/* de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500 ethernet driver for Linux. Copyright 1994, 1995 Digital Equipment Corporation. Testing resources for this driver have been made available in part by NASA Ames Research Center (mjacob@nas.nasa.gov). The author may be reached at davies@maniac.ultranet.com. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. Originally, this driver was written for the Digital Equipment Corporation series of EtherWORKS ethernet cards: DE425 TP/COAX EISA DE434 TP PCI DE435 TP/COAX/AUI PCI DE450 TP/COAX/AUI PCI DE500 10/100 PCI Fasternet but it will now attempt to support all cards which conform to the Digital Semiconductor SROM Specification. The driver currently recognises the following chips: DC21040 (no SROM) DC21041[A] DC21140[A] DC21142 DC21143 So far the driver is known to work with the following cards: KINGSTON Linksys ZNYX342 SMC8432 SMC9332 (w/new SROM) ZNYX31[45] ZNYX346 10/100 4 port (can act as a 10/100 bridge!) The driver has been tested on a relatively busy network using the DE425, DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred 16M of data to a DECstation 5000/200 as follows: TCP UDP TX RX TX RX DE425 1030k 997k 1170k 1128k DE434 1063k 995k 1170k 1125k DE435 1063k 995k 1170k 1125k DE500 1063k 998k 1170k 1125k in 10Mb/s mode All values are typical (in kBytes/sec) from a sample of 4 for each measurement. Their error is +/-20k on a quiet (private) network and also depend on what load the CPU has. ========================================================================= This driver has been written substantially from scratch, although its inheritance of style and stack interface from 'ewrk3.c' and in turn from Donald Becker's 'lance.c' should be obvious. With the module autoload of every usable DECchip board, I pinched Donald's 'next_module' field to link my modules together. Upto 15 EISA cards can be supported under this driver, limited primarily by the available IRQ lines. I have checked different configurations of multiple depca, EtherWORKS 3 cards and de4x5 cards and have not found a problem yet (provided you have at least depca.c v0.38) ... PCI support has been added to allow the driver to work with the DE434, DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due to the differences in the EISA and PCI CSR address offsets from the base address. The ability to load this driver as a loadable module has been included and used extensively during the driver development (to save those long reboot sequences). Loadable module support under PCI and EISA has been achieved by letting the driver autoprobe as if it were compiled into the kernel. Do make sure you're not sharing interrupts with anything that cannot accommodate interrupt sharing! To utilise this ability, you have to do 8 things: 0) have a copy of the loadable modules code installed on your system. 1) copy de4x5.c from the /linux/drivers/net directory to your favourite temporary directory. 2) for fixed autoprobes (not recommended), edit the source code near line 5594 to reflect the I/O address you're using, or assign these when loading by: insmod de4x5 io=0xghh where g = bus number hh = device number NB: autoprobing for modules is now supported by default. You may just use: insmod de4x5 to load all available boards. For a specific board, still use the 'io=?' above. 3) compile de4x5.c, but include -DMODULE in the command line to ensure that the correct bits are compiled (see end of source code). 4) if you are wanting to add a new card, goto 5. Otherwise, recompile a kernel with the de4x5 configuration turned off and reboot. 5) insmod de4x5 [io=0xghh] 6) run the net startup bits for your new eth?? interface(s) manually (usually /etc/rc.inet[12] at boot time). 7) enjoy! To unload a module, turn off the associated interface(s) 'ifconfig eth?? down' then 'rmmod de4x5'. Automedia detection is included so that in principal you can disconnect from, e.g. TP, reconnect to BNC and things will still work (after a pause whilst the driver figures out where its media went). My tests using ping showed that it appears to work.... By default, the driver will now autodetect any DECchip based card. Should you have a need to restrict the driver to DIGITAL only cards, you can compile with a DEC_ONLY define, or if loading as a module, use the 'dec_only=1' parameter. I've changed the timing routines to use the kernel timer and scheduling functions so that the hangs and other assorted problems that occurred while autosensing the media should be gone. A bonus for the DC21040 auto media sense algorithm is that it can now use one that is more in line with the rest (the DC21040 chip doesn't have a hardware timer). The downside is the 1 'jiffies' (10ms) resolution. IEEE 802.3u MII interface code has been added in anticipation that some products may use it in the future. The SMC9332 card has a non-compliant SROM which needs fixing - I have patched this driver to detect it because the SROM format used complies to a previous DEC-STD format. I have removed the buffer copies needed for receive on Intels. I cannot remove them for Alphas since the Tulip hardware only does longword aligned DMA transfers and the Alphas get alignment traps with non longword aligned data copies (which makes them really slow). No comment. I have added SROM decoding routines to make this driver work with any card that supports the Digital Semiconductor SROM spec. This will help all cards running the dc2114x series chips in particular. Cards using the dc2104x chips should run correctly with the basic driver. I'm in debt to for the testing and feedback that helped get this feature working. So far we have tested KINGSTON, SMC8432, SMC9332 (with the latest SROM complying with the SROM spec V3: their first was broken), ZNYX342 and LinkSys. ZYNX314 (dual 21041 MAC) and ZNYX 315 (quad 21041 MAC) cards also appear to work despite their incorrectly wired IRQs. I have added a temporary fix for interrupt problems when some SCSI cards share the same interrupt as the DECchip based cards. The problem occurs because the SCSI card wants to grab the interrupt as a fast interrupt (runs the service routine with interrupts turned off) vs. this card which really needs to run the service routine with interrupts turned on. This driver will now add the interrupt service routine as a fast interrupt if it is bounced from the slow interrupt. THIS IS NOT A RECOMMENDED WAY TO RUN THE DRIVER and has been done for a limited time until people sort out their compatibility issues and the kernel interrupt service code is fixed. YOU SHOULD SEPARATE OUT THE FAST INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not run on the same interrupt. PCMCIA/CardBus is another can of worms... Finally, I think I have really fixed the module loading problem with more than one DECchip based card. As a side effect, I don't mess with the device structure any more which means that if more than 1 card in 2.0.x is installed (4 in 2.1.x), the user will have to edit linux/drivers/net/Space.c to make room for them. Hence, module loading is the preferred way to use this driver, since it doesn't have this limitation. Where SROM media detection is used and full duplex is specified in the SROM, the feature is ignored unless lp->params.fdx is set at compile time OR during a module load (insmod de4x5 args='eth??:fdx' [see below]). This is because there is no way to automatically detect full duplex links except through autonegotiation. When I include the autonegotiation feature in the SROM autoconf code, this detection will occur automatically for that case. Command line arguments are now allowed, similar to passing arguments through LILO. This will allow a per adapter board set up of full duplex and media. The only lexical constraints are: the board name (dev->name) appears in the list before its parameters. The list of parameters ends either at the end of the parameter list or with another board name. The following parameters are allowed: fdx for full duplex autosense to set the media/speed; with the following sub-parameters: TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO Case sensitivity is important for the sub-parameters. They *must* be upper case. Examples: insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'. For a compiled in driver, at or above line 526, place e.g. #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP" Yes, I know full duplex isn't permissible on BNC or AUI; they're just examples. By default, full duplex is turned off and AUTO is the default autosense setting. In reality, I expect only the full duplex option to be used. Note the use of single quotes in the two examples above and the lack of commas to separate items. TO DO: ------ o check what revision numbers the 21142 and 21143 have o Revision History ---------------- Version Date Description 0.1 17-Nov-94 Initial writing. ALPHA code release. 0.2 13-Jan-95 Added PCI support for DE435's. 0.21 19-Jan-95 Added auto media detection. 0.22 10-Feb-95 Fix interrupt handler call . Fix recognition bug reported by . Add request/release_region code. Add loadable modules support for PCI. Clean up loadable modules support. 0.23 28-Feb-95 Added DC21041 and DC21140 support. Fix missed frame counter value and initialisation. Fixed EISA probe. 0.24 11-Apr-95 Change delay routine to use . Change TX_BUFFS_AVAIL macro. Change media autodetection to allow manual setting. Completed DE500 (DC21140) support. 0.241 18-Apr-95 Interim release without DE500 Autosense Algorithm. 0.242 10-May-95 Minor changes. 0.30 12-Jun-95 Timer fix for DC21140. Portability changes. Add ALPHA changes from . Add DE500 semi automatic autosense. Add Link Fail interrupt TP failure detection. Add timer based link change detection. Plugged a memory leak in de4x5_queue_pkt(). 0.31 13-Jun-95 Fixed PCI stuff for 1.3.1. 0.32 26-Jun-95 Added verify_area() calls in de4x5_ioctl() from a suggestion by . 0.33 8-Aug-95 Add shared interrupt support (not released yet). 0.331 21-Aug-95 Fix de4x5_open() with fast CPUs. Fix de4x5_interrupt(). Fix dc21140_autoconf() mess. No shared interrupt support. 0.332 11-Sep-95 Added MII management interface routines. 0.40 5-Mar-96 Fix setup frame timeout . Add kernel timer code (h/w is too flaky). Add MII based PHY autosense. Add new multicasting code. Add new autosense algorithms for media/mode selection using kernel scheduling/timing. Re-formatted. Made changes suggested by : Change driver to detect all DECchip based cards with DEC_ONLY restriction a special case. Changed driver to autoprobe as a module. No irq checking is done now - assume BIOS is good! Added SMC9332 detection 0.41 21-Mar-96 Don't check for get_hw_addr checksum unless DEC card only Fix for multiple PCI cards reported by Duh, put the SA_SHIRQ flag into request_interrupt(). Fix SMC ethernet address in enet_det[]. Print chip name instead of "UNKNOWN" during boot. 0.42 26-Apr-96 Fix MII write TA bit error. Fix bug in dc21040 and dc21041 autosense code. Remove buffer copies on receive for Intels. Change sk_buff handling during media disconnects to eliminate DUP packets. Add dynamic TX thresholding. Change all chips to use perfect multicast filtering. Fix alloc_device() bug 0.43 21-Jun-96 Fix unconnected media TX retry bug. Add Accton to the list of broken cards. Fix TX under-run bug for non DC21140 chips. Fix boot command probe bug in alloc_device() as reported by and . Add cache locks to prevent a race condition as reported by and . Upgraded alloc_device() code. 0.431 28-Jun-96 Fix potential bug in queue_pkt() from discussion with 0.44 13-Aug-96 Fix RX overflow bug in 2114[023] chips. Fix EISA probe bugs reported by and . 