/* * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card * and other Tigon based cards. * * Copyright 1998 by Jes Sorensen, . * * Thanks to Alteon and 3Com for providing hardware and documentation * enabling me to write this driver. * * A mailing list for discussing the use of this driver has been * setup, please subscribe to the lists if you have any questions * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to * see how to subscribe. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * Additional work by Pete Wyckoff for initial * Alpha and trace dump support. */ #define PKT_COPY_THRESHOLD 300 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "acenic.h" /* * These must be defined before the firmware is included. */ #define MAX_TEXT_LEN 96*1024 #define MAX_RODATA_LEN 8*1024 #define MAX_DATA_LEN 2*1024 #include "acenic_firmware.h" #ifndef PCI_VENDOR_ID_ALTEON #define PCI_VENDOR_ID_ALTEON 0x12ae #define PCI_DEVICE_ID_ALTEON_ACENIC 0x0001 #endif #ifndef PCI_DEVICE_ID_3COM_3C985 #define PCI_DEVICE_ID_3COM_3C985 0x0001 #endif #ifndef PCI_VENDOR_ID_NETGEAR #define PCI_VENDOR_ID_NETGEAR 0x1385 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a #endif /* * This driver currently supports Tigon I and Tigon II based cards * including the Alteon AceNIC and the 3Com 3C985. The driver should * also work on the NetGear GA620, however I have not been able to * test that myself. * * This card is really neat, it supports receive hardware checksumming * and jumbo frames (up to 9000 bytes) and does a lot of work in the * firmware. Also the programming interface is quite neat, except for * the parts dealing with the i2c eeprom on the card ;-) * * Using jumbo frames: * * To enable jumbo frames, simply specify an mtu between 1500 and 9000 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time * by running `ifconfig eth mtu ' with being the Ethernet * interface number and being the MTU value. * * Module parameters: * * When compiled as a loadable module, the driver allows for a number * of module parameters to be specified. The driver supports the * following module parameters: * * trace= - Firmware trace level. This requires special traced * firmware to replace the firmware supplied with * the driver - for debugging purposes only. * * link= - Link state. Normally you want to use the default link * parameters set by the driver. This can be used to * override these in case your switch doesn't negotiate * the link properly. Valid values are: * 0x0001 - Force half duplex link. * 0x0002 - Do not negotiate line speed with the other end. * 0x0010 - 10Mbit/sec link. * 0x0020 - 100Mbit/sec link. * 0x0040 - 1000Mbit/sec link. * 0x0100 - Do not negotiate flow control. * 0x0200 - Enable RX flow control Y * 0x0400 - Enable TX flow control Y (Tigon II NICs only). * Default value is 0x0270, ie. enable link+flow * control negotiation. Negotiating the highest * possible link speed with RX flow control enabled. * * When disabling link speed negotiation, only one link * speed is allowed to be specified! * * tx_coal_tick= - number of coalescing clock ticks (us) allowed * to wait for more packets to arive before * interrupting the host, from the time the first * packet arrives. * * rx_coal_tick= - number of coalescing clock ticks (us) allowed * to wait for more packets to arive in the transmit ring, * before interrupting the host, after transmitting the * first packet in the ring. * * max_tx_desc= - maximum number of transmit descriptors * (packets) transmitted before interrupting the host. * * max_rx_desc= - maximum number of receive descriptors * (packets) received before interrupting the host. * * tx_ratio= - 7 bit value (0 - 63) specifying the split in 64th * increments of the NIC's on board memory to be used for * transmit and receive buffers. For the 1MB NIC app. 800KB * is available, on the 1/2MB NIC app. 300KB is available. * 68KB will always be available as a minimum for both * directions. The default value is a 50/50 split. * * If you use more than one NIC, specify the parameters for the * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to * run tracing on NIC #2 but not on NIC #1 and #3. * * TODO: * * - Proper multicast support. * - NIC dump support. * - More tuning parameters. * * The mini ring is not used under Linux and I am not sure it makes sense * to actually use it. */ /* * Default values for tuning parameters */ #define DEF_TX_RATIO 31 #define DEF_TX_COAL TICKS_PER_SEC / 500 #define DEF_TX_MAX_DESC 7 #define DEF_RX_COAL TICKS_PER_SEC / 10000 #define DEF_RX_MAX_DESC 2 #define DEF_TRACE 0 #define DEF_STAT 2 * TICKS_PER_SEC static int link[8] = {0, }; static int trace[8] = {0, }; static int tx_coal_tick[8] = {0, }; static int rx_coal_tick[8] = {0, }; static int max_tx_desc[8] = {0, }; static int max_rx_desc[8] = {0, }; static int tx_ratio[8] = {0, }; static const char __initdata *version = "acenic.c: v0.32 03/15/99 Jes Sorensen (Jes.Sorensen@cern.ch)\n"; static struct device *root_dev = NULL; static int probed __initdata = 0; __initfunc(int acenic_probe (struct device *dev)) { int boards_found = 0; int version_disp; struct ace_private *ap; u8 pci_latency; #if 0 u16 vendor, device; u8 pci_bus; u8 pci_dev_fun; u8 irq; #endif struct pci_dev *pdev = NULL; if (probed) return -ENODEV; probed ++; if (!pci_present()) /* is PCI support present? */ return -ENODEV; version_disp = 0; while ((pdev = pci_find_class(PCI_CLASS_NETWORK_ETHERNET<<8, pdev))){ dev = NULL; if (!