/* * 7990.c -- LANCE ethernet IC generic routines. * This is an attempt to separate out the bits of various ethernet * drivers that are common because they all use the AMD 7990 LANCE * (Local Area Network Controller for Ethernet) chip. * * Copyright (C) 05/1998 Peter Maydell * * Most of this stuff was obtained by looking at other LANCE drivers, * in particular a2065.[ch]. The AMD C-LANCE datasheet was also helpful. * NB: this was made easy by the fact that Jes Sorensen had cleaned up * most of a2025 and sunlance with the aim of merging them, so the * common code was pretty obvious. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Used for the temporal inet entries and routing */ #include #include #include #include #include #include #include "7990.h" /* Lossage Factor Nine, Mr Sulu. */ #define WRITERAP(x) (lp->writerap(lp,x)) #define WRITERDP(x) (lp->writerdp(lp,x)) #define READRDP() (lp->readrdp(lp)) /* These used to be ll->rap = x, ll->rdp = x, and (ll->rdp). Sigh. * If you want to switch them back then * #define DECLARE_LL volatile struct lance_regs *ll = lp->ll */ #define DECLARE_LL /* nothing to declare */ /* debugging output macros, various flavours */ /* #define TEST_HITS */ #ifdef UNDEF #define PRINT_RINGS() \ do { \ int t; \ for (t=0; t < RX_RING_SIZE; t++) { \ printk("R%d: @(%02X %04X) len %04X, mblen %04X, bits %02X\n",\ t, ib->brx_ring[t].rmd1_hadr, ib->brx_ring[t].rmd0,\ ib->brx_ring[t].length,\ ib->brx_ring[t].mblength, ib->brx_ring[t].rmd1_bits);\ }\ for (t=0; t < TX_RING_SIZE; t++) { \ printk("T%d: @(%02X %04X) len %04X, misc %04X, bits %02X\n",\ t, ib->btx_ring[t].tmd1_hadr, ib->btx_ring[t].tmd0,\ ib->btx_ring[t].length,\ ib->btx_ring[t].misc, ib->btx_ring[t].tmd1_bits);\ }\ } while (0) #else #define PRINT_RINGS() #endif /* Load the CSR registers. The LANCE has to be STOPped when we do this! */ static void load_csrs (struct lance_private *lp) { volatile struct lance_init_block *aib = lp->lance_init_block; int leptr; DECLARE_LL; leptr = LANCE_ADDR (aib); WRITERAP(LE_CSR1); /* load address of init block */ WRITERDP(leptr & 0xFFFF); WRITERAP(LE_CSR2); WRITERDP(leptr >> 16); WRITERAP(LE_CSR3); WRITERDP(lp->busmaster_regval); /* set byteswap/ALEctrl/byte ctrl */ /* Point back to csr0 */ WRITERAP(LE_CSR0); } /* #define to 0 or 1 appropriately */ #define DEBUG_IRING 0 /* Set up the Lance Rx and Tx rings and the init block */ /* Sets dev->tbusy */ static void lance_init_ring (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_init_block *aib; /* for LANCE_ADDR computations */ int leptr; int i; aib = lp->lance_init_block; /* Lock out other processes while setting up hardware */ dev->tbusy = 1; lp->rx_new = lp->tx_new = 0; lp->rx_old = lp->tx_old = 0; ib->mode = LE_MO_PROM; /* normal, enable Tx & Rx */ /* Copy the ethernet address to the lance init block * Notice that we do a byteswap if we're big endian. * [I think this is the right criterion; at least, sunlance, * a2065 and atarilance do the byteswap and lance.c (PC) doesn't. * However, the datasheet says that the BSWAP bit doesn't affect * the init block, so surely it should be low byte first for * everybody? Um.] * We could define the ib->physaddr as three 16bit values and * use (addr[1] << 8) | addr[0] & co, but this is more efficient. */ #ifdef __BIG_ENDIAN ib->phys_addr [0] = dev->dev_addr [1]; ib->phys_addr [1] = dev->dev_addr [0]; ib->phys_addr [2] = dev->dev_addr [3]; ib->phys_addr [3] = dev->dev_addr [2]; ib->phys_addr [4] = dev->dev_addr [5]; ib->phys_addr [5] = dev->dev_addr [4]; #else for (i=0; i<6; i++) ib->phys_addr[i] = dev->dev_addr[i]; #endif