0.441 9-Sep-96 Change dc21041_autoconf() to probe quiet BNC media with a loopback packet. 0.442 9-Sep-96 Include AUI in dc21041 media printout. Bug reported by 0.45 8-Dec-96 Include endian functions for PPC use, from work by and . 0.451 28-Dec-96 Added fix to allow autoprobe for modules after suggestion from . 0.5 30-Jan-97 Added SROM decoding functions. Updated debug flags. Fix sleep/wakeup calls for PCI cards, bug reported by . Added multi-MAC, one SROM feature from discussion with . Added full module autoprobe capability. Added attempt to use an SMC9332 with broken SROM. Added fix for ZYNX multi-mac cards that didn't get their IRQs wired correctly. 0.51 13-Feb-97 Added endian fixes for the SROM accesses from Fix init_connection() to remove extra device reset. Fix MAC/PHY reset ordering in dc21140m_autoconf(). Fix initialisation problem with lp->timeout in typeX_infoblock() from . Fix MII PHY reset problem from work done by . 0.52 26-Apr-97 Some changes may not credit the right people - a disk crash meant I lost some mail. Change RX interrupt routine to drop rather than defer packets to avoid hang reported by . Fix srom_exec() to return for COMPACT and type 1 infoblocks. Added DC21142 and DC21143 functions. Added byte counters from Added SA_INTERRUPT temporary fix from . 0.53 12-Nov-97 Fix the *_probe() to include 'eth??' name during module load: bug reported by Fix multi-MAC, one SROM, to work with 2114x chips: bug reported by . Make above search independent of BIOS device scan direction. Completed DC2114[23] autosense functions. 0.531 21-Dec-97 Fix DE500-XA 100Mb/s bug reported by and . Added argument list to set up each board from either a module's command line or a compiled in #define. Added generic MII PHY functionality to deal with newer PHY chips. Fix the mess in 2.1.67. 0.532 5-Jan-98 Fix bug in mii_get_phy() reported by . Fix bug in pci_probe() for 64 bit systems reported by . 0.533 9-Jan-98 Fix more 64 bit bugs reported by . 0.534 24-Jan-98 Fix last (?) endian bug from 0.535 21-Feb-98 Fix Ethernet Address PROM reset bug for DC21040. 0.536 21-Mar-98 Change pci_probe() to use the pci_dev structure. **Incompatible with 2.0.x from here.** ========================================================================= */ static const char *version = "de4x5.c:V0.536 1998/3/5 davies@maniac.ultranet.com\n"; #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "de4x5.h" #define c_char const char #define TWIDDLE(a) (u_short)le16_to_cpu(get_unaligned((u_short *)(a))) /* ** MII Information */ struct phy_table { int reset; /* Hard reset required? */ int id; /* IEEE OUI */ int ta; /* One cycle TA time - 802.3u is confusing here */ struct { /* Non autonegotiation (parallel) speed det. */ int reg; int mask; int value; } spd; }; struct mii_phy { int reset; /* Hard reset required? */ int id; /* IEEE OUI */ int ta; /* One cycle TA time */ struct { /* Non autonegotiation (parallel) speed det. */ int reg; int mask; int value; } spd; int addr; /* MII address for the PHY */ u_char *gep; /* Start of GEP sequence block in SROM */ u_char *rst; /* Start of reset sequence in SROM */ u_int mc; /* Media Capabilities */ u_int ana; /* NWay Advertisement */ u_int fdx; /* Full DupleX capabilites for each media */ u_int ttm; /* Transmit Threshold Mode for each media */ u_int mci; /* 21142 MII Connector Interrupt info */ }; #define DE4X5_MAX_PHY 8 /* Allow upto 8 attached PHY devices per board */ struct sia_phy { u_char mc; /* Media Code */ u_char ext; /* csr13-15 valid when set */ int csr13; /* SIA Connectivity Register */ int csr14; /* SIA TX/RX Register */ int csr15; /* SIA General Register */ int gepc; /* SIA GEP Control Information */ int gep; /* SIA GEP Data */ }; /* ** Define the know universe of PHY devices that can be ** recognised by this driver. */ static struct phy_table phy_info[] = { {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}}, /* National TX */ {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}}, /* Broadcom T4 */ {0, SEEQ_T4 , 1, {0x12, 0x10, 0x10}}, /* SEEQ T4 */ {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}}, /* Cypress T4 */ {0, 0x7810 , 1, {0x05, 0x0380, 0x0380}} /* Level One? */ }; /* ** These GENERIC values assumes that the PHY devices follow 802.3u and ** allow parallel detection to set the link partner ability register. ** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported. */ #define GENERIC_REG 0x05 /* Autoneg. Link Partner Advertisement Reg. */ #define GENERIC_MASK MII_ANLPA_100M /* All 100Mb/s Technologies */ #define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4 */ /* ** Define special SROM detection cases */ static c_char enet_det[][ETH_ALEN] = { {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00}, {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00} }; #define SMC 1 #define ACCTON 2 /* ** SROM Repair definitions. If a broken SROM is detected a card may ** use this information to help figure out what to do. This is a ** "stab in the dark" and so far for SMC9332's only. */ static c_char srom_repair_info[][100] = { {0x00,0x1e,0x00,0x00,0x00,0x08, /* SMC9332 */ 0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02, 0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50, 0x00,0x18,} }; #ifdef DE4X5_DEBUG static int de4x5_debug = DE4X5_DEBUG; #else /*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/ static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION); #endif /* ** Allow per adapter set up. For modules this is simply a command line ** parameter, e.g.: ** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'. ** ** For a compiled in driver, place e.g. ** #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP" ** here */ #ifdef DE4X5_PARM static char *args = DE4X5_PARM; #else static char *args = NULL; #endif struct parameters { int fdx; int autosense; }; #define DE4X5_AUTOSENSE_MS 250 /* msec autosense tick (DE500) */ #define DE4X5_NDA 0xffe0 /* No Device (I/O) Address */ /* ** Ethernet PROM defines */ #define PROBE_LENGTH 32 #define ETH_PROM_SIG 0xAA5500FFUL /* ** Ethernet Info */ #define PKT_BUF_SZ 1536 /* Buffer size for each Tx/Rx buffer */ #define IEEE802_3_SZ 1518 /* Packet + CRC */ #define MAX_PKT_SZ 1514 /* Maximum ethernet packet length */ #define MAX_DAT_SZ 1500 /* Maximum ethernet data length */ #define MIN_DAT_SZ 1 /* Minimum ethernet data length */ #define PKT_HDR_LEN 14 /* Addresses and data length info */ #define FAKE_FRAME_LEN (MAX_PKT_SZ + 1) #define QUEUE_PKT_TIMEOUT (3*HZ) /* 3 second timeout */ #define CRC_POLYNOMIAL_BE 0x04c11db7UL /* Ethernet CRC, big endian */ #define CRC_POLYNOMIAL_LE 0xedb88320UL /* Ethernet CRC, little endian */ /* ** EISA bus defines */ #define DE4X5_EISA_IO_PORTS 0x0c00 /* I/O port base address, slot 0 */ #define DE4X5_EISA_TOTAL_SIZE 0x100 /* I/O address extent */ #define MAX_EISA_SLOTS 16 #define EISA_SLOT_INC 0x1000 #define EISA_ALLOWED_IRQ_LIST {5, 9, 10, 11} #define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"} #define DE4X5_NAME_LENGTH 8 /* ** Ethernet PROM defines for DC21040 */ #define PROBE_LENGTH 32 #define ETH_PROM_SIG 0xAA5500FFUL /* ** PCI Bus defines */ #define PCI_MAX_BUS_NUM 8 #define DE4X5_PCI_TOTAL_SIZE 0x80 /* I/O address extent */ #define DE4X5_CLASS_CODE 0x00020000 /* Network controller, Ethernet */ #define NO_MORE_PCI -2 /* PCI bus search all done */ /* ** Memory Alignment. Each descriptor is 4 longwords long. To force a ** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and ** DESC_ALIGN. ALIGN aligns the start address of the private memory area ** and hence the RX descriptor ring's first entry. */ #define ALIGN4 ((u_long)4 - 1) /* 1 longword align */ #define ALIGN8 ((u_long)8 - 1) /* 2 longword align */ #define ALIGN16 ((u_long)16 - 1) /* 4 longword align */ #define ALIGN32 ((u_long)32 - 1) /* 8 longword align */ #define ALIGN64 ((u_long)64 - 1) /* 16 longword align */ #define ALIGN128 ((u_long)128 - 1) /* 32 longword align */ #define ALIGN ALIGN32 /* Keep the DC21040 happy... */ #define CACHE_ALIGN CAL_16LONG #define DESC_SKIP_LEN DSL_0 /* Must agree with DESC_ALIGN */ /*#define DESC_ALIGN u32 dummy[4]; / * Must agree with DESC_SKIP_LEN */ #define DESC_ALIGN #ifndef DEC_ONLY /* See README.de4x5 for using this */ static int dec_only = 0; #else static int dec_only = 1; #endif /* ** DE4X5 IRQ ENABLE/DISABLE */ #define ENABLE_IRQs { \ imr |= lp->irq_en;\ outl(imr, DE4X5_IMR); /* Enable the IRQs */\ } #define DISABLE_IRQs {\ imr = inl(DE4X5_IMR);\ imr &= ~lp->irq_en;\ outl(imr, DE4X5_IMR); /* Disable the IRQs */\ } #define UNMASK_IRQs {\ imr |= lp->irq_mask;\ outl(imr, DE4X5_IMR); /* Unmask the IRQs */\ } #define MASK_IRQs {\ imr = inl(DE4X5_IMR);\ imr &= ~lp->irq_mask;\ outl(imr, DE4X5_IMR); /* Mask the IRQs */\ } /* ** DE4X5 START/STOP */ #define START_DE4X5 {\ omr = inl(DE4X5_OMR);\ omr |= OMR_ST | OMR_SR;\ outl(omr, DE4X5_OMR); /* Enable the TX and/or RX */\ } #define STOP_DE4X5 {\ omr = inl(DE4X5_OMR);\ omr &= ~(OMR_ST|OMR_SR);\ outl(omr, DE4X5_OMR); /* Disable the TX and/or RX */ \ } /* ** DE4X5 SIA RESET */ #define RESET_SIA outl(0, DE4X5_SICR); /* Reset SIA connectivity regs */ /* ** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS) */ #define DE4X5_AUTOSENSE_MS 250 /* ** SROM Structure */ struct de4x5_srom { char sub_vendor_id[2]; char sub_system_id[2]; char reserved[12]; char id_block_crc; char reserved2; char version; char num_controllers; char ieee_addr[6]; char info[100]; short chksum; }; #define SUB_VENDOR_ID 0x500a /* ** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous ** and have sizes of both a power of 2 and a multiple of 4. ** A size of 256 bytes for each buffer could be chosen because over 90% of ** all packets in our network are <256 bytes long and 64 longword alignment ** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX ** descriptors are needed for machines with an ALPHA CPU. */ #define NUM_RX_DESC 8 /* Number of RX descriptors */ #define NUM_TX_DESC 32 /* Number of TX descriptors */ #define RX_BUFF_SZ 1536 /* Power of 2 for kmalloc and */ /* Multiple of 4 for DC21040 */ /* Allows 512 byte alignment */ struct de4x5_desc { volatile s32 status; u32 des1; u32 buf; u32 next; DESC_ALIGN }; /* ** The DE4X5 private structure */ #define DE4X5_PKT_STAT_SZ 16 #define DE4X5_PKT_BIN_SZ 128 /* Should be >=100 unless you increase DE4X5_PKT_STAT_SZ */ struct de4x5_private { char adapter_name[80]; /* Adapter name */ struct de4x5_desc rx_ring[NUM_RX_DESC]; /* RX descriptor ring */ struct de4x5_desc tx_ring[NUM_TX_DESC]; /* TX descriptor ring */ struct sk_buff *tx_skb[NUM_TX_DESC]; /* TX skb for freeing when sent */ struct sk_buff *rx_skb[NUM_RX_DESC]; /* RX skb's */ int rx_new, rx_old; /* RX descriptor ring pointers */ int tx_new, tx_old; /* TX descriptor ring pointers */ char setup_frame[SETUP_FRAME_LEN]; /* Holds MCA and PA info. */ char frame[64]; /* Min sized packet for loopback*/ struct net_device_stats stats; /* Public stats */ struct { u_int bins[DE4X5_PKT_STAT_SZ]; /* Private stats counters */ u_int unicast; u_int multicast; u_int broadcast; u_int excessive_collisions; u_int tx_underruns; u_int excessive_underruns; u_int rx_runt_frames; u_int rx_collision; u_int rx_dribble; u_int rx_overflow; } pktStats; char rxRingSize; char txRingSize; int bus; /* EISA or PCI */ int bus_num; /* PCI Bus number */ int device; /* Device number on PCI bus */ int state; /* Adapter OPENED or CLOSED */ int