((pdev->vendor == PCI_VENDOR_ID_ALTEON) && (pdev->device == PCI_DEVICE_ID_ALTEON_ACENIC)) && !((pdev->vendor == PCI_VENDOR_ID_3COM) && (pdev->device == PCI_DEVICE_ID_3COM_3C985)) && !((pdev->vendor == PCI_VENDOR_ID_NETGEAR) && (pdev->device == PCI_DEVICE_ID_NETGEAR_GA620))) continue; dev = init_etherdev(dev, sizeof(struct ace_private)); if (dev == NULL){ printk(KERN_ERR "Unable to allocate etherdev " "structure!\n"); break; } if (!dev->priv) dev->priv = kmalloc(sizeof(*ap), GFP_KERNEL); if (!dev->priv) return -ENOMEM; ap = dev->priv; ap->pdev = pdev; ap->vendor = pdev->vendor; dev->irq = pdev->irq; #ifdef __SMP__ spin_lock_init(&ap->lock); #endif dev->open = &ace_open; dev->hard_start_xmit = &ace_start_xmit; dev->stop = &ace_close; dev->get_stats = &ace_get_stats; dev->set_multicast_list = &ace_set_multicast_list; #if 0 dev->do_ioctl = &ace_ioctl; #endif dev->set_mac_address = &ace_set_mac_addr; dev->change_mtu = &ace_change_mtu; /* * Dummy value. */ dev->base_addr = 42; /* display version info if adapter is found */ if (!version_disp) { /* set display flag to TRUE so that */ /* we only display this string ONCE */ version_disp = 1; printk(version); } pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); if (pci_latency <= 0x40){ pci_latency = 0x40; pci_write_config_byte(pdev, PCI_LATENCY_TIMER, pci_latency); } pci_set_master(pdev); switch(ap->vendor){ case PCI_VENDOR_ID_ALTEON: sprintf(ap->name, "AceNIC Gigabit Ethernet"); printk(KERN_INFO "%s: Alteon AceNIC ", dev->name); break; case PCI_VENDOR_ID_3COM: sprintf(ap->name, "3Com 3C985 Gigabit Ethernet"); printk(KERN_INFO "%s: 3Com 3C985 ", dev->name); break; case PCI_VENDOR_ID_NETGEAR: sprintf(ap->name, "NetGear GA620 Gigabit Ethernet"); printk(KERN_INFO "%s: NetGear GA620 ", dev->name); break; default: sprintf(ap->name, "Unknown AceNIC based Gigabit Ethernet"); printk(KERN_INFO "%s: Unknown AceNIC ", dev->name); break; } printk("Gigabit Ethernet at 0x%08lx, irq %i, PCI latency %i " "clks\n", pdev->base_address[0], dev->irq, pci_latency); /* * Remap the regs into kernel space. */ ap->regs = (struct ace_regs *)ioremap(pdev->base_address[0], 0x4000); if (!ap->regs){ printk(KERN_ERR "%s: Unable to map I/O register, " "AceNIC %i will be disabled.\n", dev->name, boards_found); break; } #ifdef MODULE if (ace_init(dev, boards_found)) continue; #else if (ace_init(dev, -1)) continue; #endif boards_found++; /* * This is bollocks, but we need to tell the net-init * code that it shall go for the next device. */ dev->base_addr = 0; } /* * If we're at this point we're going through ace_probe() for * the first time. Return success (0) if we've initialized 1 * or more boards. Otherwise, return failure (-ENODEV). */ #ifdef MODULE return boards_found; #else if (boards_found > 0) return 0; else return -ENODEV; #endif } #ifdef MODULE #if LINUX_VERSION_CODE > 0x20118 MODULE_AUTHOR("Jes Sorensen "); MODULE_DESCRIPTION("AceNIC/3C985 Gigabit Ethernet driver"); MODULE_PARM(link, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(trace, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(tx_coal_tick, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(max_tx_desc, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(rx_coal_tick, "1-" __MODULE_STRING(8) "i"); MODULE_PARM(max_rx_desc, "1-" __MODULE_STRING(8) "i"); #endif int init_module(void) { int cards; root_dev = NULL; cards = acenic_probe(NULL); return cards ? 0 : -ENODEV; } void cleanup_module(void) { struct ace_private *ap; struct ace_regs *regs; struct device *next; short i; unsigned long flags; while (root_dev){ next = ((struct ace_private *)root_dev->priv)->next; ap = (struct ace_private *)root_dev->priv; regs = ap->regs; spin_lock_irqsave(&ap->lock, flags); writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); if (ap->version == 2) writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); writel(0, ®s->Mb0Lo); spin_unlock_irqrestore(&ap->lock, flags); /* * Release the RX buffers. */ for (i = 0; i < RX_STD_RING_ENTRIES; i++) { if (ap->rx_std_skbuff[i]) { ap->rx_std_ring[i].size = 0; set_aceaddr_bus(&ap->rx_std_ring[i].addr, 0); dev_kfree_skb(ap->rx_std_skbuff[i]); } } iounmap(regs); if(ap->trace_buf) kfree(ap->trace_buf); kfree(ap->info); free_irq(root_dev->irq, root_dev); unregister_netdev(root_dev); kfree(root_dev); root_dev = next; } } #endif /* * Commands are considered to be slow. */ static inline void ace_issue_cmd(struct ace_regs *regs, struct cmd *cmd) { u32 idx; idx = readl(®s->CmdPrd); writel(*(u32 *)(cmd), ®s->CmdRng[idx]); idx = (idx + 1) % CMD_RING_ENTRIES; writel(idx, ®s->CmdPrd); } __initfunc(static int ace_init(struct device *dev, int board_idx)) { struct ace_private *ap; struct ace_regs *regs; struct ace_info *info; u32 tig_ver, mac1, mac2, tmp; unsigned long tmp_ptr, myjif; short i; ap = dev->priv; regs = ap->regs; /* * Don't access any other registes before this point! */ #ifdef __BIG_ENDIAN writel(((BYTE_SWAP | WORD_SWAP | CLR_INT) | ((BYTE_SWAP | WORD_SWAP | CLR_INT) << 24)), ®s->HostCtrl); #else writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), ®s->HostCtrl); #endif mb(); /* * Stop the NIC CPU and clear pending interrupts */ writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); writel(0, ®s->Mb0Lo); tig_ver = readl(®s->HostCtrl) >> 28; switch(tig_ver){ case 4: printk(KERN_INFO" Tigon I (Rev. 4), Firmware: %i.