#ifndef _ACENIC_H_ #define _ACENIC_H_ /* * Addressing: * * The Tigon uses 64-bit host addresses, regardless of their actual * length, and it expects a big-endian format. For 32 bit systems the * upper 32 bits of the address are simply ignored (zero), however for * little endian 64 bit systems (Alpha) this looks strange with the * two parts of the address word being swapped. * * The addresses are split in two 32 bit words for all architectures * as some of them are in PCI shared memory and it is necessary to use * readl/writel to access them. * * The addressing code is derived from Pete Wyckoff's work, but * modified to deal properly with readl/writel usage. */ struct ace_regs { u32 pad0[16]; /* PCI control registers */ u32 HostCtrl; /* 0x40 */ u32 LocalCtrl; u32 pad1[2]; u32 MiscCfg; /* 0x50 */ u32 pad2[2]; u32 PciState; u32 pad3[2]; /* 0x60 */ u32 WinBase; u32 WinData; u32 pad4[12]; /* 0x70 */ u32 DmaWriteState; /* 0xa0 */ u32 pad5[3]; u32 DmaReadState; /* 0xb0 */ u32 pad6[26]; u32 AssistState; u32 pad7[8]; /* 0x120 */ u32 CpuCtrl; /* 0x140 */ u32 Pc; u32 pad8[3]; u32 SramAddr; /* 0x154 */ u32 SramData; u32 pad9[49]; u32 MacRxState; /* 0x220 */ u32 pad10[7]; u32 CpuBCtrl; /* 0x240 */ u32 PcB; u32 pad11[3]; u32 SramBAddr; /* 0x254 */ u32 SramBData; u32 pad12[105]; u32 pad13[32]; /* 0x400 */ u32 Stats[32]; u32 Mb0Hi; /* 0x500 */ u32 Mb0Lo; u32 Mb1Hi; u32 CmdPrd; u32 Mb2Hi; u32 TxPrd; u32 Mb3Hi; u32 RxStdPrd; /* RxStdPrd */ u32 Mb4Hi; u32 RxJumboPrd; /* RxJumboPrd */ u32 Mb5Hi; u32 RxMiniPrd; u32 Mb6Hi; u32 Mb6Lo; u32 Mb7Hi; u32 Mb7Lo; u32 Mb8Hi; u32 Mb8Lo; u32 Mb9Hi; u32 Mb9Lo; u32 MbAHi; u32 MbALo; u32 MbBHi; u32 MbBLo; u32 MbCHi; u32 MbCLo; u32 MbDHi; u32 MbDLo; u32 MbEHi; u32 MbELo; u32 MbFHi; u32 MbFLo; u32 pad14[32]; u32 MacAddrHi; /* 0x600 */ u32 MacAddrLo; u32 InfoPtrHi; u32 InfoPtrLo; u32 MultiCastHi; /* 0x610 */ u32 MultiCastLo; u32 ModeStat; u32 DmaReadCfg; u32 DmaWriteCfg; /* 0x620 */ u32 TxBufRat; u32 EvtCsm; u32 CmdCsm; u32 TuneRxCoalTicks;/* 0x630 */ u32 TuneTxCoalTicks; u32 TuneStatTicks; u32 TuneMaxTxDesc; u32 TuneMaxRxDesc; /* 0x640 */ u32 TuneTrace; u32 TuneLink; u32 TuneFastLink; u32 TracePtr; /* 0x650 */ u32 TraceStrt; u32 TraceLen; u32 IfIdx; u32 IfMtu; /* 0x660 */ u32 MaskInt; u32 GigLnkState; u32 FastLnkState; u32 pad16[4]; /* 0x670 */ u32 RxRetCsm; /* 0x680 */ u32 pad17[31]; u32 CmdRng[64]; /* 0x700 */ u32 Window[0x200]; }; typedef struct { u32 addrhi; u32 addrlo; } aceaddr; #define ACE_WINDOW_SIZE 0x800 #define ACE_JUMBO_MTU 9000 #define ACE_STD_MTU 1500 #define ACE_TRACE_SIZE 0x8000 /* * Host control register bits. */ #define IN_INT 0x01 #define CLR_INT 0x02 #define HW_RESET 0x08 #define BYTE_SWAP 0x10 #define WORD_SWAP 0x20 #define MASK_INTS 0x40 /* * Local