chipset; /* DC21040, DC21041 or DC21140 */ s32 irq_mask; /* Interrupt Mask (Enable) bits */ s32 irq_en; /* Summary interrupt bits */ int media; /* Media (eg TP), mode (eg 100B)*/ int c_media; /* Remember the last media conn */ int fdx; /* media full duplex flag */ int linkOK; /* Link is OK */ int autosense; /* Allow/disallow autosensing */ int tx_enable; /* Enable descriptor polling */ int setup_f; /* Setup frame filtering type */ int local_state; /* State within a 'media' state */ struct mii_phy phy[DE4X5_MAX_PHY]; /* List of attached PHY devices */ struct sia_phy sia; /* SIA PHY Information */ int active; /* Index to active PHY device */ int mii_cnt; /* Number of attached PHY's */ int timeout; /* Scheduling counter */ struct timer_list timer; /* Timer info for kernel */ int tmp; /* Temporary global per card */ struct { void *priv; /* Original kmalloc'd mem addr */ void *buf; /* Original kmalloc'd mem addr */ u_long lock; /* Lock the cache accesses */ s32 csr0; /* Saved Bus Mode Register */ s32 csr6; /* Saved Operating Mode Reg. */ s32 csr7; /* Saved IRQ Mask Register */ s32 gep; /* Saved General Purpose Reg. */ s32 gepc; /* Control info for GEP */ s32 csr13; /* Saved SIA Connectivity Reg. */ s32 csr14; /* Saved SIA TX/RX Register */ s32 csr15; /* Saved SIA General Register */ int save_cnt; /* Flag if state already saved */ struct sk_buff *skb; /* Save the (re-ordered) skb's */ } cache; struct de4x5_srom srom; /* A copy of the SROM */ struct device *next_module; /* Link to the next module */ int rx_ovf; /* Check for 'RX overflow' tag */ int useSROM; /* For non-DEC card use SROM */ int useMII; /* Infoblock using the MII */ int asBitValid; /* Autosense bits in GEP? */ int asPolarity; /* 0 => asserted high */ int asBit; /* Autosense bit number in GEP */ int defMedium; /* SROM default medium */ int tcount; /* Last infoblock number */ int infoblock_init; /* Initialised this infoblock? */ int infoleaf_offset; /* SROM infoleaf for controller */ s32 infoblock_csr6; /* csr6 value in SROM infoblock */ int infoblock_media; /* infoblock media */ int (*infoleaf_fn)(struct device *); /* Pointer to infoleaf function */ u_char *rst; /* Pointer to Type 5 reset info */ u_char ibn; /* Infoblock number */ struct parameters params; /* Command line/ #defined params */ }; /* ** Kludge to get around the fact that the CSR addresses have different ** offsets in the PCI and EISA boards. Also note that the ethernet address ** PROM is accessed differently. */ static struct bus_type { int bus; int bus_num; int device; int chipset; struct de4x5_srom srom; int autosense; int useSROM; } bus; /* ** To get around certain poxy cards that don't provide an SROM ** for the second and more DECchip, I have to key off the first ** chip's address. I'll assume there's not a bad SROM iff: ** ** o the chipset is the same ** o the bus number is the same and > 0 ** o the sum of all the returned hw address bytes is 0 or 0x5fa ** ** Also have to save the irq for those cards whose hardware designers ** can't follow the PCI to PCI Bridge Architecture spec. */ static struct { int chipset; int bus; int irq; u_char addr[ETH_ALEN]; } last = {0,}; /* ** The transmit ring full condition is described by the tx_old and tx_new ** pointers by: ** tx_old = tx_new Empty ring ** tx_old = tx_new+1 Full ring ** tx_old+txRingSize = tx_new+1 Full ring (wrapped condition) */ #define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\ lp->tx_old+lp->txRingSize-lp->tx_new-1:\ lp->tx_old -lp->tx_new-1) #define TX_PKT_PENDING (lp->tx_old != lp->tx_new) /* ** Public Functions */ static int de4x5_open(struct device *dev); static int de4x5_queue_pkt(struct sk_buff *skb, struct device *dev); static void de4x5_interrupt(int irq, void *dev_id, struct pt_regs *regs); static int de4x5_close(struct device *dev); static struct net_device_stats *de4x5_get_stats(struct device *dev); static void de4x5_local_stats(struct device *dev, char *buf, int pkt_len); static void set_multicast_list(struct device *dev); static int de4x5_ioctl(struct device *dev, struct ifreq *rq, int cmd); /* ** Private functions */ static int de4x5_hw_init(struct device *dev, u_long iobase); static int de4x5_init(struct device *dev); static int de4x5_sw_reset(struct device *dev); static int de4x5_rx(struct device *dev); static int de4x5_tx(struct device *dev); static int de4x5_ast(struct device *dev); static int de4x5_txur(struct device *dev); static int de4x5_rx_ovfc(struct device *dev); static int autoconf_media(struct device *dev); static void create_packet(struct device *dev, char *frame, int len); static void de4x5_us_delay(u32 usec); static void de4x5_ms_delay(u32 msec); static void load_packet(struct device *dev, char *buf, u32 flags, struct sk_buff *skb); static int dc21040_autoconf(struct device *dev); static int dc21041_autoconf(struct device *dev); static int dc21140m_autoconf(struct device *dev); static int dc2114x_autoconf(struct device *dev); static int srom_autoconf(struct device *dev); static int de4x5_suspect_state(struct device *dev, int timeout, int prev_state, int (*fn)(struct device *, int), int (*asfn)(struct device *)); static int dc21040_state(struct device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct device *, int)); static int test_media(struct device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec); static int test_for_100Mb(struct device *dev, int msec); static int wait_for_link(struct device *dev); static int test_mii_reg(struct device *dev, int reg, int mask, int pol, long msec); static int is_spd_100(struct device *dev); static int is_100_up(struct device *dev); static int is_10_up(struct device *dev); static int is_anc_capable(struct device *dev); static int ping_media(struct device *dev, int msec); static struct sk_buff *de4x5_alloc_rx_buff(struct device *dev, int index, int len); static void de4x5_free_rx_buffs(struct device *dev); static void de4x5_free_tx_buffs(struct device *dev); static void de4x5_save_skbs(struct device *dev); static void de4x5_rst_desc_ring(struct device *dev); static void de4x5_cache_state(struct device *dev, int flag); static void de4x5_put_cache(struct device *dev, struct sk_buff *skb); static void de4x5_putb_cache(struct device *dev, struct sk_buff *skb); static struct sk_buff *de4x5_get_cache(struct device *dev); static void de4x5_setup_intr(struct device *dev); static void de4x5_init_connection(struct device *dev); static int de4x5_reset_phy(struct device *dev); static void reset_init_sia(struct device *dev, s32 sicr, s32 strr, s32 sigr); static int test_ans(struct device *dev, s32 irqs, s32 irq_mask, s32 msec); static int test_tp(struct device *dev, s32 msec); static int EISA_signature(char *name, s32 eisa_id); static int PCI_signature(char *name, struct bus_type *lp); static void DevicePresent(u_long iobase); static void enet_addr_rst(u_long aprom_addr); static int de4x5_bad_srom(struct bus_type *lp); static short srom_rd(u_long address, u_char offset); static void srom_latch(u_int command, u_long address); static void srom_command(u_int command, u_long address); static void srom_address(u_int command, u_long address, u_char offset); static short srom_data(u_int command, u_long address); /*static void srom_busy(u_int command, u_long address);*/ static void sendto_srom(u_int command, u_long addr); static int getfrom_srom(u_long addr); static int srom_map_media(struct device *dev); static int srom_infoleaf_info(struct device *dev); static void srom_init(struct device *dev); static void srom_exec(struct device *dev, u_char *p); static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr); static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr); static int mii_rdata(u_long ioaddr); static void mii_wdata(int data, int len, u_long ioaddr); static void mii_ta(u_long rw, u_long ioaddr); static int mii_swap(int data, int len); static void mii_address(u_char addr, u_long ioaddr); static void sendto_mii(u32 command, int data, u_long ioaddr); static int getfrom_mii(u32 command, u_long ioaddr); static int mii_get_oui(u_char phyaddr, u_long ioaddr); static int mii_get_phy(struct device *dev); static void SetMulticastFilter(struct device *dev); static int get_hw_addr(struct device *dev); static void srom_repair(struct device *dev, int card); static int test_bad_enet(struct device *dev, int status); #ifndef __sparc_v9__ static void eisa_probe(struct device *dev, u_long iobase); #endif static void pci_probe(struct device *dev, u_long iobase); static void srom_search(int index); static char *build_setup_frame(struct device *dev, int mode); static void disable_ast(struct device *dev); static void enable_ast(struct device *dev, u32 time_out); static long de4x5_switch_mac_port(struct device *dev); static int gep_rd(struct device *dev); static void gep_wr(s32 data, struct device *dev); static void timeout(struct device *dev, void (*fn)(u_long data), u_long data, u_long msec); static void yawn(struct device *dev, int state); static void link_modules(struct device *dev, struct device *tmp); static void de4x5_parse_params(struct device *dev); static void de4x5_dbg_open(struct device *dev); static void de4x5_dbg_mii(struct device *dev, int k); static void de4x5_dbg_media(struct device *dev); static void de4x5_dbg_srom(struct de4x5_srom *p); static void de4x5_dbg_rx(struct sk_buff *skb, int len); static int de4x5_strncmp(char *a, char *b, int n); static int dc21041_infoleaf(struct device *dev); static int dc21140_infoleaf(struct device *dev); static int dc21142_infoleaf(struct device *dev); static int dc21143_infoleaf(struct device *dev); static int type0_infoblock(struct device *dev, u_char count, u_char *p); static int type1_infoblock(struct device *dev, u_char count, u_char *p); static int type2_infoblock(struct device *dev, u_char count, u_char *p); static int type3_infoblock(struct device *dev, u_char count, u_char *p); static int type4_infoblock(struct device *dev, u_char count, u_char *p); static int type5_infoblock(struct device *dev, u_char count, u_char *p); static int compact_infoblock(struct device *dev, u_char count, u_char *p); #ifdef MODULE int init_module(void); void cleanup_module(void); static struct device *unlink_modules(struct device *p); static struct device *insert_device(struct device *dev, u_long iobase, int (*init)(struct device *)); static int count_adapters(void); static int loading_module = 1; MODULE_PARM(de4x5_debug, "i"); MODULE_PARM(dec_only, "i"); MODULE_PARM(args, "s"); # else static int loading_module = 0; #endif /* MODULE */ static char name[DE4X5_NAME_LENGTH + 1]; #ifndef __sparc_v9__ static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST; #endif static int num_de4x5s = 0; static int cfrv = 0, useSROM = 0; static int lastEISA = 0, lastPCI = -1; static struct device *lastModule = NULL; /* ** List the SROM infoleaf functions and chipsets */ struct InfoLeaf { int chipset; int (*fn)(struct device *); }; static struct InfoLeaf infoleaf_array[] = { {DC21041, dc21041_infoleaf}, {DC21140, dc21140_infoleaf}, {DC21142, dc21142_infoleaf}, {DC21143, dc21143_infoleaf} }; #define INFOLEAF_SIZE (sizeof(infoleaf_array)/(sizeof(int)+sizeof(int *))) /* ** List the SROM info block functions */ static int (*dc_infoblock[])(struct device *dev, u_char, u_char *) = { type0_infoblock, type1_infoblock, type2_infoblock, type3_infoblock, type4_infoblock, type5_infoblock, compact_infoblock }; #define COMPACT (sizeof(dc_infoblock)/sizeof(int *) - 1) /* ** Miscellaneous defines... */ #define RESET_DE4X5 {\ int i;\ i=inl(DE4X5_BMR);\ de4x5_ms_delay(1);\ outl(i | BMR_SWR, DE4X5_BMR);\ de4x5_ms_delay(1);\ outl(i, DE4X5_BMR);\ de4x5_ms_delay(1);\ for (i=0;i<5;i++) {inl(DE4X5_BMR); de4x5_ms_delay(1);}\ de4x5_ms_delay(1);\ } #define PHY_HARD_RESET {\ outl(GEP_HRST, DE4X5_GEP); /* Hard RESET the PHY dev. */\ udelay(1000); /* Assert for 1ms */\ outl(0x00, DE4X5_GEP);\ udelay(2000); /* Wait for 2ms */\ } /* ** Autoprobing in modules is allowed here. See the top of the file for ** more info. */ __initfunc(int de4x5_probe(struct device *dev)) { u_long iobase = dev->base_addr; #ifndef __sparc_v9__ eisa_probe(dev, iobase); #endif pci_probe(dev, iobase); return (dev->priv ? 