%i.%i, ", tigonFwReleaseMajor, tigonFwReleaseMinor, tigonFwReleaseFix); writel(0, ®s->LocalCtrl); ap->version = 1; break; case 6: printk(KERN_INFO" Tigon II (Rev. %i), Firmware: %i.%i.%i, ", tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor, tigon2FwReleaseFix); writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); writel(SRAM_BANK_512K, ®s->LocalCtrl); writel(SYNC_SRAM_TIMING, ®s->MiscCfg); ap->version = 2; break; default: printk(KERN_INFO" Unsupported Tigon version detected (%i), ", tig_ver); return -ENODEV; } /* * ModeStat _must_ be set after the SRAM settings as this change * seems to corrupt the ModeStat and possible other registers. * The SRAM settings survive resets and setting it to the same * value a second time works as well. This is what caused the * `Firmware not running' problem on the Tigon II. */ #ifdef __LITTLE_ENDIAN writel(ACE_BYTE_SWAP_DATA | ACE_WARN | ACE_FATAL | ACE_WORD_SWAP | ACE_NO_JUMBO_FRAG, ®s->ModeStat); #else #error "this driver doesn't run on big-endian machines yet!" #endif mac1 = 0; for(i = 0; i < 4; i++){ mac1 = mac1 << 8; mac1 |= read_eeprom_byte(regs, 0x8c+i); } mac2 = 0; for(i = 4; i < 8; i++){ mac2 = mac2 << 8; mac2 |= read_eeprom_byte(regs, 0x8c+i); } writel(mac1, ®s->MacAddrHi); writel(mac2, ®s->MacAddrLo); printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff, (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff); dev->dev_addr[0] = (mac1 >> 8) & 0xff; dev->dev_addr[1] = mac1 & 0xff; dev->dev_addr[2] = (mac2 >> 24) & 0xff; dev->dev_addr[3] = (mac2 >> 16) & 0xff; dev->dev_addr[4] = (mac2 >> 8) & 0xff; dev->dev_addr[5] = mac2 & 0xff; /* * Set the max DMA transfer size. Seems that for most systems * the performance is better when no MAX parameter is * set. However for systems enabling PCI write and invalidate, * DMA writes must be set to the L1 cache line size to get * optimal performance. */ tmp = READ_CMD_MEM | WRITE_CMD_MEM; if (ap->version == 2){ #if 0 /* * According to the documentation this enables writes * to all PCI regs - NOT good. */ tmp |= DMA_WRITE_ALL_ALIGN; #endif tmp |= MEM_READ_MULTIPLE; if (ap->pci_command & PCI_COMMAND_INVALIDATE){ switch(L1_CACHE_BYTES){ case 16: tmp |= DMA_WRITE_MAX_16; break; case 32: tmp |= DMA_WRITE_MAX_32; break; case 64: tmp |= DMA_WRITE_MAX_64; break; default: printk(KERN_INFO " Cache line size %i not " "supported, PCI write and invalidate " "disabled\n", L1_CACHE_BYTES); ap->pci_command &= ~PCI_COMMAND_INVALIDATE; pci_write_config_word(ap->pdev, PCI_COMMAND, ap->pci_command); } } } writel(tmp, ®s->PciState); if (request_irq(dev->irq, ace_interrupt, SA_SHIRQ, ap->name, dev)) { printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); return -EAGAIN; } /* * Initialize the generic info block and the command+event rings * and the control blocks for the transmit and receive rings * as they need to be setup once and for all. */ if (!(info = kmalloc(sizeof(struct ace_info), GFP_KERNEL | GFP_DMA))){ free_irq(dev->irq, dev); return -EAGAIN; } /* * Register the device here to be able to catch allocated * interrupt handlers in case the firmware doesn't come up. */ ap->next = root_dev; root_dev = dev; ap->info = info; memset(info, 0, sizeof(struct ace_info)); ace_load_firmware(dev); ap->fw_running = 0; tmp_ptr = virt_to_bus((void *)info); #if (BITS_PER_LONG == 64) writel(tmp_ptr >> 32, ®s->InfoPtrHi); #else writel(0, ®s->InfoPtrHi); #endif writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring); info->evt_ctrl.flags = 0; set_aceaddr(&info->evt_prd_ptr, &ap->evt_prd); ap->evt_prd = 0; writel(0, ®s->EvtCsm); info->cmd_ctrl.flags = 0; set_aceaddr_bus(&info->cmd_ctrl.rngptr, (void *)0x100); info->cmd_ctrl.max_len = 0; for (i = 0; i < CMD_RING_ENTRIES; i++) writel(0, ®s->CmdRng[i]); writel(0, ®s->CmdPrd); writel(0, ®s->CmdCsm); set_aceaddr(&info->stats2_ptr, &info->s.stats); info->rx_std_ctrl.max_len = ACE_STD_MTU + ETH_HLEN + 4; set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_std_ring); info->rx_std_ctrl.flags = FLG_RX_TCP_UDP_SUM; memset(ap->rx_std_ring, 0, RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); info->rx_jumbo_ctrl.max_len = 0; set_aceaddr(&info->rx_jumbo_ctrl.rngptr, ap->rx_jumbo_ring); info->rx_jumbo_ctrl.flags = FLG_RX_TCP_UDP_SUM; memset(ap->rx_jumbo_ring, 0, RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); info->rx_mini_ctrl.max_len = 0; #if 0 set_aceaddr(&info->rx_mini_ctrl.rngptr, ap->rx_mini_ring); #else set_aceaddr_bus(&info->rx_mini_ctrl.rngptr, 0); #endif info->rx_mini_ctrl.flags = FLG_RNG_DISABLED; #if 0 memset(ap->rx_mini_ring, 0, RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); #endif set_aceaddr(&info->rx_return_ctrl.rngptr, ap->rx_return_ring); info->rx_return_ctrl.flags = 0; info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; memset(ap->rx_return_ring, 0, RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); set_aceaddr(&info->rx_ret_prd_ptr, &ap->rx_ret_prd); writel(TX_RING_BASE, ®s->WinBase); ap->tx_ring = (struct tx_desc *)regs->Window; for (i = 0; i < (TX_RING_ENTRIES * sizeof(struct tx_desc) / 4); i++){ writel(0, (unsigned long)ap->tx_ring + i * 4); } info->tx_ctrl.max_len = TX_RING_ENTRIES; info->tx_ctrl.flags = 0; set_aceaddr_bus(&info->tx_ctrl.rngptr, (void *)TX_RING_BASE); set_aceaddr(&info->tx_csm_ptr, &ap->tx_csm); /* * Potential item for tuning parameter */ writel(DMA_THRESH_8W, ®s->DmaReadCfg); writel(DMA_THRESH_8W, ®s->DmaWriteCfg); writel(0, ®s->MaskInt); writel(1, ®s->IfIdx); writel(1, ®s->AssistState); writel(DEF_STAT, ®s->TuneStatTicks); writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); writel(DEF_TRACE, ®s->TuneTrace); writel(DEF_TX_RATIO, ®s->TxBufRat); if (board_idx >= 8) { printk(KERN_WARNING "%s: more then 8 NICs detected, " "ignoring module parameters!\n", dev->name); board_idx = -1; } if (board_idx >= 0) { if (tx_coal_tick[board_idx]) writel(tx_coal_tick[board_idx], ®s->TuneTxCoalTicks); if (max_tx_desc[board_idx]) writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); if (rx_coal_tick[board_idx]) writel(rx_coal_tick[board_idx], ®s->TuneRxCoalTicks); if (max_rx_desc[board_idx]) writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); if (trace[board_idx]) writel(trace[board_idx], ®s->TuneTrace); if ((tx_ratio[board_idx] >= 0) && (tx_ratio[board_idx] < 64)) writel(tx_ratio[board_idx], ®s->TxBufRat); } /* * Default link parameters */ tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; if(ap->version == 2) tmp |= LNK_TX_FLOW_CTL_Y; /* * Override link default parameters */ if ((board_idx >= 0) && link[board_idx]) { int option = link[board_idx]; tmp = LNK_ENABLE; if (option & 0x01){ printk(KERN_INFO "%s: Setting half duplex link\n", dev->name); tmp &= ~LNK_FULL_DUPLEX; } if (option & 0x02) tmp &= ~LNK_NEGOTIATE; if (option & 0x10) tmp |= LNK_10MB; if (option & 0x20) tmp |= LNK_100MB; if (option & 0x40) tmp |= LNK_1000MB; if ((option & 0x70) == 0){ printk(KERN_WARNING "%s: No media speed specified, " "forcing auto negotiation\n", dev->name); tmp |= LNK_NEGOTIATE | LNK_1000MB | LNK_100MB | LNK_10MB; } if ((option & 0x100) == 0) tmp |= LNK_NEG_FCTL; else printk(KERN_INFO "%s: Disabling flow control " "negotiation\n", dev->name); if (option & 0x200) tmp |= LNK_RX_FLOW_CTL_Y; if ((option & 0x400) && (ap->version == 2)){ printk(KERN_INFO "%s: Enabling TX flow control\n", dev->name); tmp |= LNK_TX_FLOW_CTL_Y; } } writel(tmp, ®s->TuneLink); if (ap->version == 2) writel(tmp, ®s->TuneFastLink); if (ap->version == 1) writel(tigonFwStartAddr, ®s->Pc); else if (ap->version == 2) writel(tigon2FwStartAddr, ®s->Pc); writel(0, ®s->Mb0Lo); /* * Start the NIC CPU */ writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); /* * Wait for the firmware to spin up - max 3 seconds. */ myjif = jiffies + 3 * HZ; while (time_before(jiffies, myjif) && !ap->fw_running); if (!ap->fw_running){ printk(KERN_ERR "%s: Firmware NOT running!\n", dev->name); ace_dump_trace(ap); writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); return -EBUSY; } /* * We load the ring here as there seem to be no way to tell the * firmware to wipe the ring without re-initializing it. */ ace_load_std_rx_ring(dev); return 0; } /* * Monitor the card to detect hangs. */ static void ace_timer(unsigned long data) { struct device *dev = (struct device *)data; struct ace_private *ap = (struct ace_private *)dev->priv; struct ace_regs *regs = ap->regs; /* * We haven't received a stats update event for more than 2.5 * seconds and there is data in the transmit queue, thus we * asume the card is stuck. */ if (ap->tx_csm != ap->tx_ret_csm){ printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", dev->name, (unsigned int)readl(®s->HostCtrl)); } ap->timer.expires = jiffies + (5/2*HZ); add_timer(&ap->timer); } /* * Copy the contents of the NIC's trace buffer to kernel memory. */ static void ace_dump_trace(struct ace_private *ap) { #if 0 if (!ap->trace_buf) if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))); return; #endif } /* * Load the standard rx ring. */ static int ace_load_std_rx_ring(struct device *dev) { struct ace_private *ap; struct ace_regs *regs; struct ace_info *info; unsigned long flags; struct cmd cmd; short i; ap = (struct ace_private *)dev->priv; regs = ap->regs; info = ap->info; spin_lock_irqsave(&ap->lock, flags); /* * Set tx_csm before we start receiving interrupts, otherwise * the interrupt handler might