if (DEBUG_IRING) printk ("TX rings:\n"); /* Setup the Tx ring entries */ for (i = 0; i < (1<lance_log_tx_bufs); i++) { leptr = LANCE_ADDR(&aib->tx_buf[i][0]); ib->btx_ring [i].tmd0 = leptr; ib->btx_ring [i].tmd1_hadr = leptr >> 16; ib->btx_ring [i].tmd1_bits = 0; ib->btx_ring [i].length = 0xf000; /* The ones required by tmd2 */ ib->btx_ring [i].misc = 0; if (DEBUG_IRING) printk ("%d: 0x%8.8x\n", i, leptr); } /* Setup the Rx ring entries */ if (DEBUG_IRING) printk ("RX rings:\n"); for (i = 0; i < (1<lance_log_rx_bufs); i++) { leptr = LANCE_ADDR(&aib->rx_buf[i][0]); ib->brx_ring [i].rmd0 = leptr; ib->brx_ring [i].rmd1_hadr = leptr >> 16; ib->brx_ring [i].rmd1_bits = LE_R1_OWN; /* 0xf000 == bits that must be one (reserved, presumably) */ ib->brx_ring [i].length = -RX_BUFF_SIZE | 0xf000; ib->brx_ring [i].mblength = 0; if (DEBUG_IRING) printk ("%d: 0x%8.8x\n", i, leptr); } /* Setup the initialization block */ /* Setup rx descriptor pointer */ leptr = LANCE_ADDR(&aib->brx_ring); ib->rx_len = (lp->lance_log_rx_bufs << 13) | (leptr >> 16); ib->rx_ptr = leptr; if (DEBUG_IRING) printk ("RX ptr: %8.8x\n", leptr); /* Setup tx descriptor pointer */ leptr = LANCE_ADDR(&aib->btx_ring); ib->tx_len = (lp->lance_log_tx_bufs << 13) | (leptr >> 16); ib->tx_ptr = leptr; if (DEBUG_IRING) printk ("TX ptr: %8.8x\n", leptr); /* Clear the multicast filter */ ib->filter [0] = 0; ib->filter [1] = 0; PRINT_RINGS(); } /* LANCE must be STOPped before we do this, too... */ static int init_restart_lance (struct lance_private *lp) { int i; DECLARE_LL; WRITERAP(LE_CSR0); WRITERDP(LE_C0_INIT); /* Need a hook here for sunlance ledma stuff */ /* Wait for the lance to complete initialization */ for (i = 0; (i < 100) && !(READRDP() & (LE_C0_ERR | LE_C0_IDON)); i++) barrier(); if ((i == 100) || (READRDP() & LE_C0_ERR)) { printk ("LANCE unopened after %d ticks, csr0=%4.4x.\n", i, READRDP()); return -1; } /* Clear IDON by writing a "1", enable interrupts and start lance */ WRITERDP(LE_C0_IDON); WRITERDP(LE_C0_INEA | LE_C0_STRT); return 0; } static int lance_reset (struct device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; int status; DECLARE_LL; /* Stop the lance */ WRITERAP(LE_CSR0); WRITERDP(LE_C0_STOP); load_csrs (lp); lance_init_ring (dev); dev->trans_start = jiffies; dev->interrupt = 0; dev->start = 1; dev->tbusy = 0; status = init_restart_lance (lp); #ifdef DEBUG_DRIVER printk ("Lance restart=%d\n", status); #endif return status; } static int lance_rx (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_rx_desc *rd; unsigned char bits; int len = 0; /* XXX shut up gcc warnings */ struct sk_buff *skb = 0; /* XXX shut up gcc warnings */ #ifdef TEST_HITS int i; #endif DECLARE_LL; #ifdef TEST_HITS printk ("["); for (i = 0; i < RX_RING_SIZE; i++) { if (i == lp->rx_new) printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "_" : "X"); else printk ("%s", ib->brx_ring [i].rmd1_bits & LE_R1_OWN ? "." : "1"); } printk ("]"); #endif WRITERDP(LE_C0_RINT | LE_C0_INEA); /* ack Rx int, reenable ints */ for (rd = &ib->brx_ring [lp->rx_new]; /* For each Rx ring we own... */ !((bits = rd->rmd1_bits) & LE_R1_OWN); rd = &ib->brx_ring [lp->rx_new]) { /* We got an incomplete frame? */ if ((bits & LE_R1_POK) != LE_R1_POK) { lp->stats.rx_over_errors++; lp->stats.rx_errors++; continue; } else if (bits & LE_R1_ERR) { /* Count only the end frame as a rx error, * not the beginning */ if (bits & LE_R1_BUF) lp->stats.rx_fifo_errors++; if (bits & LE_R1_CRC) lp->stats.rx_crc_errors++; if (bits & LE_R1_OFL) lp->stats.rx_over_errors++; if (bits & LE_R1_FRA) lp->stats.rx_frame_errors++; if (bits & LE_R1_EOP) lp->stats.rx_errors++; } else { len = (rd->mblength & 0xfff) - 4; skb = dev_alloc_skb (len+2); if (skb == 0) { printk ("%s: Memory squeeze, deferring packet.