->tx_full = 1; else { /* Clear previous interrupt enable. */ prev_entry->status &= cpu_to_le32(~TxIntrUploaded); clear_bit(0, (void*)&dev->tbusy); } dev->trans_start = jiffies; vp->stats.tx_bytes += skb->len; return 0; } } /* The interrupt handler does all of the Rx thread work and cleans up after the Tx thread. */ static void vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = dev_id; struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr; int latency, status; int work_done = max_interrupt_work; #if defined(__i386__) /* A lock to prevent simultaneous entry bug on Intel SMP machines. */ if (test_and_set_bit(0, (void*)&dev->interrupt)) { printk(KERN_ERR"%s: SMP simultaneous entry of an interrupt handler.\n", dev->name); dev->interrupt = 0; /* Avoid halting machine. */ return; } #else if (dev->interrupt) { printk(KERN_ERR "%s: Re-entering the interrupt handler.\n", dev->name); return; } dev->interrupt = 1; #endif dev->interrupt = 1; ioaddr = dev->base_addr; latency = inb(ioaddr + Timer); status = inw(ioaddr + EL3_STATUS); if (vortex_debug > 4) printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n", dev->name, status, latency); do { if (vortex_debug > 5) printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n", dev->name, status); if (status & RxComplete) vortex_rx(dev); if (status & UpComplete) { outw(AckIntr | UpComplete, ioaddr + EL3_CMD); boomerang_rx(dev); } if (status & TxAvailable) { if (vortex_debug > 5) printk(KERN_DEBUG " TX room bit was handled.\n"); /* There's room in the FIFO for a full-sized packet. */ outw(AckIntr | TxAvailable, ioaddr + EL3_CMD); clear_bit(0, (void*)&dev->tbusy); mark_bh(NET_BH); } if (status & DownComplete) { unsigned int dirty_tx = vp->dirty_tx; while (vp->cur_tx - dirty_tx > 0) { int entry = dirty_tx % TX_RING_SIZE; if (inl(ioaddr + DownListPtr) == virt_to_bus(&vp->tx_ring[entry])) break; /* It still hasn't been processed. */ if (vp->tx_skbuff[entry]) { DEV_FREE_SKB(vp->tx_skbuff[entry]); vp->tx_skbuff[entry] = 0; } /* vp->stats.tx_packets++; Counted below. */ dirty_tx++; } vp->dirty_tx = dirty_tx; outw(AckIntr | DownComplete, ioaddr + EL3_CMD); if (vp->tx_full && (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1)) { vp->tx_full= 0; clear_bit(0, (void*)&dev->tbusy); mark_bh(NET_BH); } } if (status & DMADone) { if (inw(ioaddr + Wn7_MasterStatus) & 0x1000) { outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ DEV_FREE_SKB(vp->tx_skb); /* Release the transfered buffer */ if (inw(ioaddr + TxFree) > 1536) { clear_bit(0, (void*)&dev->tbusy); mark_bh(NET_BH); } else /* Interrupt when FIFO has room for max-sized packet. */ outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); } } /* Check for all uncommon interrupts at once. */ if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { if (status == 0xffff) break; vortex_error(dev, status); } if (--work_done < 0) { if ((status & (0x7fe - (UpComplete | DownComplete))) == 0) { /* Just ack these and return. */ outw(AckIntr | UpComplete | DownComplete, ioaddr + EL3_CMD); } else { printk(KERN_WARNING "%s: Too much work in interrupt, status " "%4.4x. Temporarily disabling functions (%4.4x).\n", dev->name, status, SetStatusEnb | ((~status) & 0x7FE)); /* Disable all pending interrupts. */ outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD); outw(AckIntr | 0x7FF, ioaddr + EL3_CMD); /* The timer will reenable interrupts. */ break; } } /* Acknowledge the IRQ. */ outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ writel(0x8000, vp->cb_fn_base + 4); } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); if (vortex_debug > 4) printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n", dev->name, status); #if defined(__i386__) clear_bit(0, (void*)&dev->interrupt); #else dev->interrupt = 0; #endif return; } static int vortex_rx(struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int i; short rx_status; if (vortex_debug > 5) printk(KERN_DEBUG" In rx_packet(), status %4.4x, rx_status %4.4x.