think it is supposed to process * tx ints before we are up and running, which may cause a null * pointer access in the int handler. */ ap->tx_full = 0; ap->cur_rx = ap->dirty_rx = 0; ap->tx_prd = ap->tx_csm = ap->tx_ret_csm = 0; writel(0, ®s->RxRetCsm); for (i = 0; i < RX_RING_THRESH; i++) { struct sk_buff *skb; ap->rx_std_ring[i].flags = 0; skb = alloc_skb(ACE_STD_MTU + ETH_HLEN + 6, GFP_ATOMIC); ap->rx_std_skbuff[i] = skb; /* * Make sure the data contents end up on an aligned address */ skb_reserve(skb, 2); set_aceaddr(&ap->rx_std_ring[i].addr, skb->data); ap->rx_std_ring[i].size = ACE_STD_MTU + ETH_HLEN + 4; ap->rx_std_ring[i].flags = 0; ap->rx_std_ring[i].type = DESC_RX; ap->rx_std_ring[i].idx = i; } ap->rx_std_skbprd = i; /* * The last descriptor needs to be marked as being special. */ ap->rx_std_ring[i-1].type = DESC_END; cmd.evt = C_SET_RX_PRD_IDX; cmd.code = 0; cmd.idx = ap->rx_std_skbprd; ace_issue_cmd(regs, &cmd); spin_unlock_irqrestore(&ap->lock, flags); return 0; } /* * Load the jumbo rx ring, this may happen at any time if the MTU * is changed to a value > 1500. */ static int ace_load_jumbo_rx_ring(struct device *dev) { struct ace_private *ap; struct ace_regs *regs; struct cmd cmd; unsigned long flags; short i; ap = (struct ace_private *)dev->priv; regs = ap->regs; spin_lock_irqsave(&ap->lock, flags); for (i = 0; i < RX_RING_JUMBO_THRESH; i++) { struct sk_buff *skb; ap->rx_jumbo_ring[i].flags = 0; skb = alloc_skb(ACE_JUMBO_MTU + ETH_HLEN + 6, GFP_ATOMIC); ap->rx_jumbo_skbuff[i] = skb; /* * Make sure the data contents end up on an aligned address */ skb_reserve(skb, 2); set_aceaddr(&ap->rx_jumbo_ring[i].addr, skb->data); ap->rx_jumbo_ring[i].size = ACE_JUMBO_MTU + ETH_HLEN + 4; ap->rx_jumbo_ring[i].flags = DFLG_RX_JUMBO; ap->rx_jumbo_ring[i].type = DESC_RX; ap->rx_jumbo_ring[i].idx = i; } ap->rx_jumbo_skbprd = i; /* * The last descriptor needs to be marked as being special. */ ap->rx_jumbo_ring[i-1].type = DESC_END; cmd.evt = C_SET_RX_JUMBO_PRD_IDX; cmd.code = 0; cmd.idx = ap->rx_jumbo_skbprd; ace_issue_cmd(regs, &cmd); spin_unlock_irqrestore(&ap->lock, flags); return 0; } /* * Tell the firmware not to accept jumbos and flush the jumbo ring. * This function must be called with the spinlock held. */ static int ace_flush_jumbo_rx_ring(struct device *dev) { struct ace_private *ap; struct ace_regs *regs; struct cmd cmd; short i; ap = (struct ace_private *)dev->priv; regs = ap->regs; if (ap->jumbo){ cmd.evt = C_RESET_JUMBO_RNG; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { if (ap->rx_jumbo_skbuff[i]) { ap->rx_jumbo_ring[i].size = 0; set_aceaddr_bus(&ap->rx_jumbo_ring[i].addr, 0); dev_kfree_skb(ap->rx_jumbo_skbuff[i]); } } }else printk(KERN_ERR "%s: Trying to flush Jumbo ring without " "Jumbo support enabled\n", dev->name); return 0; } /* * All events are considered to be slow (RX/TX ints do not generate * events) and are handled here, outside the main interrupt handler, * to reduce the size of the handler. */ static u32 ace_handle_event(struct device *dev, u32 evtcsm, u32 evtprd) { struct ace_private *ap; ap = (struct ace_private *)dev->priv; while (evtcsm != evtprd){ switch (ap->evt_ring[evtcsm].evt){ case E_FW_RUNNING: printk(KERN_INFO "%s: Firmware up and running\n", dev->name); ap->fw_running = 1; break; case E_STATS_UPDATED: break; case E_LNK_STATE: { u16 code = ap->evt_ring[evtcsm].code; if (code == E_C_LINK_UP){ printk("%s: Optical link UP\n", dev->name); } else if (code == E_C_LINK_DOWN) printk(KERN_INFO "%s: Optical link DOWN\n", dev->name); else printk(KERN_INFO "%s: Unknown optical link " "state %02x\n", dev->name, code); break; } case E_ERROR: switch(ap->evt_ring[evtcsm].code){ case E_C_ERR_INVAL_CMD: printk(KERN_ERR "%s: invalid command error\n", dev->name); break; case E_C_ERR_UNIMP_CMD: printk(KERN_ERR "%s: unimplemented command " "error\n", dev->name); break; case E_C_ERR_BAD_CFG: printk(KERN_ERR "%s: bad config error\n", dev->name); break; default: printk(KERN_ERR "%s: unknown error %02x\n", dev->name, ap->evt_ring[evtcsm].code); } break; case E_RESET_JUMBO_RNG: break; default: printk(KERN_ERR "%s: Unhandled event 0x%02x\n", dev->name, ap->evt_ring[evtcsm].evt); } evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; } return evtcsm; } static int ace_rx_int(struct device *dev, u32 rxretprd, u32 rxretcsm) { struct ace_private *ap = (struct ace_private *)dev->priv; struct ace_regs *regs = ap->regs; u32 idx, oldidx; idx = rxretcsm; while (idx != rxretprd){ struct sk_buff *skb, *newskb, *oldskb; struct rx_desc *newrxdesc, *oldrxdesc; u32 prdidx, size; void *addr; u16 csum; int jumbo; oldidx = ap->rx_return_ring[idx].idx; jumbo = ap->rx_return_ring[idx].flags & DFLG_RX_JUMBO; if (jumbo){ oldskb = ap->rx_jumbo_skbuff[oldidx]; prdidx = ap->rx_jumbo_skbprd; newrxdesc = &ap->rx_jumbo_ring[prdidx]; oldrxdesc = &ap->rx_jumbo_ring[oldidx]; }else{ oldskb = ap->rx_std_skbuff[oldidx]; prdidx = ap->rx_std_skbprd; newrxdesc = &ap->rx_std_ring[prdidx]; oldrxdesc = &ap->rx_std_ring[oldidx]; } size = oldrxdesc->size; if (size < PKT_COPY_THRESHOLD) { skb = alloc_skb(size + 2, GFP_ATOMIC); if (skb == NULL){ printk(KERN_ERR "%s: Out of memory\n", dev->name); goto error; } /* * Make sure the real data is aligned */ skb_reserve(skb, 2); memcpy(skb_put(skb, size), oldskb->data, size); addr = get_aceaddr_bus(&oldrxdesc->addr); newskb = oldskb; }else{ skb = oldskb; skb_put(skb, size); newskb = alloc_skb(size + 2, GFP_ATOMIC); if (newskb == NULL){ printk(KERN_ERR "%s: Out of memory\n", dev->name); goto error; } /* * Make sure we DMA directly into nicely * aligned receive buffers */ skb_reserve(newskb, 2); addr = (void *)virt_to_bus(newskb->data); } set_aceaddr_bus(&newrxdesc->addr, addr); newrxdesc->size = size; newrxdesc->flags = oldrxdesc->flags; newrxdesc->idx = prdidx; newrxdesc->type = DESC_RX; #if (BITS_PER_LONG == 32) newrxdesc->addr.addrhi = 0; #endif oldrxdesc->size = 0; set_aceaddr_bus(&oldrxdesc->addr, 0); if (jumbo){ ap->rx_jumbo_skbuff[oldidx] = NULL; ap->rx_jumbo_skbuff[prdidx] = newskb; prdidx = (prdidx + 1) % RX_JUMBO_RING_ENTRIES; ap->rx_jumbo_skbprd = prdidx; }else{ ap->rx_std_skbuff[oldidx] = NULL; ap->rx_std_skbuff[prdidx] = newskb; prdidx = (prdidx + 1) % RX_STD_RING_ENTRIES; ap->rx_std_skbprd = prdidx; } /* * Fly baby, fly! */ csum = ap->rx_return_ring[idx].tcp_udp_csum; skb->dev = dev; skb->protocol = eth_type_trans(skb, dev); /* * If the checksum is correct and this is not a * fragment, tell the stack that the data is correct. */ if(!(csum ^ 0xffff) && (!(((struct iphdr *)skb->data)->frag_off & __constant_htons(IP_MF|IP_OFFSET)))) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb->ip_summed = CHECKSUM_NONE; netif_rx(skb); /* send it up */ ap->stats.rx_packets++; ap->stats.rx_bytes += skb->len; if ((prdidx & 0x7) == 0){ struct cmd cmd; if (jumbo) cmd.evt = C_SET_RX_JUMBO_PRD_IDX; else cmd.evt = C_SET_RX_PRD_IDX; cmd.code = 0; cmd.idx = prdidx; ace_issue_cmd(regs, &cmd); } idx = (idx + 1) % RX_RETURN_RING_ENTRIES; } out: /* * According to the documentation RxRetCsm is obsolete with * the 12.3.x Firmware - my Tigon I NIC's seem to disagree! */ writel(idx, ®s->RxRetCsm); ap->cur_rx = idx; return idx; error: idx = rxretprd; goto out; } static void ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs) { struct ace_private *ap; struct ace_regs *regs; struct device *dev = (struct device *)dev_id; u32 txcsm, rxretcsm, rxretprd; u32 evtcsm, evtprd; ap = (struct ace_private *)dev->priv; regs = ap->regs; spin_lock(&ap->lock); /* * In case of PCI shared interrupts or spurious interrupts, * we want to make sure it is actually our interrupt before * spending any time in here. */ if (!(readl(®s->HostCtrl) & IN_INT)){ spin_unlock(&ap->lock); return; } /* * Tell the card not to generate interrupts while we are in here. */ writel(1, ®s->Mb0Lo); /* * Service RX ints before TX */ rxretprd = ap->rx_ret_prd; rxretcsm = ap->cur_rx; if (rxretprd != rxretcsm) rxretprd = ace_rx_int(dev, rxretprd, rxretcsm); txcsm = ap->tx_csm; if (txcsm != ap->tx_ret_csm) { u32 idx = ap->tx_ret_csm; do { ap->stats.tx_packets++; ap->stats.tx_bytes += ap->tx_skbuff[idx]->len; dev_kfree_skb(ap->tx_skbuff[idx]); ap->tx_skbuff[idx] = NULL; #if (BITS_PER_LONG == 64) writel(0, &ap->tx_ring[idx].addr.addrhi); #endif writel(0, &ap->tx_ring[idx].addr.addrlo); writel(0, &ap->tx_ring[idx].flagsize); idx = (idx + 1) % TX_RING_ENTRIES; } while (idx != txcsm); if (ap->tx_full && dev->tbusy && (((ap->tx_prd + 1) % TX_RING_ENTRIES) != txcsm)){ ap->tx_full = 0; dev->tbusy = 0; mark_bh(NET_BH); /* * TX ring is no longer full, aka the * transmitter is working fine - kill timer. */ del_timer(&ap->timer); } ap->tx_ret_csm = txcsm; } evtcsm = readl(®s->EvtCsm); evtprd = ap->evt_prd; if (evtcsm != evtprd){ evtcsm = ace_handle_event(dev, evtcsm, evtprd); } writel(evtcsm, ®s->EvtCsm); writel(0, ®s->Mb0Lo); spin_unlock(&ap->lock); } static int ace_open(struct device *dev) { struct ace_private *ap; struct ace_regs *regs; struct cmd cmd; ap = dev->priv; regs = ap->regs; if (!(ap->fw_running)){ printk(KERN_WARNING "%s: firmware not running!\n", dev->name); return -EBUSY; } writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); cmd.evt = C_HOST_STATE; cmd.code = C_C_STACK_UP; cmd.idx = 0; ace_issue_cmd(regs, &cmd); if (ap->jumbo) ace_load_jumbo_rx_ring(dev); if (dev->flags & IFF_PROMISC){ cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 1; }else ap->promisc = 0; ap->mcast_all = 0; #if 0 { long myjif = jiffies + HZ; while (time_before(jiffies, myjif)); } cmd.evt = C_LNK_NEGOTIATION; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); #endif dev->tbusy = 0; dev->interrupt = 0; dev->start = 1; MOD_INC_USE_COUNT; /* * Setup the timer */ init_timer(&ap->timer); ap->timer.data = (unsigned long)dev; ap->timer.function = ace_timer; return 0; } static int ace_close(struct device *dev) { struct ace_private *ap; struct ace_regs *regs; struct cmd cmd; unsigned long flags; short i; dev->start = 0; set_bit(0, (void*)&dev->tbusy); ap = (struct ace_private *)dev->priv; regs = ap->regs; del_timer(&ap->timer); if (ap->promisc){ cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_DISABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 0; } cmd.evt = C_HOST_STATE; cmd.code = C_C_STACK_DOWN; cmd.idx = 0; ace_issue_cmd(regs, &cmd); spin_lock_irqsave(&ap->lock, flags); for (i = 0; i < TX_RING_ENTRIES; i++) { if (ap->tx_skbuff[i]) { writel(0, &ap->tx_ring[i].addr.addrhi); writel(0, &ap->tx_ring[i].addr.addrlo); writel(0, &ap->tx_ring[i].flagsize); dev_kfree_skb(ap->tx_skbuff[i]); } } if (ap->jumbo) ace_flush_jumbo_rx_ring(dev); spin_unlock_irqrestore(&ap->lock, flags); MOD_DEC_USE_COUNT; return 0; } static int ace_start_xmit(struct sk_buff *skb, struct device *dev) { struct ace_private *ap = (struct ace_private *)dev->priv; struct ace_regs *regs = ap->regs; unsigned long flags; unsigned long addr; u32 idx, flagsize; spin_lock_irqsave(&ap->lock, flags); idx = ap->tx_prd; ap->tx_skbuff[idx] = skb; addr = virt_to_bus(skb->data); #if (BITS_PER_LONG == 64) writel(addr >> 32, &ap->tx_ring[idx].addr.addrhi); #endif writel(addr & 0xffffffff, &ap->tx_ring[idx].addr.addrlo); flagsize = (skb->len << 16) | (DESC_END) ; writel(flagsize, &ap->tx_ring[idx].flagsize); mb(); idx = (idx + 1) % TX_RING_ENTRIES; ap->tx_prd = idx; writel(idx, ®s->TxPrd); if ((idx + 1) % TX_RING_ENTRIES == ap->tx_ret_csm){ ap->tx_full = 1; set_bit(0, (void*)&dev->tbusy); /* * Queue is full, add timer to detect whether the * transmitter is stuck. Use mod_timer as we can get * into the situation where we risk adding several * timers. */ mod_timer(&ap->timer, jiffies + (3 * HZ)); } spin_unlock_irqrestore(&ap->lock, flags); dev->trans_start = jiffies; return 0; } static int ace_change_mtu(struct device *dev, int new_mtu) { struct ace_private *ap = dev->priv; struct ace_regs *regs = ap->regs; if ((new_mtu < 68) || (new_mtu > ACE_JUMBO_MTU)) return -EINVAL; writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); dev->mtu = new_mtu; if (new_mtu > ACE_STD_MTU){ if (!(ap->jumbo)){ printk(KERN_INFO "%s: Enabling Jumbo frame " "support\n", dev->name); ap->jumbo = 1; ace_load_jumbo_rx_ring(dev); } ap->jumbo = 1; }else{ if (ap->jumbo){ ace_flush_jumbo_rx_ring(dev); printk(KERN_INFO "%s: Disabling Jumbo frame support\n", dev->name); } ap->jumbo = 0; } return 0; } /* * Set the hardware MAC address. */ static int ace_set_mac_addr(struct device *dev, void *p) { struct sockaddr *addr=p; struct ace_regs *regs; u16 *da; struct cmd cmd; if(dev->start) return -EBUSY; memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); da = (u16 *)dev->dev_addr; regs = ((struct ace_private *)dev->priv)->regs; writel(da[0], ®s->MacAddrHi); writel((da[1] << 16) | da[2], ®s->MacAddrLo); cmd.evt = C_SET_MAC_ADDR; cmd.code = 0; cmd.idx = 0; ace_issue_cmd(regs, &cmd); return 0; } static void ace_set_multicast_list(struct device *dev) { struct ace_private *ap = dev->priv; struct ace_regs *regs = ap->regs; struct cmd cmd; if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->mcast_all = 1; } else if (ap->mcast_all){ cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->mcast_all = 0; } if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 1; }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)){ cmd.evt = C_SET_PROMISC_MODE; cmd.code = C_C_PROMISC_DISABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); ap->promisc = 0; } /* * For the time being multicast relies on the upper layers * filtering it properly. The Firmware does not allow one to * set the entire multicast list at a time and keeping track of * it here is going to be messy. */ if ((dev->mc_count) && !(ap->mcast_all)) { cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_ENABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); }else if (!ap->mcast_all) { cmd.evt = C_SET_MULTICAST_MODE; cmd.code = C_C_MCAST_DISABLE; cmd.idx = 0; ace_issue_cmd(regs, &cmd); } } static struct net_device_stats *ace_get_stats(struct device *dev) { struct ace_private *ap = dev->priv; return(&ap->stats); } __initfunc(void ace_copy(struct ace_regs *regs, void *src, u32 dest, int size)) { unsigned long tdest; u32 *wsrc; short tsize, i; if (size <= 0) return; while (size > 0){ tsize = min(((~dest & (ACE_WINDOW_SIZE - 1)) + 1), min(size, ACE_WINDOW_SIZE)); tdest = (unsigned long)®s->Window + (dest & (ACE_WINDOW_SIZE - 1)); writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); #ifdef __BIG_ENDIAN #error "data must be swapped here" #else /* * XXX - special memcpy needed here!!! */ wsrc = src; for (i = 0; i < (tsize / 4); i++){ writel(wsrc[i], tdest + i*4); } #endif dest += tsize; src += tsize; size -= tsize; } return; } __initfunc(void ace_clear(struct ace_regs *regs, u32 dest, int size)) { unsigned long tdest; short tsize = 0, i; if (size <= 0) return; while (size > 0){ tsize = min(((~dest & (ACE_WINDOW_SIZE - 1)) + 1), min(size, ACE_WINDOW_SIZE)); tdest = (unsigned long)®s->Window + (dest & (ACE_WINDOW_SIZE - 1)); writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); for (i = 0; i < (tsize / 4); i++){ writel(0, tdest + i*4); } dest += tsize; size -= tsize; } return; } /* * Download the firmware into the SRAM on the NIC * * This operation requires the NIC to be halted and is performed with * interrupts disabled and with the spinlock hold. */ __initfunc(int ace_load_firmware(struct device *dev)) { struct ace_private *ap; struct ace_regs *regs; ap = (struct ace_private *)dev->priv; regs = ap->regs; if (!