0 : -ENODEV); } __initfunc(static int de4x5_hw_init(struct device *dev, u_long iobase)) { struct bus_type *lp = &bus; int i, status=0; char *tmp; /* Ensure we're not sleeping */ if (lp->bus == EISA) { outb(WAKEUP, PCI_CFPM); } else { pcibios_write_config_byte(lp->bus_num, lp->device << 3, PCI_CFDA_PSM, WAKEUP); } de4x5_ms_delay(10); RESET_DE4X5; if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) { return -ENXIO; /* Hardware could not reset */ } /* ** Now find out what kind of DC21040/DC21041/DC21140 board we have. */ useSROM = FALSE; if (lp->bus == PCI) { PCI_signature(name, lp); } else { EISA_signature(name, EISA_ID0); } if (*name == '\0') { /* Not found a board signature */ return -ENXIO; } dev->base_addr = iobase; if (lp->bus == EISA) { printk("%s: %s at 0x%04lx (EISA slot %ld)", dev->name, name, iobase, ((iobase>>12)&0x0f)); } else { /* PCI port address */ printk("%s: %s at 0x%04lx (PCI bus %d, device %d)", dev->name, name, iobase, lp->bus_num, lp->device); } printk(", h/w address "); status = get_hw_addr(dev); for (i = 0; i < ETH_ALEN - 1; i++) { /* get the ethernet addr. */ printk("%2.2x:", dev->dev_addr[i]); } printk("%2.2x,\n", dev->dev_addr[i]); if (status != 0) { printk(" which has an Ethernet PROM CRC error.\n"); return -ENXIO; } else { struct de4x5_private *lp; /* ** Reserve a section of kernel memory for the adapter ** private area and the TX/RX descriptor rings. */ dev->priv = (void *) kmalloc(sizeof(struct de4x5_private) + ALIGN, GFP_KERNEL); if (dev->priv == NULL) { return -ENOMEM; } /* ** Align to a longword boundary */ tmp = dev->priv; dev->priv = (void *)(((u_long)dev->priv + ALIGN) & ~ALIGN); lp = (struct de4x5_private *)dev->priv; memset(dev->priv, 0, sizeof(struct de4x5_private)); lp->bus = bus.bus; lp->bus_num = bus.bus_num; lp->device = bus.device; lp->chipset = bus.chipset; lp->cache.priv = tmp; lp->cache.gepc = GEP_INIT; lp->asBit = GEP_SLNK; lp->asPolarity = GEP_SLNK; lp->asBitValid = TRUE; lp->timeout = -1; lp->useSROM = useSROM; memcpy((char *)&lp->srom,(char *)&bus.srom,sizeof(struct de4x5_srom)); de4x5_parse_params(dev); /* ** Choose correct autosensing in case someone messed up */ if ((lp->params.autosense & AUTO) || lp->useSROM) { lp->autosense = AUTO; } else { if (lp->chipset != DC21140) { if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) { lp->params.autosense = TP; } if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) { lp->params.autosense = BNC; } lp->autosense = lp->params.autosense & 0x001f; } else { lp->autosense = lp->params.autosense & 0x00c0; } } lp->fdx = lp->params.fdx; sprintf(lp->adapter_name,"%s (%s)", name, dev->name); /* ** Set up the RX descriptor ring (Intels) ** Allocate contiguous receive buffers, long word aligned (Alphas) */ #if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY) for (i=0; irx_ring[i].status = 0; lp->rx_ring[i].des1 = RX_BUFF_SZ; lp->rx_ring[i].buf = 0; lp->rx_ring[i].next = 0; lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */ } #else if ((tmp = (void *)kmalloc(RX_BUFF_SZ * NUM_RX_DESC + ALIGN, GFP_KERNEL)) == NULL) { kfree(lp->cache.priv); return -ENOMEM; } lp->cache.buf = tmp; tmp = (char *)(((u_long) tmp + ALIGN) & ~ALIGN); for (i=0; irx_ring[i].status = 0; lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ); lp->rx_ring[i].buf = cpu_to_le32(virt_to_bus(tmp+i*RX_BUFF_SZ)); lp->rx_ring[i].next = 0; lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */ } #endif barrier(); request_region(iobase, (lp->bus == PCI ? DE4X5_PCI_TOTAL_SIZE : DE4X5_EISA_TOTAL_SIZE), lp->adapter_name); lp->rxRingSize = NUM_RX_DESC; lp->txRingSize = NUM_TX_DESC; /* Write the end of list marker to the descriptor lists */ lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER); lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER); /* Tell the adapter where the TX/RX rings are located. */ outl(virt_to_bus(lp->rx_ring), DE4X5_RRBA); outl(virt_to_bus(lp->tx_ring), DE4X5_TRBA); /* Initialise the IRQ mask and Enable/Disable */ lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM; lp->irq_en = IMR_NIM | IMR_AIM; /* Create a loopback packet frame for later media probing */ create_packet(dev, lp->frame, sizeof(lp->frame)); /* Check if the RX overflow bug needs testing for */ i = cfrv & 0x000000fe; if ((lp->chipset == DC21140) && (i == 0x20)) { lp->rx_ovf = 1; } /* Initialise the SROM pointers if possible */ if (lp->useSROM) { lp->state = INITIALISED; if (srom_infoleaf_info(dev)) { return -ENXIO; } srom_init(dev); } lp->state = CLOSED; /* ** Check for an MII interface */ if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) { mii_get_phy(dev); } #ifndef __sparc_v9__ printk(" and requires IRQ%d (provided by %s).\n", dev->irq, #else printk(" and requires IRQ%x (provided by %s).\n", dev->irq, #endif ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG")); } if (de4x5_debug & DEBUG_VERSION) { printk(version); } /* The DE4X5-specific entries in the device structure. */ dev->open = &de4x5_open; dev->hard_start_xmit = &de4x5_queue_pkt; dev->stop = &de4x5_close; dev->get_stats = &de4x5_get_stats; dev->set_multicast_list = &set_multicast_list; dev->do_ioctl = &de4x5_ioctl; dev->mem_start = 0; /* Fill in the generic fields of the device structure. */ ether_setup(dev); /* Let the adapter sleep to save power */ yawn(dev, SLEEP); return status; } static int de4x5_open(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int i, status = 0; s32 omr; /* Allocate the RX buffers */ for (i=0; irxRingSize; i++) { if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) { de4x5_free_rx_buffs(dev); return -EAGAIN; } } /* ** Wake up the adapter */ yawn(dev, WAKEUP); /* ** Re-initialize the DE4X5... */ status = de4x5_init(dev); lp->state = OPEN; de4x5_dbg_open(dev); if (request_irq(dev->irq, (void *)de4x5_interrupt, SA_SHIRQ, lp->adapter_name, dev)) { printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq); if (request_irq(dev->irq, de4x5_interrupt, SA_INTERRUPT | SA_SHIRQ, lp->adapter_name, dev)) { printk("\n Cannot get IRQ- reconfigure your hardware.\n"); disable_ast(dev); de4x5_free_rx_buffs(dev); de4x5_free_tx_buffs(dev); yawn(dev, SLEEP); lp->state = CLOSED; return -EAGAIN; } else { printk("\n Succeeded, but you should reconfigure your hardware to avoid this.\n"); printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n"); } } dev->tbusy = 0; dev->start = 1; dev->interrupt = UNMASK_INTERRUPTS; dev->trans_start = jiffies; START_DE4X5; de4x5_setup_intr(dev); if (de4x5_debug & DEBUG_OPEN) { printk("\tsts: 0x%08x\n", inl(DE4X5_STS)); printk("\tbmr: 0x%08x\n", inl(DE4X5_BMR)); printk("\timr: 0x%08x\n", inl(DE4X5_IMR)); printk("\tomr: 0x%08x\n", inl(DE4X5_OMR)); printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR)); printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR)); printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR)); printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR)); } MOD_INC_USE_COUNT; return status; } /* ** Initialize the DE4X5 operating conditions. NB: a chip problem with the ** DC21140 requires using perfect filtering mode for that chip. Since I can't ** see why I'd want > 14 multicast addresses, I have changed all chips to use ** the perfect filtering mode. Keep the DMA burst length at 8: there seems ** to be data corruption problems if it is larger (UDP errors seen from a ** ttcp source). */ static int de4x5_init(struct device *dev) { /* Lock out other processes whilst setting up the hardware */ test_and_set_bit(0, (void *)&dev->tbusy); de4x5_sw_reset(dev); /* Autoconfigure the connected port */ autoconf_media(dev); return 0; } static int de4x5_sw_reset(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int i, j, status = 0; s32 bmr, omr; /* Select the MII or SRL port now and RESET the MAC */ if (!lp->useSROM) { if (lp->phy[lp->active].id != 0) { lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD; } else { lp->infoblock_csr6 = OMR_SDP | OMR_TTM; } de4x5_switch_mac_port(dev); } /* ** Set the programmable burst length to 8 longwords for all the DC21140 ** Fasternet chips and 4 longwords for all others: DMA errors result ** without these values. Cache align 16 long. */ bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | CACHE_ALIGN; bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0); outl(bmr, DE4X5_BMR); omr = inl(DE4X5_OMR) & ~OMR_PR; /* Turn off promiscuous mode */ if (lp->chipset == DC21140) { omr |= (OMR_SDP | OMR_SB); } lp->setup_f = PERFECT; outl(virt_to_bus(lp->rx_ring), DE4X5_RRBA); outl(virt_to_bus(lp->tx_ring), DE4X5_TRBA); lp->rx_new = lp->rx_old = 0; lp->tx_new = lp->tx_old = 0; for (i = 0; i < lp->rxRingSize; i++) { lp->rx_ring[i].status = cpu_to_le32(R_OWN); } for (i = 0; i < lp->txRingSize; i++) { lp->tx_ring[i].status = cpu_to_le32(0); } barrier(); /* Build the setup frame depending on filtering mode */ SetMulticastFilter(dev); load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, NULL); outl(omr|OMR_ST, DE4X5_OMR); /* Poll for setup frame completion (adapter interrupts are disabled now) */ sti(); /* Ensure timer interrupts */ for (j=0, i=0;(i<500) && (j==0);i++) { /* Upto 500ms delay */ udelay(1000); if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1; } outl(omr, DE4X5_OMR); /* Stop everything! */ if (j == 0) { printk("%s: Setup frame timed out, status %08x\n", dev->name, inl(DE4X5_STS)); status = -EIO; } lp->tx_new = (++lp->tx_new) % lp->txRingSize; lp->tx_old = lp->tx_new; return status; } /* ** Writes a socket buffer address to the next available transmit descriptor */ static int de4x5_queue_pkt(struct sk_buff *skb, struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int status = 0; test_and_set_bit(0, (void*)&dev->tbusy); /* Stop send re-tries */ if (lp->tx_enable == NO) { /* Cannot send for now */ return -1; } /* ** Clean out the TX ring asynchronously to interrupts - sometimes the ** interrupts are lost by delayed descriptor status updates relative to ** the irq assertion, especially with a busy PCI bus. */ cli(); de4x5_tx(dev); sti(); /* Test if cache is already locked - requeue skb if so */ if (test_and_set_bit(0, (void *)&lp->cache.lock) && !dev->interrupt) return -1; /* Transmit descriptor ring full or stale skb */ if (dev->tbusy || lp->tx_skb[lp->tx_new]) { if (dev->interrupt) { de4x5_putb_cache(dev, skb); /* Requeue the buffer */ } else { de4x5_put_cache(dev, skb); } if (de4x5_debug & DEBUG_TX) { printk("%s: transmit busy, lost media or stale skb found:\n STS:%08x\n tbusy:%ld\n IMR:%08x\n OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), dev->tbusy, inl(DE4X5_IMR), inl(DE4X5_OMR), (lp->tx_skb[lp->tx_new] ? "YES" : "NO")); } } else if (skb->len > 0) { /* If we already have stuff queued locally, use that first */ if (lp->cache.skb && !dev->interrupt) { de4x5_put_cache(dev, skb); skb = de4x5_get_cache(dev); } while (skb && !dev->tbusy && !lp->tx_skb[lp->tx_new]) { cli(); test_and_set_bit(0, (void*)&dev->tbusy); load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb); lp->stats.tx_bytes += skb->len; outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */ lp->tx_new = (++lp->tx_new) % lp->txRingSize; dev->trans_start = jiffies; if (TX_BUFFS_AVAIL) { dev->tbusy = 0; /* Another pkt may be queued */ } skb = de4x5_get_cache(dev); sti(); } if (skb) de4x5_putb_cache(dev, skb); } lp->cache.lock = 0; return status; } /* ** The DE4X5 interrupt handler. ** ** I/O Read/Writes through intermediate PCI bridges are never 'posted', ** so that the asserted interrupt always has some real data to work with - ** if these I/O accesses are ever changed to memory accesses, ensure the ** STS write is read immediately to complete the transaction if the adapter ** is not on bus 0. Lost interrupts can still occur when the PCI bus load ** is high and descriptor status bits cannot be set before the associated ** interrupt is asserted and this routine entered. */ static void de4x5_interrupt(int irq, void *dev_id, struct pt_regs *regs) { struct device *dev = (struct device *)dev_id; struct de4x5_private *lp; s32 imr, omr, sts, limit; u_long iobase; if (dev == NULL) { printk ("de4x5_interrupt(): irq %d for unknown device.