\n", inw(ioaddr+EL3_STATUS), inw(ioaddr+RxStatus)); while ((rx_status = inw(ioaddr + RxStatus)) > 0) { if (rx_status & 0x4000) { /* Error, update stats. */ unsigned char rx_error = inb(ioaddr + RxErrors); if (vortex_debug > 2) printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error); vp->stats.rx_errors++; if (rx_error & 0x01) vp->stats.rx_over_errors++; if (rx_error & 0x02) vp->stats.rx_length_errors++; if (rx_error & 0x04) vp->stats.rx_frame_errors++; if (rx_error & 0x08) vp->stats.rx_crc_errors++; if (rx_error & 0x10) vp->stats.rx_length_errors++; } else { /* The packet length: up to 4.5K!. */ int pkt_len = rx_status & 0x1fff; struct sk_buff *skb; skb = dev_alloc_skb(pkt_len + 5); if (vortex_debug > 4) printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n", pkt_len, rx_status); if (skb != NULL) { skb->dev = dev; skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ /* 'skb_put()' points to the start of sk_buff data area. */ if (vp->bus_master && ! (inw(ioaddr + Wn7_MasterStatus) & 0x8000)) { outl(virt_to_bus(skb_put(skb, pkt_len)), ioaddr + Wn7_MasterAddr); outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); outw(StartDMAUp, ioaddr + EL3_CMD); while (inw(ioaddr + Wn7_MasterStatus) & 0x8000) ; } else { insl(ioaddr + RX_FIFO, skb_put(skb, pkt_len), (pkt_len + 3) >> 2); } outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); dev->last_rx = jiffies; vp->stats.rx_packets++; vp->stats.rx_bytes += skb->len; /* Wait a limited time to go to next packet. */ for (i = 200; i >= 0; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; continue; } else if (vortex_debug) printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of " "size %d.\n", dev->name, pkt_len); } outw(RxDiscard, ioaddr + EL3_CMD); vp->stats.rx_dropped++; /* Wait a limited time to skip this packet. */ for (i = 200; i >= 0; i--) if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress)) break; } return 0; } static int boomerang_rx(struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; int entry = vp->cur_rx % RX_RING_SIZE; long ioaddr = dev->base_addr; int rx_status; int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx; if (vortex_debug > 5) printk(KERN_DEBUG " In boomerang_rx(), status %4.4x, rx_status " "%4.4x.\n", inw(ioaddr+EL3_STATUS), inw(ioaddr+RxStatus)); while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ if (--rx_work_limit < 0) break; if (rx_status & RxDError) { /* Error, update stats. */ unsigned char rx_error = rx_status >> 16; if (vortex_debug > 2) printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error); vp->stats.rx_errors++; if (rx_error & 0x01) vp->stats.rx_over_errors++; if (rx_error & 0x02) vp->stats.rx_length_errors++; if (rx_error & 0x04) vp->stats.rx_frame_errors++; if (rx_error & 0x08) vp->stats.rx_crc_errors++; if (rx_error & 0x10) vp->stats.rx_length_errors++; } else { /* The packet length: up to 4.5K!. */ int pkt_len = rx_status & 0x1fff; struct sk_buff *skb; vp->stats.rx_bytes += pkt_len; if (vortex_debug > 4) printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n", pkt_len, rx_status); /* Check if the packet is long enough to just accept without copying to a properly sized skbuff. */ if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) { skb->dev = dev; skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ /* 'skb_put()' points to the start of sk_buff data area. */ memcpy(skb_put(skb, pkt_len), bus_to_virt(le32_to_cpu(vp->rx_ring[entry].addr)), pkt_len); rx_copy++; } else { void *temp; /* Pass up the skbuff already on the Rx ring. */ skb = vp->rx_skbuff[entry]; vp->rx_skbuff[entry] = NULL; temp = skb_put(skb, pkt_len); /* Remove this checking code for final release. */ if (bus_to_virt(le32_to_cpu(vp->rx_ring[entry].addr)) != temp) printk(KERN_ERR "%s: Warning -- the skbuff addresses do not match" " in boomerang_rx: %p vs. %p.