(readl(®s->CpuCtrl) & CPU_HALTED)){ printk(KERN_ERR "%s: trying to download firmware while the " "CPU is running!\n", dev->name); return -EFAULT; } /* * Do not try to clear more than 512KB or we end up seeing * funny things on NICs with only 512KB SRAM */ ace_clear(regs, 0x2000, 0x80000-0x2000); if (ap->version == 1){ ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen); ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen); ace_copy(regs, tigonFwRodata, tigonFwRodataAddr, tigonFwRodataLen); ace_clear(regs, tigonFwBssAddr, tigonFwBssLen); ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen); }else if (ap->version == 2){ ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen); ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen); ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen); ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr, tigon2FwRodataLen); ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen); } return 0; } /* * The eeprom on the AceNIC is an Atmel i2c EEPROM. * * Accessing the EEPROM is `interesting' to say the least - don't read * this code right after dinner. * * This is all about black magic and bit-banging the device .... I * wonder in what hospital they have put the guy who designed the i2c * specs. * * Oh yes, this is only the beginning! */ static void eeprom_start(struct ace_regs *regs) { u32 local = readl(®s->LocalCtrl); udelay(1); local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); mb(); udelay(1); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(1); local &= ~EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(1); local &= ~EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); } static void eeprom_prep(struct ace_regs *regs, u8 magic) { short i; u32 local; udelay(2); local = readl(®s->LocalCtrl); local &= ~EEPROM_DATA_OUT; local |= EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); mb(); for (i = 0; i < 8; i++, magic <<= 1) { udelay(2); if (magic & 0x80) local |= EEPROM_DATA_OUT; else local &= ~EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(1); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(1); local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); writel(local, ®s->LocalCtrl); mb(); } } static int eeprom_check_ack(struct ace_regs *regs) { int state; u32 local; local = readl(®s->LocalCtrl); local &= ~EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); mb(); udelay(2); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(1); /* sample data in middle of high clk */ state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; udelay(1); mb(); writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); mb(); return state; } static void eeprom_stop(struct ace_regs *regs) { u32 local; local = readl(®s->LocalCtrl); local |= EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); mb(); udelay(1); local &= ~EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(1); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(1); local |= EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); mb(); udelay(2); local &= ~EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); } /* * Read a whole byte from the EEPROM. */ static u8 read_eeprom_byte(struct ace_regs *regs, unsigned long offset) { u32 local; short i; u8 result = 0; if (!regs){ printk(KERN_ERR "No regs!\n"); return 0; } eeprom_start(regs); eeprom_prep(regs, EEPROM_WRITE_SELECT); if (eeprom_check_ack(regs)){ printk("Unable to sync eeprom\n"); return 0; } eeprom_prep(regs, (offset >> 8) & 0xff); if (eeprom_check_ack(regs)) return 0; eeprom_prep(regs, offset & 0xff); if (eeprom_check_ack(regs)) return 0; eeprom_start(regs); eeprom_prep(regs, EEPROM_READ_SELECT); if (eeprom_check_ack(regs)) return 0; for (i = 0; i < 8; i++) { local = readl(®s->LocalCtrl); local &= ~EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); udelay(2); mb(); local |= EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); udelay(1); mb(); /* sample data mid high clk */ result = (result << 1) | ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); udelay(1); mb(); local = readl(®s->LocalCtrl); local &= ~EEPROM_CLK_OUT; writel(local, ®s->LocalCtrl); mb(); if (i == 7){ local |= EEPROM_WRITE_ENABLE; writel(local, ®s->LocalCtrl); mb(); } } local |= EEPROM_DATA_OUT; writel(local, ®s->LocalCtrl); udelay(1); writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); udelay(2); writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); eeprom_stop(regs); return result; } /* * Local variables: * compile-command: "gcc -D__KERNEL__ -D__SMP__ -DMODULE -I/data/home/jes/linux/include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include /data/home/jes/linux/include/linux/modversions.h -c -o acenic.o acenic.c" * End: */