\n", irq); return; } lp = (struct de4x5_private *)dev->priv; iobase = dev->base_addr; if (dev->interrupt) printk("%s: Re-entering the interrupt handler.\n", dev->name); DISABLE_IRQs; /* Ensure non re-entrancy */ synchronize_irq(); dev->interrupt = MASK_INTERRUPTS; for (limit=0; limit<8; limit++) { sts = inl(DE4X5_STS); /* Read IRQ status */ outl(sts, DE4X5_STS); /* Reset the board interrupts */ if (!(sts & lp->irq_mask)) break;/* All done */ if (sts & (STS_RI | STS_RU)) /* Rx interrupt (packet[s] arrived) */ de4x5_rx(dev); if (sts & (STS_TI | STS_TU)) /* Tx interrupt (packet sent) */ de4x5_tx(dev); if (sts & STS_LNF) { /* TP Link has failed */ lp->irq_mask &= ~IMR_LFM; } if (sts & STS_UNF) { /* Transmit underrun */ de4x5_txur(dev); } if (sts & STS_SE) { /* Bus Error */ STOP_DE4X5; printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n", dev->name, sts); return; } } /* Load the TX ring with any locally stored packets */ if (!test_and_set_bit(0, (void *)&lp->cache.lock)) { while (lp->cache.skb && !dev->tbusy && lp->tx_enable) { de4x5_queue_pkt(de4x5_get_cache(dev), dev); } lp->cache.lock = 0; } dev->interrupt = UNMASK_INTERRUPTS; ENABLE_IRQs; return; } static int de4x5_rx(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int entry; s32 status; for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0; entry=lp->rx_new) { status = (s32)le32_to_cpu(lp->rx_ring[entry].status); if (lp->rx_ovf) { if (inl(DE4X5_MFC) & MFC_FOCM) { de4x5_rx_ovfc(dev); break; } } if (status & RD_FS) { /* Remember the start of frame */ lp->rx_old = entry; } if (status & RD_LS) { /* Valid frame status */ if (lp->tx_enable) lp->linkOK++; if (status & RD_ES) { /* There was an error. */ lp->stats.rx_errors++; /* Update the error stats. */ if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++; if (status & RD_CE) lp->stats.rx_crc_errors++; if (status & RD_OF) lp->stats.rx_fifo_errors++; if (status & RD_TL) lp->stats.rx_length_errors++; if (status & RD_RF) lp->pktStats.rx_runt_frames++; if (status & RD_CS) lp->pktStats.rx_collision++; if (status & RD_DB) lp->pktStats.rx_dribble++; if (status & RD_OF) lp->pktStats.rx_overflow++; } else { /* A valid frame received */ struct sk_buff *skb; short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status) >> 16) - 4; if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) { printk("%s: Insufficient memory; nuking packet.\n", dev->name); lp->stats.rx_dropped++; } else { de4x5_dbg_rx(skb, pkt_len); /* Push up the protocol stack */ skb->protocol=eth_type_trans(skb,dev); netif_rx(skb); /* Update stats */ lp->stats.rx_packets++; lp->stats.rx_bytes += pkt_len; de4x5_local_stats(dev, skb->data, pkt_len); } } /* Change buffer ownership for this frame, back to the adapter */ for (;lp->rx_old!=entry;lp->rx_old=(++lp->rx_old)%lp->rxRingSize) { lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN); barrier(); } lp->rx_ring[entry].status = cpu_to_le32(R_OWN); barrier(); } /* ** Update entry information */ lp->rx_new = (++lp->rx_new) % lp->rxRingSize; } return 0; } /* ** Buffer sent - check for TX buffer errors. */ static int de4x5_tx(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int entry; s32 status; for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) { status = (s32)le32_to_cpu(lp->tx_ring[entry].status); if (status < 0) { /* Buffer not sent yet */ break; } else if (status != 0x7fffffff) { /* Not setup frame */ if (status & TD_ES) { /* An error happened */ lp->stats.tx_errors++; if (status & TD_NC) lp->stats.tx_carrier_errors++; if (status & TD_LC) lp->stats.tx_window_errors++; if (status & TD_UF) lp->stats.tx_fifo_errors++; if (status & TD_EC) lp->pktStats.excessive_collisions++; if (status & TD_DE) lp->stats.tx_aborted_errors++; if (TX_PKT_PENDING) { outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */ } } else { /* Packet sent */ lp->stats.tx_packets++; if (lp->tx_enable) lp->linkOK++; } /* Update the collision counter */ lp->stats.collisions += ((status & TD_EC) ? 16 : ((status & TD_CC) >> 3)); /* Free the buffer. */ if (lp->tx_skb[entry] != NULL) { dev_kfree_skb(lp->tx_skb[entry]); lp->tx_skb[entry] = NULL; } } /* Update all the pointers */ lp->tx_old = (++lp->tx_old) % lp->txRingSize; } if (TX_BUFFS_AVAIL && dev->tbusy) { /* Any resources available? */ dev->tbusy = 0; /* Clear TX busy flag */ if (dev->interrupt) mark_bh(NET_BH); } return 0; } static int de4x5_ast(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int next_tick = DE4X5_AUTOSENSE_MS; disable_ast(dev); if (lp->useSROM) { next_tick = srom_autoconf(dev); } else if (lp->chipset == DC21140) { next_tick = dc21140m_autoconf(dev); } else if (lp->chipset == DC21041) { next_tick = dc21041_autoconf(dev); } else if (lp->chipset == DC21040) { next_tick = dc21040_autoconf(dev); } lp->linkOK = 0; enable_ast(dev, next_tick); return 0; } static int de4x5_txur(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int omr; omr = inl(DE4X5_OMR); if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) { omr &= ~(OMR_ST|OMR_SR); outl(omr, DE4X5_OMR); while (inl(DE4X5_STS) & STS_TS); if ((omr & OMR_TR) < OMR_TR) { omr += 0x4000; } else { omr |= OMR_SF; } outl(omr | OMR_ST | OMR_SR, DE4X5_OMR); } return 0; } static int de4x5_rx_ovfc(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int omr; omr = inl(DE4X5_OMR); outl(omr & ~OMR_SR, DE4X5_OMR); while (inl(DE4X5_STS) & STS_RS); for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) { lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN); lp->rx_new = (++lp->rx_new % lp->rxRingSize); } outl(omr, DE4X5_OMR); return 0; } static int de4x5_close(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 imr, omr; disable_ast(dev); dev->start = 0; dev->tbusy = 1; if (de4x5_debug & DEBUG_CLOSE) { printk("%s: Shutting down ethercard, status was %8.8x.\n", dev->name, inl(DE4X5_STS)); } /* ** We stop the DE4X5 here... mask interrupts and stop TX & RX */ DISABLE_IRQs; STOP_DE4X5; /* Free the associated irq */ free_irq(dev->irq, dev); lp->state = CLOSED; /* Free any socket buffers */ de4x5_free_rx_buffs(dev); de4x5_free_tx_buffs(dev); MOD_DEC_USE_COUNT; /* Put the adapter to sleep to save power */ yawn(dev, SLEEP); return 0; } static struct net_device_stats * de4x5_get_stats(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR)); return &lp->stats; } static void de4x5_local_stats(struct device *dev, char *buf, int pkt_len) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int i; for (i=1; ipktStats.bins[i]++; i = DE4X5_PKT_STAT_SZ; } } if (buf[0] & 0x01) { /* Multicast/Broadcast */ if ((*(s32 *)&buf[0] == -1) && (*(s16 *)&buf[4] == -1)) { lp->pktStats.broadcast++; } else { lp->pktStats.multicast++; } } else if ((*(s32 *)&buf[0] == *(s32 *)&dev->dev_addr[0]) && (*(s16 *)&buf[4] == *(s16 *)&dev->dev_addr[4])) { lp->pktStats.unicast++; } lp->pktStats.bins[0]++; /* Duplicates stats.rx_packets */ if (lp->pktStats.bins[0] == 0) { /* Reset counters */ memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats)); } return; } static void load_packet(struct device *dev, char *buf, u32 flags, struct sk_buff *skb) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; lp->tx_ring[lp->tx_new].buf = cpu_to_le32(virt_to_bus(buf)); lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER); lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags); lp->tx_skb[lp->tx_new] = skb; barrier(); lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN); barrier(); return; } /* ** Set or clear the multicast filter for this adaptor. */ static void set_multicast_list(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; /* First, double check that the adapter is open */ if (lp->state == OPEN) { if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */ u32 omr; omr = inl(DE4X5_OMR); omr |= OMR_PR; outl(omr, DE4X5_OMR); } else { SetMulticastFilter(dev); load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET | SETUP_FRAME_LEN, NULL); lp->tx_new = (++lp->tx_new) % lp->txRingSize; outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */ dev->trans_start = jiffies; } } return; } /* ** Calculate the hash code and update the logical address filter ** from a list of ethernet multicast addresses. ** Little endian crc one liner from Matt Thomas, DEC. */ static void SetMulticastFilter(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; struct dev_mc_list *dmi=dev->mc_list; u_long iobase = dev->base_addr; int i, j, bit, byte; u16 hashcode; u32 omr, crc, poly = CRC_POLYNOMIAL_LE; char *pa; unsigned char *addrs; omr = inl(DE4X5_OMR); omr &= ~(OMR_PR | OMR_PM); pa = build_setup_frame(dev, ALL); /* Build the basic frame */ if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 14)) { omr |= OMR_PM; /* Pass all multicasts */ } else if (lp->setup_f == HASH_PERF) { /* Hash Filtering */ for (i=0;imc_count;i++) { /* for each address in the list */ addrs=dmi->dmi_addr; dmi=dmi->next; if ((*addrs & 0x01) == 1) { /* multicast address? */ crc = 0xffffffff; /* init CRC for each address */ for (byte=0;byte>=1) { crc = (crc >> 1) ^ (((crc ^ bit) & 0x01) ? poly : 0); } } hashcode = crc & HASH_BITS; /* hashcode is 9 LSb of CRC */ byte = hashcode >> 3; /* bit[3-8] -> byte in filter */ bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */ byte <<= 1; /* calc offset into setup frame */ if (byte & 0x02) { byte -= 1; } lp->setup_frame[byte] |= bit; } } } else { /* Perfect filtering */ for (j=0; jmc_count; j++) { addrs=dmi->dmi_addr; dmi=dmi->next; for (i=0; ibus = EISA; if (ioaddr == 0) { /* Autoprobing */ iobase = EISA_SLOT_INC; /* Get the first slot address */ i = 1; maxSlots = MAX_EISA_SLOTS; } else { /* Probe a specific location */ iobase = ioaddr; i = (ioaddr >> 12); maxSlots = i + 1; } for (status = -ENODEV; (i> 8) & 0x00ffff00; vendor = (u_short) cfid; /* Read the EISA Configuration Registers */ irq = inb(EISA_REG0); irq = de4x5_irq[(irq >> 1) & 0x03]; if (is_DC2114x) device |= (cfrv & CFRV_RN); lp->chipset = device; /* Write the PCI Configuration Registers */ outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS); outl(0x00006000, PCI_CFLT); outl(iobase, PCI_CBIO); DevicePresent(EISA_APROM); if (check_region(iobase, DE4X5_EISA_TOTAL_SIZE) == 0) { dev->irq = irq; if ((status = de4x5_hw_init(dev, iobase)) == 0) { num_de4x5s++; if (loading_module) link_modules(lastModule, dev); lastEISA = i; return; } } else if (ioaddr != 0) { printk("%s: region already allocated at 0x%04lx.