\n", dev->name); lp->stats.rx_dropped++; rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask; return 0; } skb->dev = dev; skb_reserve (skb, 2); /* 16 byte align */ skb_put (skb, len); /* make room */ eth_copy_and_sum(skb, (unsigned char *)&(ib->rx_buf [lp->rx_new][0]), len, 0); skb->protocol = eth_type_trans (skb, dev); netif_rx (skb); lp->stats.rx_packets++; } /* Return the packet to the pool */ rd->mblength = 0; rd->rmd1_bits = LE_R1_OWN; lp->rx_new = (lp->rx_new + 1) & lp->rx_ring_mod_mask; } return 0; } static int lance_tx (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile struct lance_tx_desc *td; int i, j; int status; DECLARE_LL; /* csr0 is 2f3 */ WRITERDP(LE_C0_TINT | LE_C0_INEA); /* csr0 is 73 */ j = lp->tx_old; for (i = j; i != lp->tx_new; i = j) { td = &ib->btx_ring [i]; /* If we hit a packet not owned by us, stop */ if (td->tmd1_bits & LE_T1_OWN) break; if (td->tmd1_bits & LE_T1_ERR) { status = td->misc; lp->stats.tx_errors++; if (status & LE_T3_RTY) lp->stats.tx_aborted_errors++; if (status & LE_T3_LCOL) lp->stats.tx_window_errors++; if (status & LE_T3_CLOS) { lp->stats.tx_carrier_errors++; if (lp->auto_select) { lp->tpe = 1 - lp->tpe; printk("%s: Carrier Lost, trying %s\n", dev->name, lp->tpe?"TPE":"AUI"); /* Stop the lance */ WRITERAP(LE_CSR0); WRITERDP(LE_C0_STOP); lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); return 0; } } /* buffer errors and underflows turn off the transmitter */ /* Restart the adapter */ if (status & (LE_T3_BUF|LE_T3_UFL)) { lp->stats.tx_fifo_errors++; printk ("%s: Tx: ERR_BUF|ERR_UFL, restarting\n", dev->name); /* Stop the lance */ WRITERAP(LE_CSR0); WRITERDP(LE_C0_STOP); lance_init_ring (dev); load_csrs (lp); init_restart_lance (lp); return 0; } } else if ((td->tmd1_bits & LE_T1_POK) == LE_T1_POK) { /* * So we don't count the packet more than once. */ td->tmd1_bits &= ~(LE_T1_POK); /* One collision before packet was sent. */ if (td->tmd1_bits & LE_T1_EONE) lp->stats.collisions++; /* More than one collision, be optimistic. */ if (td->tmd1_bits & LE_T1_EMORE) lp->stats.collisions += 2; lp->stats.tx_packets++; } j = (j + 1) & lp->tx_ring_mod_mask; } lp->tx_old = j; WRITERDP(LE_C0_TINT | LE_C0_INEA); return 0; } static void lance_interrupt (int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *)dev_id; struct lance_private *lp = (struct lance_private *)dev->priv; int csr0; DECLARE_LL; WRITERAP(LE_CSR0); /* LANCE Controller Status */ csr0 = READRDP(); PRINT_RINGS(); if (!(csr0 & LE_C0_INTR)) /* Check if any interrupt has */ return; /* been generated by the Lance. */ if (dev->interrupt) printk ("%s: again", dev->name); dev->interrupt = 1; /* Acknowledge all the interrupt sources ASAP */ WRITERDP(csr0 & ~(LE_C0_INEA|LE_C0_TDMD|LE_C0_STOP|LE_C0_STRT|LE_C0_INIT)); if ((csr0 & LE_C0_ERR)) { /* Clear the error condition */ WRITERDP(LE_C0_BABL|LE_C0_ERR|LE_C0_MISS|LE_C0_INEA); } if (csr0 & LE_C0_RINT) lance_rx (dev); if (csr0 & LE_C0_TINT) lance_tx (dev); /* Log misc errors. */ if (csr0 & LE_C0_BABL) lp->stats.tx_errors++; /* Tx babble. */ if (csr0 & LE_C0_MISS) lp->stats.rx_errors++; /* Missed a Rx frame. */ if (csr0 & LE_C0_MERR) { printk("%s: Bus master arbitration failure, status %4.4x.