control register bits. */ #define EEPROM_DATA_IN 0x800000 #define EEPROM_DATA_OUT 0x400000 #define EEPROM_WRITE_ENABLE 0x200000 #define EEPROM_CLK_OUT 0x100000 #define EEPROM_BASE 0xa0000000 #define EEPROM_WRITE_SELECT 0xa0 #define EEPROM_READ_SELECT 0xa1 #define SRAM_BANK_512K 0x200 /* * udelay() values for when clocking the eeprom */ #define ACE_SHORT_DELAY 1 #define ACE_LONG_DELAY 2 /* * Misc Config bits */ #define SYNC_SRAM_TIMING 0x100000 /* * CPU state bits. */ #define CPU_RESET 0x01 #define CPU_TRACE 0x02 #define CPU_PROM_FAILED 0x10 #define CPU_HALT 0x00010000 #define CPU_HALTED 0xffff0000 /* * PCI State bits. */ #define DMA_READ_MAX_4 0x04 #define DMA_READ_MAX_16 0x08 #define DMA_READ_MAX_32 0x0c #define DMA_READ_MAX_64 0x10 #define DMA_READ_MAX_128 0x14 #define DMA_READ_MAX_256 0x18 #define DMA_READ_MAX_1K 0x1c #define DMA_WRITE_MAX_4 0x20 #define DMA_WRITE_MAX_16 0x40 #define DMA_WRITE_MAX_32 0x60 #define DMA_WRITE_MAX_64 0x80 #define DMA_WRITE_MAX_128 0xa0 #define DMA_WRITE_MAX_256 0xc0 #define DMA_WRITE_MAX_1K 0xe0 #define DMA_READ_WRITE_MASK 0xfc #define MEM_READ_MULTIPLE 0x00020000 #define PCI_66MHZ 0x00080000 #define PCI_32BIT 0x00100000 #define DMA_WRITE_ALL_ALIGN 0x00800000 #define READ_CMD_MEM 0x06000000 #define WRITE_CMD_MEM 0x70000000 /* * Mode status */ #define ACE_BYTE_SWAP_BD 0x02 #define ACE_WORD_SWAP_BD 0x04 /* not actually used */ #define ACE_WARN 0x08 #define ACE_BYTE_SWAP_DMA 0x10 #define ACE_NO_JUMBO_FRAG 0x200 #define ACE_FATAL 0x40000000 /* * DMA config */ #define DMA_THRESH_8W 0x80 /* * Tuning parameters */ #define TICKS_PER_SEC 1000000 /* * Link bits */ #define LNK_PREF 0x00008000 #define LNK_10MB 0x00010000 #define LNK_100MB 0x00020000 #define LNK_1000MB 0x00040000 #define LNK_FULL_DUPLEX 0x00080000 #define LNK_HALF_DUPLEX 0x00100000 #define LNK_TX_FLOW_CTL_Y 0x00200000 #define LNK_NEG_ADVANCED 0x00400000 #define LNK_RX_FLOW_CTL_Y 0x00800000 #define LNK_NIC 0x01000000 #define LNK_JAM 0x02000000 #define LNK_JUMBO 0x04000000 #define LNK_ALTEON 0x08000000 #define LNK_NEG_FCTL 0x10000000 #define LNK_NEGOTIATE 0x20000000 #define LNK_ENABLE 0x40000000 #define LNK_UP 0x80000000 /* * Event definitions */ #define EVT_RING_ENTRIES 256 #define EVT_RING_SIZE (EVT_RING_ENTRIES * sizeof(struct event)) struct event { #ifdef __LITTLE_ENDIAN_BITFIELD u32 idx:12; u32 code:12; u32 evt:8; #else u32 evt:8; u32 code:12; u32 idx:12; #endif u32 pad; }; /* * Events */ #define E_FW_RUNNING 0x01 #define E_STATS_UPDATED 0x04 #define E_STATS_UPDATE 0x04 #define E_LNK_STATE 0x06 #define E_C_LINK_UP 0x01 #define E_C_LINK_DOWN 0x02 #define E_C_LINK_10_100 0x03 #define E_ERROR 0x07 #define E_C_ERR_INVAL_CMD 0x01 #define E_C_ERR_UNIMP_CMD 0x02 #define E_C_ERR_BAD_CFG 0x03 #define