\n", dev->name,iobase); } } } if (ioaddr == 0) lastEISA = i; return; } #endif /* !(__sparc_v9__) */ /* ** PCI bus I/O device probe ** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not ** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be ** enabled by the user first in the set up utility. Hence we just check for ** enabled features and silently ignore the card if they're not. ** ** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering ** bit. Here, check for I/O accesses and then set BM. If you put the card in ** a non BM slot, you're on your own (and complain to the PC vendor that your ** PC doesn't conform to the PCI standard)! */ #define PCI_DEVICE (dev_num << 3) #define PCI_LAST_DEV 32 __initfunc(static void pci_probe(struct device *dev, u_long ioaddr)) { u_char pb, pbus, dev_num, dnum, dev_fn, timer; u_short vendor, index, status; u_int irq = 0, device, class = DE4X5_CLASS_CODE; u_long iobase = 0; /* Clear upper 32 bits in Alphas */ struct bus_type *lp = &bus; struct pci_dev *pdev; if (lastPCI == NO_MORE_PCI) return; if (!pcibios_present()) { lastPCI = NO_MORE_PCI; return; /* No PCI bus in this machine! */ } lp->bus = PCI; lp->bus_num = 0; if ((ioaddr < 0x1000) && loading_module) { pbus = (u_short)(ioaddr >> 8); dnum = (u_short)(ioaddr & 0xff); } else { pbus = 0; dnum = 0; } for (index=lastPCI+1; (pcibios_find_class(class, index, &pb, &dev_fn)!= PCIBIOS_DEVICE_NOT_FOUND); index++) { dev_num = PCI_SLOT(dev_fn); if ((pbus || dnum) && ((pbus != pb) || (dnum != dev_num))) continue; for (pdev = pci_devices; pdev; pdev = pdev->next) { if ((pdev->bus->number==pb) && (pdev->devfn==dev_fn)) break; } vendor = pdev->vendor; device = pdev->device << 8; if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue; /* Search for an SROM on this bus */ if (lp->bus_num != pb) { lp->bus_num = pb; srom_search(index); } /* Get the chip configuration revision register */ pcibios_read_config_dword(pb, PCI_DEVICE, PCI_REVISION_ID, &cfrv); /* Set the device number information */ lp->device = dev_num; lp->bus_num = pb; /* Set the chipset information */ if (is_DC2114x) device |= (cfrv & CFRV_RN); lp->chipset = device; /* Get the board I/O address (64 bits on sparc64) */ iobase = pdev->base_address[0] & CBIO_MASK; /* Fetch the IRQ to be used */ irq = pdev->irq; if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue; /* Check if I/O accesses and Bus Mastering are enabled */ pcibios_read_config_word(pb, PCI_DEVICE, PCI_COMMAND, &status); #ifdef __powerpc__ if (!(status & PCI_COMMAND_IO)) { status |= PCI_COMMAND_IO; pcibios_write_config_word(pb, PCI_DEVICE, PCI_COMMAND, status); pcibios_read_config_word(pb, PCI_DEVICE, PCI_COMMAND, &status); } #endif /* __powerpc__ */ if (!(status & PCI_COMMAND_IO)) continue; if (!(status & PCI_COMMAND_MASTER)) { status |= PCI_COMMAND_MASTER; pcibios_write_config_word(pb, PCI_DEVICE, PCI_COMMAND, status); pcibios_read_config_word(pb, PCI_DEVICE, PCI_COMMAND, &status); } if (!(status & PCI_COMMAND_MASTER)) continue; /* Check the latency timer for values >= 0x60 */ pcibios_read_config_byte(pb, PCI_DEVICE, PCI_LATENCY_TIMER, &timer); if (timer < 0x60) { pcibios_write_config_byte(pb, PCI_DEVICE, PCI_LATENCY_TIMER, 0x60); } DevicePresent(DE4X5_APROM); if (check_region(iobase, DE4X5_PCI_TOTAL_SIZE) == 0) { dev->irq = irq; if ((status = de4x5_hw_init(dev, iobase)) == 0) { num_de4x5s++; if (loading_module) { link_modules(lastModule, dev); lastPCI = index; } return; } } else if (ioaddr != 0) { printk("%s: region already allocated at 0x%04lx.\n", dev->name, iobase); } } if (loading_module) lastPCI = NO_MORE_PCI; return; } /* ** This function searches the current bus (which is >0) for a DECchip with an ** SROM, so that in multiport cards that have one SROM shared between multiple ** DECchips, we can find the base SROM irrespective of the BIOS scan direction. ** For single port cards this is a time waster... */ __initfunc(static void srom_search(int index)) { u_char pb, dev_fn; u_short dev_num, vendor, status; u_int irq = 0, device, class = DE4X5_CLASS_CODE; u_long iobase = 0; /* Clear upper 32 bits in Alphas */ int i, j; struct bus_type *lp = &bus; struct pci_dev *pdev; for (; (pcibios_find_class(class, index, &pb, &dev_fn)!= PCIBIOS_DEVICE_NOT_FOUND); index++) { if (lp->bus_num != pb) return; dev_num = PCI_SLOT(dev_fn); for (pdev = pci_devices; pdev; pdev = pdev->next) { if ((pdev->bus->number == pb) && (pdev->devfn == dev_fn)) break; } vendor = pdev->vendor; device = pdev->device << 8; if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue; /* Get the chip configuration revision register */ pcibios_read_config_dword(pb, PCI_DEVICE, PCI_REVISION_ID, &cfrv); /* Set the device number information */ lp->device = dev_num; lp->bus_num = pb; /* Set the chipset information */ if (is_DC2114x) device |= (cfrv & CFRV_RN); lp->chipset = device; /* Get the board I/O address (64 bits on sparc64) */ iobase = pdev->base_address[0] & CBIO_MASK; /* Fetch the IRQ to be used */ irq = pdev->irq; if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue; /* Check if I/O accesses are enabled */ pcibios_read_config_word(pb, PCI_DEVICE, PCI_COMMAND, &status); if (!(status & PCI_COMMAND_IO)) continue; /* Search for a valid SROM attached to this DECchip */ DevicePresent(DE4X5_APROM); for (j=0, i=0; isrom + SROM_HWADD + i); } if ((j != 0) && (j != 0x5fa)) { last.chipset = device; last.bus = pb; last.irq = irq; for (i=0; isrom + SROM_HWADD + i); } return; } } return; } __initfunc(static void link_modules(struct device *dev, struct device *tmp)) { struct device *p=dev; if (p) { while (((struct de4x5_private *)(p->priv))->next_module) { p = ((struct de4x5_private *)(p->priv))->next_module; } if (dev != tmp) { ((struct de4x5_private *)(p->priv))->next_module = tmp; } else { ((struct de4x5_private *)(p->priv))->next_module = NULL; } } return; } /* ** Auto configure the media here rather than setting the port at compile ** time. This routine is called by de4x5_init() and when a loss of media is ** detected (excessive collisions, loss of carrier, no carrier or link fail ** [TP] or no recent receive activity) to check whether the user has been ** sneaky and changed the port on us. */ static int autoconf_media(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int next_tick = DE4X5_AUTOSENSE_MS; lp->linkOK = 0; lp->c_media = AUTO; /* Bogus last media */ disable_ast(dev); inl(DE4X5_MFC); /* Zero the lost frames counter */ lp->media = INIT; lp->tcount = 0; if (lp->useSROM) { next_tick = srom_autoconf(dev); } else if (lp->chipset == DC21040) { next_tick = dc21040_autoconf(dev); } else if (lp->chipset == DC21041) { next_tick = dc21041_autoconf(dev); } else if (lp->chipset == DC21140) { next_tick = dc21140m_autoconf(dev); } enable_ast(dev, next_tick); return (lp->media); } /* ** Autoconfigure the media when using the DC21040. AUI cannot be distinguished ** from BNC as the port has a jumper to set thick or thin wire. When set for ** BNC, the BNC port will indicate activity if it's not terminated correctly. ** The only way to test for that is to place a loopback packet onto the ** network and watch for errors. Since we're messing with the interrupt mask ** register, disable the board interrupts and do not allow any more packets to ** be queued to the hardware. Re-enable everything only when the media is ** found. ** I may have to "age out" locally queued packets so that the higher layer ** timeouts don't effectively duplicate packets on the network. */ static int dc21040_autoconf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int next_tick = DE4X5_AUTOSENSE_MS; s32 imr; switch (lp->media) { case INIT: DISABLE_IRQs; lp->tx_enable = NO; lp->timeout = -1; de4x5_save_skbs(dev); if ((lp->autosense == AUTO) || (lp->autosense == TP)) { lp->media = TP; } else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) { lp->media = BNC_AUI; } else if (lp->autosense == EXT_SIA) { lp->media = EXT_SIA; } else { lp->media = NC; } lp->local_state = 0; next_tick = dc21040_autoconf(dev); break; case TP: next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI, TP_SUSPECT, test_tp); break; case TP_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf); break; case BNC: case AUI: case BNC_AUI: next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA, BNC_AUI_SUSPECT, ping_media); break; case BNC_AUI_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf); break; case EXT_SIA: next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000, NC, EXT_SIA_SUSPECT, ping_media); break; case EXT_SIA_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf); break; case NC: /* default to TP for all */ reset_init_sia(dev, 0x8f01, 0xffff, 0x0000); if (lp->media != lp->c_media) { de4x5_dbg_media(dev); lp->c_media = lp->media; } lp->media = INIT; lp->tx_enable = NO; break; } return next_tick; } static int dc21040_state(struct device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct device *, int)) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int next_tick = DE4X5_AUTOSENSE_MS; int linkBad; switch (lp->local_state) { case 0: reset_init_sia(dev, csr13, csr14, csr15); lp->local_state++; next_tick = 500; break; case 1: if (!lp->tx_enable) { linkBad = fn(dev, timeout); if (linkBad < 0) { next_tick = linkBad & ~TIMER_CB; } else { if (linkBad && (lp->autosense == AUTO)) { lp->local_state = 0; lp->media = next_state; } else { de4x5_init_connection(dev); } } } else if (!lp->linkOK && (lp->autosense == AUTO)) { lp->media = suspect_state; next_tick = 3000; } break; } return next_tick; } static int de4x5_suspect_state(struct device *dev, int timeout, int prev_state, int (*fn)(struct device *, int), int (*asfn)(struct device *)) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int next_tick = DE4X5_AUTOSENSE_MS; int linkBad; switch (lp->local_state) { case 1: if (lp->linkOK) { lp->media = prev_state; } else { lp->local_state++; next_tick = asfn(dev); } break; case 2: linkBad = fn(dev, timeout); if (linkBad < 0) { next_tick = linkBad & ~TIMER_CB; } else if (!linkBad) { lp->local_state--; lp->media = prev_state; } else { lp->media = INIT; lp->tcount++; } } return next_tick; } /* ** Autoconfigure the media when using the DC21041. AUI needs to be tested ** before BNC, because the BNC port will indicate activity if it's not ** terminated correctly. The only way to test for that is to place a loopback ** packet onto the network and watch for errors. Since we're messing with ** the interrupt mask register, disable the board interrupts and do not allow ** any more packets to be queued to the hardware. Re-enable everything only ** when the media is found. */ static int dc21041_autoconf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 sts, irqs, irq_mask, imr, omr; int next_tick = DE4X5_AUTOSENSE_MS; switch (lp->media) { case INIT: DISABLE_IRQs; lp->tx_enable = NO; lp->timeout = -1; de4x5_save_skbs(dev); /* Save non transmitted skb's */ if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) { lp->media = TP; /* On chip auto negotiation is broken */ } else if (lp->autosense == TP) { lp->media = TP; } else if (lp->autosense == BNC) { lp->media = BNC; } else if (lp->autosense == AUI) { lp->media = AUI; } else { lp->media = NC; } lp->local_state = 0; next_tick = dc21041_autoconf(dev); break; case TP_NW: if (lp->timeout < 0) { omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */ outl(omr | OMR_FDX, DE4X5_OMR); } irqs = STS_LNF | STS_LNP; irq_mask = IMR_LFM | IMR_LPM; sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400); if (sts < 0) { next_tick = sts & ~TIMER_CB; } else { if (sts & STS_LNP) { lp->media = ANS; } else { lp->media = AUI; } next_tick = dc21041_autoconf(dev); } break; case ANS: if (!lp->tx_enable) { irqs = STS_LNP; irq_mask = IMR_LPM; sts = test_ans(dev, irqs, irq_mask, 3000); if (sts < 0) { next_tick = sts & ~TIMER_CB; } else { if (!