\n", dev->name, bus_to_virt(le32_to_cpu(vp->rx_ring[entry].addr)), temp); rx_nocopy++; } skb->protocol = eth_type_trans(skb, dev); { /* Use hardware checksum info. */ int csum_bits = rx_status & 0xee000000; if (csum_bits && (csum_bits == (IPChksumValid | TCPChksumValid) || csum_bits == (IPChksumValid | UDPChksumValid))) { skb->ip_summed = CHECKSUM_UNNECESSARY; rx_csumhits++; } } netif_rx(skb); dev->last_rx = jiffies; vp->stats.rx_packets++; } entry = (++vp->cur_rx) % RX_RING_SIZE; } /* Refill the Rx ring buffers. */ for (; vp->dirty_rx < vp->cur_rx; vp->dirty_rx++) { struct sk_buff *skb; entry = vp->dirty_rx % RX_RING_SIZE; if (vp->rx_skbuff[entry] == NULL) { skb = dev_alloc_skb(PKT_BUF_SZ); if (skb == NULL) break; /* Bad news! */ skb->dev = dev; /* Mark as being used by this device. */ skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ vp->rx_ring[entry].addr = cpu_to_le32(virt_to_bus(skb->tail)); vp->rx_skbuff[entry] = skb; } vp->rx_ring[entry].status = 0; /* Clear complete bit. */ outw(UpUnstall, ioaddr + EL3_CMD); } return 0; } static int vortex_close(struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; int i; dev->start = 0; dev->tbusy = 1; if (vortex_debug > 1) { printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n", dev->name, inw(ioaddr + EL3_STATUS), inb(ioaddr + TxStatus)); printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d" " tx_queued %d Rx pre-checksummed %d.\n", dev->name, rx_nocopy, rx_copy, queued_packet, rx_csumhits); } del_timer(&vp->timer); /* Turn off statistics ASAP. We update vp->stats below. */ outw(StatsDisable, ioaddr + EL3_CMD); /* Disable the receiver and transmitter. */ outw(RxDisable, ioaddr + EL3_CMD); outw(TxDisable, ioaddr + EL3_CMD); if (dev->if_port == XCVR_10base2) /* Turn off thinnet power. Green! */ outw(StopCoax, ioaddr + EL3_CMD); free_irq(dev->irq, dev); outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); update_stats(ioaddr, dev); if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ outl(0, ioaddr + UpListPtr); for (i = 0; i < RX_RING_SIZE; i++) if (vp->rx_skbuff[i]) { #if LINUX_VERSION_CODE < 0x20100 vp->rx_skbuff[i]->free = 1; #endif DEV_FREE_SKB(vp->rx_skbuff[i]); vp->rx_skbuff[i] = 0; } } if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ outl(0, ioaddr + DownListPtr); for (i = 0; i < TX_RING_SIZE; i++) if (vp->tx_skbuff[i]) { DEV_FREE_SKB(vp->tx_skbuff[i]); vp->tx_skbuff[i] = 0; } } MOD_DEC_USE_COUNT; return 0; } static struct net_device_stats *vortex_get_stats(struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; unsigned long flags; if (dev->start) { save_flags(flags); cli(); update_stats(dev->base_addr, dev); restore_flags(flags); } return &vp->stats; } /* Update statistics. Unlike with the EL3 we need not worry about interrupts changing the window setting from underneath us, but we must still guard against a race condition with a StatsUpdate interrupt updating the table. This is done by checking that the ASM (!) code generated uses atomic updates with '+='. */ static void update_stats(long ioaddr, struct device *dev) { struct vortex_private *vp = (struct vortex_private *)dev->priv; /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ /* Switch to the stats window, and read everything. */ EL3WINDOW(6); vp->stats.tx_carrier_errors += inb(ioaddr + 0); vp->stats.tx_heartbeat_errors += inb(ioaddr + 1); /* Multiple collisions. */ inb(ioaddr + 2); vp->stats.collisions += inb(ioaddr + 3); vp->stats.tx_window_errors += inb(ioaddr + 4); vp->stats.rx_fifo_errors += inb(ioaddr + 5); vp->stats.tx_packets += inb(ioaddr + 6); vp->stats.tx_packets += (inb(ioaddr + 9)&0x30) << 4; /* Rx packets */ inb(ioaddr + 7); /* Must read to clear */ /* Tx deferrals */ inb(ioaddr + 8); /* Don't bother with register 9, an extension of registers 6&7. If we do use the 6&7 values the atomic update assumption above is invalid. */ inw(ioaddr + 10); /* Total Rx and Tx octets. */ inw(ioaddr + 12); /* New: On the Vortex we must also clear the BadSSD counter. */ EL3WINDOW(4); inb(ioaddr + 12); /* We change back to window 7 (not 1) with the Vortex. */ EL3WINDOW(7); return; } static int vortex_ioctl(struct device *dev, struct ifreq *rq, int cmd) { struct vortex_private *vp = (struct vortex_private *)dev->priv; long ioaddr = dev->base_addr; u16 *data = (u16 *)&rq->ifr_data; int phy = vp->phys[0] & 