E_MCAST_LIST 0x08 #define E_C_MCAST_ADDR_ADD 0x01 #define E_C_MCAST_ADDR_DEL 0x02 #define E_RESET_JUMBO_RNG 0x09 /* * Commands */ #define CMD_RING_ENTRIES 64 struct cmd { #ifdef __LITTLE_ENDIAN_BITFIELD u32 idx:12; u32 code:12; u32 evt:8; #else u32 evt:8; u32 code:12; u32 idx:12; #endif }; #define C_HOST_STATE 0x01 #define C_C_STACK_UP 0x01 #define C_C_STACK_DOWN 0x02 #define C_FDR_FILTERING 0x02 #define C_C_FDR_FILT_ENABLE 0x01 #define C_C_FDR_FILT_DISABLE 0x02 #define C_SET_RX_PRD_IDX 0x03 #define C_UPDATE_STATS 0x04 #define C_RESET_JUMBO_RNG 0x05 #define C_ADD_MULTICAST_ADDR 0x08 #define C_DEL_MULTICAST_ADDR 0x09 #define C_SET_PROMISC_MODE 0x0a #define C_C_PROMISC_ENABLE 0x01 #define C_C_PROMISC_DISABLE 0x02 #define C_LNK_NEGOTIATION 0x0b #define C_C_NEGOTIATE_BOTH 0x00 #define C_C_NEGOTIATE_GIG 0x01 #define C_C_NEGOTIATE_10_100 0x02 #define C_SET_MAC_ADDR 0x0c #define C_CLEAR_PROFILE 0x0d #define C_SET_MULTICAST_MODE 0x0e #define C_C_MCAST_ENABLE 0x01 #define C_C_MCAST_DISABLE 0x02 #define C_CLEAR_STATS 0x0f #define C_SET_RX_JUMBO_PRD_IDX 0x10 #define C_REFRESH_STATS 0x11 /* * Descriptor flags */ #define BD_FLG_TCP_UDP_SUM 0x01 #define BD_FLG_IP_SUM 0x02 #define BD_FLG_END 0x04 #define BD_FLG_JUMBO 0x10 #define BD_FLG_MINI 0x1000 /* * Ring Control block flags */ #define RCB_FLG_TCP_UDP_SUM 0x01 #define RCB_FLG_IP_SUM 0x02 #define RCB_FLG_VLAN_ASSIST 0x10 #define RCB_FLG_COAL_INT_ONLY 0x20 #define RCB_FLG_IEEE_SNAP_SUM 0x80 #define RCB_FLG_EXT_RX_BD 0x100 #define RCB_FLG_RNG_DISABLE 0x200 /* * TX ring */ #define TX_RING_ENTRIES 128 #define TX_RING_SIZE (TX_RING_ENTRIES * sizeof(struct tx_desc)) #define TX_RING_BASE 0x3800 struct tx_desc{ aceaddr addr; u32 flagsize; #if 0 /* * This is in PCI shared mem and must be accessed with readl/writel * real layout is: */ #if __LITTLE_ENDIAN u16 flags; u16 size; u16 vlan; u16 reserved; #else u16 size; u16 flags; u16 reserved; u16 vlan; #endif #endif u32 vlanres; }; #define RX_STD_RING_ENTRIES 512 #define RX_STD_RING_SIZE (RX_STD_RING_ENTRIES * sizeof(struct rx_desc)) #define RX_JUMBO_RING_ENTRIES 256 #define RX_JUMBO_RING_SIZE (RX_JUMBO_RING_ENTRIES *sizeof(struct rx_desc)) #define RX_MINI_RING_ENTRIES 1024 #define RX_MINI_RING_SIZE (RX_MINI_RING_ENTRIES *sizeof(struct rx_desc)) #define RX_RETURN_RING_ENTRIES 2048 #define RX_RETURN_RING_SIZE (RX_MAX_RETURN_RING_ENTRIES * \ sizeof(struct rx_desc)) struct rx_desc{ aceaddr addr; #ifdef __LITTLE_ENDIAN u16 size; u16 idx; #else u16 idx; u16 size; #endif #ifdef __LITTLE_ENDIAN u16 flags; u16 type; #else u16 type; u16 flags; #endif #ifdef __LITTLE_ENDIAN u16 tcp_udp_csum; u16 ip_csum; #else u16 ip_csum; u16 tcp_udp_csum; #endif #ifdef __LITTLE_ENDIAN u16 vlan; u16 err_flags; #else u16 err_flags; u16 