\n", dev->name, csr0); /* Restart the chip. */ WRITERDP(LE_C0_STRT); } if ((TX_BUFFS_AVAIL >= 0) && dev->tbusy) { dev->tbusy = 0; mark_bh (NET_BH); } WRITERAP(LE_CSR0); WRITERDP(LE_C0_BABL|LE_C0_CERR|LE_C0_MISS|LE_C0_MERR|LE_C0_IDON|LE_C0_INEA); dev->interrupt = 0; } int lance_open (struct device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; DECLARE_LL; /* Install the Interrupt handler. Or we could shunt this out to specific drivers? */ if (request_irq(lp->irq, lance_interrupt, 0, lp->name, dev)) return -EAGAIN; return lance_reset(dev); } int lance_close (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; DECLARE_LL; dev->start = 0; dev->tbusy = 1; /* Stop the LANCE */ WRITERAP(LE_CSR0); WRITERDP(LE_C0_STOP); free_irq(lp->irq, dev); return 0; } int lance_start_xmit (struct sk_buff *skb, struct device *dev) { struct lance_private *lp = (struct lance_private *)dev->priv; volatile struct lance_init_block *ib = lp->init_block; int entry, skblen, len; int status = 0; static int outs; DECLARE_LL; lance_reset(dev); /* Transmitter timeout, serious problems */ if (dev->tbusy) { int tickssofar = jiffies - dev->trans_start; if (tickssofar < 100) { status = -1; } else { printk ("%s: transmit timed out, status %04x, resetting\n", dev->name, READRDP()); lance_reset (dev); } return status; } /* Block a timer-based transmit from overlapping. */ if (test_and_set_bit (0, (void *) &dev->tbusy) != 0) { printk ("Transmitter access conflict.\n"); return -1; } skblen = skb->len; if (!TX_BUFFS_AVAIL) return -1; #ifdef DEBUG_DRIVER /* dump the packet */ { int i; for (i = 0; i < 64; i++) { if ((i % 16) == 0) printk ("\n"); printk ("%2.2x ", skb->data [i]); } } #endif len = (skblen <= ETH_ZLEN) ? ETH_ZLEN : skblen; entry = lp->tx_new & lp->tx_ring_mod_mask; ib->btx_ring [entry].length = (-len) | 0xf000; ib->btx_ring [entry].misc = 0; memcpy ((char *)&ib->tx_buf [entry][0], skb->data, skblen); /* Now, give the packet to the lance */ ib->btx_ring [entry].tmd1_bits = (LE_T1_POK|LE_T1_OWN); lp->tx_new = (lp->tx_new+1) & lp->tx_ring_mod_mask; outs++; /* Kick the lance: transmit now */ WRITERDP(LE_C0_INEA | LE_C0_TDMD); dev->trans_start = jiffies; dev_kfree_skb (skb); if (TX_BUFFS_AVAIL) dev->tbusy = 0; return status; } struct net_device_stats *lance_get_stats (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; return &lp->stats; } /* taken from the depca driver via a2065.c */ static void lance_load_multicast (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; volatile u16 *mcast_table = (u16 *)&ib->filter; struct dev_mc_list *dmi=dev->mc_list; char *addrs; int i, j, bit, byte; u32 crc, poly = CRC_POLYNOMIAL_LE; /* set all multicast bits */ if (dev->flags & IFF_ALLMULTI){ ib->filter [0] = 0xffffffff; ib->filter [1] = 0xffffffff; return; } /* clear the multicast filter */ ib->filter [0] = 0; ib->filter [1] = 0; /* Add addresses */ for (i = 0; i < dev->mc_count; i++){ addrs = dmi->dmi_addr; dmi = dmi->next; /* multicast address? */ if (!(*addrs & 1)) continue; crc = 0xffffffff; for (byte = 0; byte < 6; byte++) for (bit = *addrs++, j = 0; j < 8; j++, bit>>=1) { int test; test = ((bit ^ crc) & 0x01); crc >>= 1; if (test) { crc = crc ^ poly; } } crc = crc >> 26; mcast_table [crc >> 4] |= 1 << (crc & 0xf); } return; } void lance_set_multicast (struct device *dev) { struct lance_private *lp = (struct lance_private *) dev->priv; volatile struct lance_init_block *ib = lp->init_block; DECLARE_LL; while (dev->tbusy) schedule(); set_bit (0, (void *) &dev->tbusy); while (lp->tx_old != lp->tx_new) schedule(); WRITERAP(LE_CSR0); WRITERDP(LE_C0_STOP); lance_init_ring (dev); if (dev->flags & IFF_PROMISC) { ib->mode |= LE_MO_PROM; } else { ib->mode &= ~LE_MO_PROM; lance_load_multicast (dev); } load_csrs (lp); init_restart_lance (lp); dev->tbusy = 0; }