0x1f; switch(cmd) { case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ data[0] = phy; case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ EL3WINDOW(4); data[3] = mdio_read(ioaddr, data[0] & 0x1f, data[1] & 0x1f); return 0; case SIOCDEVPRIVATE+2: /* Write the specified MII register */ if (!suser()) return -EPERM; EL3WINDOW(4); mdio_write(ioaddr, data[0] & 0x1f, data[1] & 0x1f, data[2]); return 0; default: return -EOPNOTSUPP; } } /* Pre-Cyclone chips have no documented multicast filter, so the only multicast setting is to receive all multicast frames. At least the chip has a very clean way to set the mode, unlike many others. */ static void set_rx_mode(struct device *dev) { long ioaddr = dev->base_addr; int new_mode; if (dev->flags & IFF_PROMISC) { if (vortex_debug > 0) printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name); new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) { new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; } else new_mode = SetRxFilter | RxStation | RxBroadcast; outw(new_mode, ioaddr + EL3_CMD); } /* MII transceiver control section. Read and write the MII registers using software-generated serial MDIO protocol. See the MII specifications or DP83840A data sheet for details. */ /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually met by back-to-back PCI I/O cycles, but we insert a delay to avoid "overclocking" issues. */ #define mdio_delay() inl(mdio_addr) #define MDIO_SHIFT_CLK 0x01 #define MDIO_DIR_WRITE 0x04 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) #define MDIO_DATA_READ 0x02 #define MDIO_ENB_IN 0x00 /* Generate the preamble required for initial synchronization and a few older transceivers. */ static void mdio_sync(long ioaddr, int bits) { long mdio_addr = ioaddr + Wn4_PhysicalMgmt; /* Establish sync by sending at least 32 logic ones. */ while (-- bits >= 0) { outw(MDIO_DATA_WRITE1, mdio_addr); mdio_delay(); outw(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } } static int mdio_read(long ioaddr, int phy_id, int location) { int i; int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; unsigned int retval = 0; long mdio_addr = ioaddr + Wn4_PhysicalMgmt; if (mii_preamble_required) mdio_sync(ioaddr, 32); /* Shift the read command bits out. */ for (i = 14; i >= 0; i--) { int dataval = (read_cmd&(1< 0; i--) { outw(MDIO_ENB_IN, mdio_addr); mdio_delay(); retval = (retval << 1) | ((inw(mdio_addr) & MDIO_DATA_READ) ? 1 : 0); outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } #if 0 return (retval>>1) & 0x1ffff; #else return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff; #endif } static void mdio_write(long ioaddr, int phy_id, int location, int value) { int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; long mdio_addr = ioaddr + Wn4_PhysicalMgmt; int i; if (mii_preamble_required) mdio_sync(ioaddr, 32); /* Shift the command bits out. */ for (i = 31; i >= 0; i--) { int dataval = (write_cmd&(1<= 0; i--) { outw(MDIO_ENB_IN, mdio_addr); mdio_delay(); outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr); mdio_delay(); } return; } #ifdef MODULE void cleanup_module(void) { struct device *next_dev; #ifdef CARDBUS unregister_driver(&vortex_ops); #endif /* No need to check MOD_IN_USE, as sys_delete_module() checks. */ while (root_vortex_dev) { struct vortex_private *vp=(void *)(root_vortex_dev->priv); next_dev = vp->next_module; unregister_netdev(root_vortex_dev); outw(TotalReset, root_vortex_dev->base_addr + EL3_CMD); release_region(root_vortex_dev->base_addr, pci_tbl[vp->chip_id].io_size); kfree(root_vortex_dev); kfree(vp->priv_addr); root_vortex_dev = next_dev; } } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c 3c59x.c `[ -f /usr/include/linux/modversions.h ] && echo -DMODVERSIONS`" * SMP-compile-command: "gcc -D__SMP__ -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c 3c59x.c" * cardbus-compile-command: "gcc -DCARDBUS -DMODULE -D__KERNEL__ -Wall -Wstrict-prototypes -O6 -c 3c59x.c -o 3c575_cb.o -I/usr/src/pcmcia-cs-3.0.5/include/" * c-indent-level: 4 * c-basic-offset: 4 * tab-width: 4 * End: */