vlan; #endif u32 reserved; u32 opague; }; /* * This struct is shared with the NIC firmware. */ struct ring_ctrl { aceaddr rngptr; #ifdef __LITTLE_ENDIAN u16 flags; u16 max_len; #else u16 max_len; u16 flags; #endif u32 pad; }; struct ace_mac_stats { u32 excess_colls; u32 coll_1; u32 coll_2; u32 coll_3; u32 coll_4; u32 coll_5; u32 coll_6; u32 coll_7; u32 coll_8; u32 coll_9; u32 coll_10; u32 coll_11; u32 coll_12; u32 coll_13; u32 coll_14; u32 coll_15; u32 late_coll; u32 defers; u32 crc_err; u32 underrun; u32 crs_err; u32 pad[3]; u32 drop_ula; u32 drop_mc; u32 drop_fc; u32 drop_space; u32 coll; u32 kept_bc; u32 kept_mc; u32 kept_uc; }; struct ace_info { union { u32 stats[256]; } s; struct ring_ctrl evt_ctrl; struct ring_ctrl cmd_ctrl; struct ring_ctrl tx_ctrl; struct ring_ctrl rx_std_ctrl; struct ring_ctrl rx_jumbo_ctrl; struct ring_ctrl rx_mini_ctrl; struct ring_ctrl rx_return_ctrl; aceaddr evt_prd_ptr; aceaddr rx_ret_prd_ptr; aceaddr tx_csm_ptr; aceaddr stats2_ptr; }; struct ring_info { struct sk_buff *skb; dma_addr_t mapping; }; /* * struct ace_skb holding the rings of skb's. This is an awful lot of * pointers, but I don't see any other smart mode to do this in an * efficient manner ;-( */ struct ace_skb { struct ring_info tx_skbuff[TX_RING_ENTRIES]; struct ring_info rx_std_skbuff[RX_STD_RING_ENTRIES]; struct ring_info rx_mini_skbuff[RX_MINI_RING_ENTRIES]; struct ring_info rx_jumbo_skbuff[RX_JUMBO_RING_ENTRIES]; }; /* * Struct private for the AceNIC. * * Elements are grouped so variables used by the tx handling goes * together, and will go into the same cache lines etc. in order to * avoid cache line contention between the rx and tx handling on SMP. * * Frequently accessed variables are put at the beginning of the * struct to help the compiler generate better/shorter code. */ struct ace_private { struct ace_skb *skb; struct ace_regs *regs; /* register base */ volatile int fw_running; int version, fw_up, link; int promisc, mcast_all; /* * The send ring is located in the shared memory window */ struct ace_info *info; struct tx_desc *tx_ring; dma_addr_t info_dma; u32 tx_prd; volatile u32 tx_full, tx_ret_csm; struct timer_list timer; unsigned long std_refill_busy __attribute__ ((aligned (SMP_CACHE_BYTES))); unsigned long mini_refill_busy, jumbo_refill_busy; atomic_t cur_rx_bufs, cur_mini_bufs, cur_jumbo_bufs; u32 rx_std_skbprd, rx_mini_skbprd, rx_jumbo_skbprd; u32 cur_rx; struct tq_struct immediate; int bh_pending, jumbo; /* * These elements are allocated using consistent PCI dma memory. */ struct rx_desc *rx_std_ring; struct rx_desc *rx_jumbo_ring; struct rx_desc *rx_mini_ring; struct rx_desc *rx_return_ring; dma_addr_t rx_ring_base_dma; struct event *evt_ring; dma_addr_t evt_ring_dma; volatile u32 *evt_prd, *rx_ret_prd, *tx_csm; dma_addr_t evt_prd_dma, rx_ret_prd_dma, tx_csm_dma; unsigned char *trace_buf; struct pci_dev *pdev; struct net_device *next; int board_idx; u16 pci_command; u8 pci_latency; char name[48]; #ifdef INDEX_DEBUG spinlock_t debug_lock __attribute__ ((aligned (SMP_CACHE_BYTES)));; u32 last_tx, last_std_rx, last_mini_rx; #endif struct net_device_stats stats; }; static inline void set_aceaddr(aceaddr *aa, dma_addr_t addr) { unsigned long baddr = (unsigned long) addr; #if (BITS_PER_LONG == 64) aa->addrlo = baddr & 0xffffffff; aa->addrhi = baddr >> 32; #else /* Don't bother setting zero every time */ aa->addrlo = baddr; #endif mb(); } #if 0 static inline void *get_aceaddr(aceaddr *aa) { unsigned long addr; mb(); #if (BITS_PER_LONG == 64) addr = (u64)aa->addrhi << 32 | aa->addrlo; #else addr = aa->addrlo; #endif return (void *)addr; } #endif static inline void ace_set_txprd(struct ace_regs *regs, struct ace_private *ap, u32 value) { #ifdef INDEX_DEBUG unsigned long flags; spin_lock_irqsave(&ap->debug_lock, flags); writel(value, ®s->TxPrd); if (value == ap->last_tx) printk(KERN_ERR "AceNIC RACE ALERT! writing identical value " "to tx producer (%i)\n", value); ap->last_tx = value; spin_unlock_irqrestore(&ap->debug_lock, flags); #else writel(value, ®s->TxPrd); #endif wmb(); } /* * Prototypes */ static int ace_init(struct net_device *dev); static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs); static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs); static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs); static void ace_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int ace_load_firmware(struct net_device *dev); static int ace_open(struct net_device *dev); static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev); static int ace_close(struct net_device *dev); static void ace_timer(unsigned long data); static void ace_bh(struct net_device *dev); static void ace_dump_trace(struct ace_private *ap); static void ace_set_multicast_list(struct net_device *dev); static int ace_change_mtu(struct net_device *dev, int new_mtu); #ifdef SKB_RECYCLE extern int ace_recycle(struct sk_buff *skb); #endif static int ace_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd); static int ace_set_mac_addr(struct net_device *dev, void *p); static void ace_set_rxtx_parms(struct net_device *dev, int jumbo); static int ace_allocate_descriptors(struct net_device *dev); static void ace_free_descriptors(struct net_device *dev); static void ace_init_cleanup(struct net_device *dev); static struct net_device_stats *ace_get_stats(struct net_device *dev); static int read_eeprom_byte(struct net_device *dev, unsigned long offset); #endif /* _ACENIC_H_ */