(sts & STS_LNP) && (lp->autosense == AUTO)) { lp->media = TP; next_tick = dc21041_autoconf(dev); } else { lp->local_state = 1; de4x5_init_connection(dev); } } } else if (!lp->linkOK && (lp->autosense == AUTO)) { lp->media = ANS_SUSPECT; next_tick = 3000; } break; case ANS_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf); break; case TP: if (!lp->tx_enable) { if (lp->timeout < 0) { omr = inl(DE4X5_OMR); /* Set up half duplex for TP */ outl(omr & ~OMR_FDX, DE4X5_OMR); } irqs = STS_LNF | STS_LNP; irq_mask = IMR_LFM | IMR_LPM; sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400); if (sts < 0) { next_tick = sts & ~TIMER_CB; } else { if (!(sts & STS_LNP) && (lp->autosense == AUTO)) { if (inl(DE4X5_SISR) & SISR_NRA) { lp->media = AUI; /* Non selected port activity */ } else { lp->media = BNC; } next_tick = dc21041_autoconf(dev); } else { lp->local_state = 1; de4x5_init_connection(dev); } } } else if (!lp->linkOK && (lp->autosense == AUTO)) { lp->media = TP_SUSPECT; next_tick = 3000; } break; case TP_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf); break; case AUI: if (!lp->tx_enable) { if (lp->timeout < 0) { omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */ outl(omr & ~OMR_FDX, DE4X5_OMR); } irqs = 0; irq_mask = 0; sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000); if (sts < 0) { next_tick = sts & ~TIMER_CB; } else { if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) { lp->media = BNC; next_tick = dc21041_autoconf(dev); } else { lp->local_state = 1; de4x5_init_connection(dev); } } } else if (!lp->linkOK && (lp->autosense == AUTO)) { lp->media = AUI_SUSPECT; next_tick = 3000; } break; case AUI_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf); break; case BNC: switch (lp->local_state) { case 0: if (lp->timeout < 0) { omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */ outl(omr & ~OMR_FDX, DE4X5_OMR); } irqs = 0; irq_mask = 0; sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000); if (sts < 0) { next_tick = sts & ~TIMER_CB; } else { lp->local_state++; /* Ensure media connected */ next_tick = dc21041_autoconf(dev); } break; case 1: if (!lp->tx_enable) { if ((sts = ping_media(dev, 3000)) < 0) { next_tick = sts & ~TIMER_CB; } else { if (sts) { lp->local_state = 0; lp->media = NC; } else { de4x5_init_connection(dev); } } } else if (!lp->linkOK && (lp->autosense == AUTO)) { lp->media = BNC_SUSPECT; next_tick = 3000; } break; } break; case BNC_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf); break; case NC: omr = inl(DE4X5_OMR); /* Set up full duplex for the autonegotiate */ outl(omr | OMR_FDX, DE4X5_OMR); reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */ if (lp->media != lp->c_media) { de4x5_dbg_media(dev); lp->c_media = lp->media; } lp->media = INIT; lp->tx_enable = NO; break; } return next_tick; } /* ** Some autonegotiation chips are broken in that they do not return the ** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement ** register, except at the first power up negotiation. */ static int dc21140m_autoconf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int ana, anlpa, cap, cr, slnk, sr; int next_tick = DE4X5_AUTOSENSE_MS; u_long imr, omr, iobase = dev->base_addr; switch(lp->media) { case INIT: if (lp->timeout < 0) { DISABLE_IRQs; lp->tx_enable = FALSE; lp->linkOK = 0; de4x5_save_skbs(dev); /* Save non transmitted skb's */ } if ((next_tick = de4x5_reset_phy(dev)) < 0) { next_tick &= ~TIMER_CB; } else { if (lp->useSROM) { if (srom_map_media(dev) < 0) { lp->tcount++; return next_tick; } srom_exec(dev, lp->phy[lp->active].gep); if (lp->infoblock_media == ANS) { ana = lp->phy[lp->active].ana | MII_ANA_CSMA; mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII); } } else { lp->tmp = MII_SR_ASSC; /* Fake out the MII speed set */ SET_10Mb; if (lp->autosense == _100Mb) { lp->media = _100Mb; } else if (lp->autosense == _10Mb) { lp->media = _10Mb; } else if ((lp->autosense == AUTO) && ((sr=is_anc_capable(dev)) & MII_SR_ANC)) { ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA); ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM); mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII); lp->media = ANS; } else if (lp->autosense == AUTO) { lp->media = SPD_DET; } else if (is_spd_100(dev) && is_100_up(dev)) { lp->media = _100Mb; } else { lp->media = NC; } } lp->local_state = 0; next_tick = dc21140m_autoconf(dev); } break; case ANS: switch (lp->local_state) { case 0: if (lp->timeout < 0) { mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII); } cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, FALSE, 500); if (cr < 0) { next_tick = cr & ~TIMER_CB; } else { if (cr) { lp->local_state = 0; lp->media = SPD_DET; } else { lp->local_state++; } next_tick = dc21140m_autoconf(dev); } break; case 1: if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) { next_tick = sr & ~TIMER_CB; } else { lp->media = SPD_DET; lp->local_state = 0; if (sr) { /* Success! */ lp->tmp = MII_SR_ASSC; anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII); ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII); if (!(anlpa & MII_ANLPA_RF) && (cap = anlpa & MII_ANLPA_TAF & ana)) { if (cap & MII_ANA_100M) { lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE); lp->media = _100Mb; } else if (cap & MII_ANA_10M) { lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) ? TRUE : FALSE); lp->media = _10Mb; } } } /* Auto Negotiation failed to finish */ next_tick = dc21140m_autoconf(dev); } /* Auto Negotiation failed to start */ break; } break; case SPD_DET: /* Choose 10Mb/s or 100Mb/s */ if (lp->timeout < 0) { lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS : (~gep_rd(dev) & GEP_LNP)); SET_100Mb_PDET; } if ((slnk = test_for_100Mb(dev, 6500)) < 0) { next_tick = slnk & ~TIMER_CB; } else { if (is_spd_100(dev) && is_100_up(dev)) { lp->media = _100Mb; } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) { lp->media = _10Mb; } else { lp->media = NC; } next_tick = dc21140m_autoconf(dev); } break; case _100Mb: /* Set 100Mb/s */ next_tick = 3000; if (!lp->tx_enable) { SET_100Mb; de4x5_init_connection(dev); } else { if (!lp->linkOK && (lp->autosense == AUTO)) { if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) { lp->media = INIT; lp->tcount++; next_tick = DE4X5_AUTOSENSE_MS; } } } break; case _10Mb: /* Set 10Mb/s */ next_tick = 3000; if (!lp->tx_enable) { SET_10Mb; de4x5_init_connection(dev); } else { if (!lp->linkOK && (lp->autosense == AUTO)) { if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) { lp->media = INIT; lp->tcount++; next_tick = DE4X5_AUTOSENSE_MS; } } } break; case NC: if (lp->media != lp->c_media) { de4x5_dbg_media(dev); lp->c_media = lp->media; } lp->media = INIT; lp->tx_enable = FALSE; break; } return next_tick; } /* ** This routine may be merged into dc21140m_autoconf() sometime as I'm ** changing how I figure out the media - but trying to keep it backwards ** compatible with the de500-xa and de500-aa. ** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock ** functions and set during de4x5_mac_port() and/or de4x5_reset_phy(). ** This routine just has to figure out whether 10Mb/s or 100Mb/s is ** active. ** When autonegotiation is working, the ANS part searches the SROM for ** the highest common speed (TP) link that both can run and if that can ** be full duplex. That infoblock is executed and then the link speed set. ** ** Only _10Mb and _100Mb are tested here. */ static int dc2114x_autoconf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts; int next_tick = DE4X5_AUTOSENSE_MS; switch (lp->media) { case INIT: if (lp->timeout < 0) { DISABLE_IRQs; lp->tx_enable = FALSE; lp->linkOK = 0; lp->timeout = -1; de4x5_save_skbs(dev); /* Save non transmitted skb's */ } if ((next_tick = de4x5_reset_phy(dev)) < 0) { next_tick &= ~TIMER_CB; } else { lp->media = SPD_DET; if ((lp->infoblock_media == ANS) && ((sr=is_anc_capable(dev)) & MII_SR_ANC)) { ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA); ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM); mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII); lp->media = ANS; } lp->local_state = 0; next_tick = dc2114x_autoconf(dev); } break; case ANS: switch (lp->local_state) { case 0: if (lp->timeout < 0) { mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII); } cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, FALSE, 500); if (cr < 0) { next_tick = cr & ~TIMER_CB; } else { if (cr) { lp->local_state = 0; lp->media = SPD_DET; } else { lp->local_state++; } next_tick = dc2114x_autoconf(dev); } break; case 1: if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, TRUE, 2000)) < 0) { next_tick = sr & ~TIMER_CB; } else { lp->media = SPD_DET; lp->local_state = 0; if (sr) { /* Success! */ lp->tmp = MII_SR_ASSC; anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII); ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII); if (!(anlpa & MII_ANLPA_RF) && (cap = anlpa & MII_ANLPA_TAF & ana)) { if (cap & MII_ANA_100M) { lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) ? TRUE : FALSE); lp->media = _100Mb; } else if (cap & MII_ANA_10M) { lp->fdx = ((ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) ? TRUE : FALSE); lp->media = _10Mb; } } } /* Auto Negotiation failed to finish */ next_tick = dc2114x_autoconf(dev); } /* Auto Negotiation failed to start */ break; } break; case AUI: if (!lp->tx_enable) { if (lp->timeout < 0) { omr = inl(DE4X5_OMR); /* Set up half duplex for AUI */ outl(omr & ~OMR_FDX, DE4X5_OMR); } irqs = 0; irq_mask = 0; sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000); if (sts < 0) { next_tick = sts & ~TIMER_CB; } else { if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) { lp->media = BNC; next_tick = dc2114x_autoconf(dev); } else { lp->local_state = 1; de4x5_init_connection(dev); } } } else if (!lp->linkOK && (lp->autosense == AUTO)) { lp->media = AUI_SUSPECT; next_tick = 3000; } break; case AUI_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf); break; case BNC: switch (lp->local_state) { case 0: if (lp->timeout < 0) { omr = inl(DE4X5_OMR); /* Set up half duplex for BNC */ outl(omr & ~OMR_FDX, DE4X5_OMR); } irqs = 0; irq_mask = 0; sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000); if (sts < 0) { next_tick = sts & ~TIMER_CB; } else { lp->local_state++; /* Ensure media connected */ next_tick = dc2114x_autoconf(dev); } break; case 1: if (!lp->tx_enable) { if ((sts = ping_media(dev, 3000)) < 0) { next_tick = sts & ~TIMER_CB; } else { if (sts) { lp->local_state = 0; lp->tcount++; lp->media = INIT; } else { de4x5_init_connection(dev); } } } else if (!lp->linkOK && (lp->autosense == AUTO)) { lp->media = BNC_SUSPECT; next_tick = 3000; } break; } break; case BNC_SUSPECT: next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf); break; case SPD_DET: /* Choose 10Mb/s or 100Mb/s */ if (srom_map_media(dev) < 0) { lp->tcount++; lp->media = INIT; return next_tick; } if (lp->media == _100Mb) { if ((slnk = test_for_100Mb(dev, 6500)) < 0) { lp->media = SPD_DET; return (slnk & ~TIMER_CB); } } else { if (wait_for_link(dev) < 0) { lp->media = SPD_DET; return PDET_LINK_WAIT; } } if (((lp->media == _100Mb) && is_100_up(dev)) || ((lp->media == _10Mb) && is_10_up(dev)) || (lp->media == BNC) || (lp->media == AUI)) { next_tick = dc2114x_autoconf(dev); } else { lp->tcount++; lp->media = INIT; } break; case _10Mb: next_tick = 3000; if (!lp->tx_enable) { SET_10Mb; de4x5_init_connection(dev); } else { if (!lp->linkOK && (lp->autosense == AUTO)) { if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) { lp->media = INIT; lp->tcount++; next_tick = DE4X5_AUTOSENSE_MS; } } } break; case _100Mb: next_tick = 3000; if (!lp->tx_enable) { SET_100Mb; de4x5_init_connection(dev); } else { if (!lp->linkOK && (lp->autosense == AUTO)) { if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) { lp->media = INIT; lp->tcount++; next_tick = DE4X5_AUTOSENSE_MS; } } } break; default: lp->tcount++; printk("Huh?: media:%02x\n", lp->media); lp->media = INIT; break; } return next_tick; } static int srom_autoconf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; return lp->infoleaf_fn(dev); } /* ** This mapping keeps the original media codes and FDX flag unchanged. ** While it isn't strictly necessary, it helps me for the moment... ** The early return avoids a media state / SROM media space clash. */ static int srom_map_media(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; lp->fdx = 0; if (lp->infoblock_media == lp->media) return 0; switch(lp->infoblock_media) { case SROM_10BASETF: if (!lp->params.fdx) return -1; lp->fdx = TRUE; case SROM_10BASET: if (lp->params.fdx && !lp->fdx) return -1; if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) { lp->media = _10Mb; } else { lp->media = TP; } break; case SROM_10BASE2: lp->media = BNC; break; case SROM_10BASE5: lp->media = AUI; break; case SROM_100BASETF: if (!lp->params.fdx) return -1; lp->fdx = TRUE; case SROM_100BASET: if (lp->params.fdx && !lp->fdx) return -1; lp->media = _100Mb; break; case SROM_100BASET4: lp->media = _100Mb; break; case SROM_100BASEFF: if (!lp->params.fdx) return -1; lp->fdx = TRUE; case SROM_100BASEF: if (lp->params.fdx && !lp->fdx) return -1; lp->media = _100Mb; break; case ANS: lp->media = ANS; break; default: printk("%s: Bad media code [%d] detected in SROM!\n", dev->name, lp->infoblock_media); return -1; break; } return 0; } static void de4x5_init_connection(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if (lp->media != lp->c_media) { de4x5_dbg_media(dev); lp->c_media = lp->media; /* Stop scrolling media messages */ } cli(); de4x5_rst_desc_ring(dev); de4x5_setup_intr(dev); lp->tx_enable = YES; dev->tbusy = 0; sti(); outl(POLL_DEMAND, DE4X5_TPD); mark_bh(NET_BH); return; } /* ** General PHY reset function. Some MII devices don't reset correctly ** since their MII address pins can float at voltages that are dependent ** on the signal pin use. Do a double reset to ensure a reset. */ static int de4x5_reset_phy(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int next_tick = 0; if ((lp->useSROM) || (lp->phy[lp->active].id)) { if (lp->timeout < 0) { if (lp->useSROM) { if (lp->phy[lp->active].rst) { srom_exec(dev, lp->phy[lp->active].rst); srom_exec(dev, lp->phy[lp->active].rst); } else if (lp->rst) { /* Type 5 infoblock reset */ srom_exec(dev, lp->rst); srom_exec(dev, lp->rst); } } else { PHY_HARD_RESET; } if (lp->useMII) { mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII); } } if (lp->useMII) { next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, FALSE, 500); } } else if (lp->chipset == DC21140) { PHY_HARD_RESET; } return next_tick; } static int test_media(struct device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 sts, csr12; if (lp->timeout < 0) { lp->timeout = msec/100; if (!lp->useSROM) { /* Already done if by SROM, else dc2104[01] */ reset_init_sia(dev, csr13, csr14, csr15); } /* set up the interrupt mask */ outl(irq_mask, DE4X5_IMR); /* clear all pending interrupts */ sts = inl(DE4X5_STS); outl(sts, DE4X5_STS); /* clear csr12 NRA and SRA bits */ if ((lp->chipset == DC21041) || lp->useSROM) { csr12 = inl(DE4X5_SISR); outl(csr12, DE4X5_SISR); } } sts = inl(DE4X5_STS) & ~TIMER_CB; if (!(sts & irqs) && --lp->timeout) { sts = 100 | TIMER_CB; } else { lp->timeout = -1; } return sts; } static int test_tp(struct device *dev, s32 msec) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int sisr; if (lp->timeout < 0) { lp->timeout = msec/100; } sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR); if (sisr && --lp->timeout) { sisr = 100 | TIMER_CB; } else { lp->timeout = -1; } return sisr; } /* ** Samples the 100Mb Link State Signal. The sample interval is important ** because too fast a rate can give erroneous results and confuse the ** speed sense algorithm. */ #define SAMPLE_INTERVAL 500 /* ms */ #define SAMPLE_DELAY 2000 /* ms */ static int test_for_100Mb(struct device *dev, int msec) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK); if (lp->timeout < 0) { if ((msec/SAMPLE_INTERVAL) <= 0) return 0; if (msec > SAMPLE_DELAY) { lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL; gep = SAMPLE_DELAY | TIMER_CB; return gep; } else { lp->timeout = msec/SAMPLE_INTERVAL; } } if (lp->phy[lp->active].id || lp->useSROM) { gep = is_100_up(dev) | is_spd_100(dev); } else { gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP)); } if (!(gep & ret) && --lp->timeout) { gep = SAMPLE_INTERVAL | TIMER_CB; } else { lp->timeout = -1; } return gep; } static int wait_for_link(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; if (lp->timeout < 0) { lp->timeout = 1; } if (lp->timeout--) { return TIMER_CB; } else { lp->timeout = -1; } return 0; } /* ** ** */ static int test_mii_reg(struct device *dev, int reg, int mask, int pol, long msec) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int test; u_long iobase = dev->base_addr; if (lp->timeout < 0) { lp->timeout = msec/100; } if (pol) pol = ~0; reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask; test = (reg ^ pol) & mask; if (test && --lp->timeout) { reg = 100 | TIMER_CB; } else { lp->timeout = -1; } return reg; } static int is_spd_100(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int spd; if (lp->useMII) { spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII); spd = ~(spd ^ lp->phy[lp->active].spd.value); spd &= lp->phy[lp->active].spd.mask; } else if (!lp->useSROM) { /* de500-xa */ spd = ((~gep_rd(dev)) & GEP_SLNK); } else { if ((lp->ibn == 2) || !lp->asBitValid) return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0); spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) | (lp->linkOK & ~lp->asBitValid); } return spd; } static int is_100_up(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if (lp->useMII) { /* Double read for sticky bits & temporary drops */ mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII); return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS); } else if (!lp->useSROM) { /* de500-xa */ return ((~gep_rd(dev)) & GEP_SLNK); } else { if ((lp->ibn == 2) || !lp->asBitValid) return ((lp->chipset == DC21143)?(~inl(DE4X5_SISR)&SISR_LS100):0); return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) | (lp->linkOK & ~lp->asBitValid)); } } static int is_10_up(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if (lp->useMII) { /* Double read for sticky bits & temporary drops */ mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII); return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS); } else if (!lp->useSROM) { /* de500-xa */ return ((~gep_rd(dev)) & GEP_LNP); } else { if ((lp->ibn == 2) || !lp->asBitValid) return (((lp->chipset & ~0x00ff) == DC2114x) ? (~inl(DE4X5_SISR)&SISR_LS10): 0); return ((lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) | (lp->linkOK & ~lp->asBitValid)); } } static int is_anc_capable(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) { return (mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII)); } else if ((lp->chipset & ~0x00ff) == DC2114x) { return (inl(DE4X5_SISR) & SISR_LPN) >> 11; } else { return 0; } } /* ** Send a packet onto the media and watch for send errors that indicate the ** media is bad or unconnected. */ static int ping_media(struct device *dev, int msec) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int sisr; if (lp->timeout < 0) { lp->timeout = msec/100; lp->tmp = lp->tx_new; /* Remember the ring position */ load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), NULL); lp->tx_new = (++lp->tx_new) % lp->txRingSize; outl(POLL_DEMAND, DE4X5_TPD); } sisr = inl(DE4X5_SISR); if ((!(sisr & SISR_NCR)) && ((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) && (--lp->timeout)) { sisr = 100 | TIMER_CB; } else { if ((!(sisr & SISR_NCR)) && !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) && lp->timeout) { sisr = 0; } else { sisr = 1; } lp->timeout = -1; } return sisr; } /* ** This function does 2 things: on Intels it kmalloc's another buffer to ** replace the one about to be passed up. On Alpha's it kmallocs a buffer ** into which the packet is copied. */ static struct sk_buff * de4x5_alloc_rx_buff(struct device *dev, int index, int len) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; struct sk_buff *p; #if !defined(__alpha__) && !defined(__powerpc__) && !defined(__sparc_v9__) && !defined(DE4X5_DO_MEMCPY) struct sk_buff *ret; u_long i=0, tmp; p = dev_alloc_skb(IEEE802_3_SZ + ALIGN + 2); if (!p) return NULL; p->dev = dev; tmp = virt_to_bus(p->data); i = ((tmp + ALIGN) & ~ALIGN) - tmp; skb_reserve(p, i); lp->rx_ring[index].buf = tmp + i; ret = lp->rx_skb[index]; lp->rx_skb[index] = p; if ((u_long) ret > 1) { skb_put(ret, len); } return ret; #else if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */ p = dev_alloc_skb(len + 2); if (!p) return NULL; p->dev = dev; skb_reserve(p, 2); /* Align */ if (index < lp->rx_old) { /* Wrapped buffer */ short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ; memcpy(skb_put(p,tlen), bus_to_virt(le32_to_cpu(lp->rx_ring[lp->rx_old].buf)),tlen); memcpy(skb_put(p,len-tlen), bus_to_virt(le32_to_cpu(lp->rx_ring[0].buf)), len-tlen); } else { /* Linear buffer */ memcpy(skb_put(p,len), bus_to_virt(le32_to_cpu(lp->rx_ring[lp->rx_old].buf)),len); } return p; #endif } static void de4x5_free_rx_buffs(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int i; for (i=0; irxRingSize; i++) { if ((u_long) lp->rx_skb[i] > 1) { dev_kfree_skb(lp->rx_skb[i]); } lp->rx_ring[i].status = 0; lp->rx_skb[i] = (struct sk_buff *)1; /* Dummy entry */ } return; } static void de4x5_free_tx_buffs(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int i; for (i=0; itxRingSize; i++) { if (lp->tx_skb[i]) { dev_kfree_skb(lp->tx_skb[i]); lp->tx_skb[i] = NULL; } lp->tx_ring[i].status = 0; } /* Unload the locally queued packets */ while (lp->cache.skb) { dev_kfree_skb(de4x5_get_cache(dev)); } return; } /* ** When a user pulls a connection, the DECchip can end up in a ** 'running - waiting for end of transmission' state. This means that we ** have to perform a chip soft reset to ensure that we can synchronize ** the hardware and software and make any media probes using a loopback ** packet meaningful. */ static void de4x5_save_skbs(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 omr; if (!lp->cache.save_cnt) { STOP_DE4X5; de4x5_tx(dev); /* Flush any sent skb's */ de4x5_free_tx_buffs(dev); de4x5_cache_state(dev, DE4X5_SAVE_STATE); de4x5_sw_reset(dev); de4x5_cache_state(dev, DE4X5_RESTORE_STATE); lp->cache.save_cnt++; START_DE4X5; } return; } static void de4x5_rst_desc_ring(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int i; s32 omr; if (lp->cache.save_cnt) { STOP_DE4X5; outl(virt_to_bus(lp->rx_ring), DE4X5_RRBA); outl(virt_to_bus(lp->tx_ring), DE4X5_TRBA); lp->rx_new = lp->rx_old = 0; lp->tx_new = lp->tx_old = 0; for (i = 0; i < lp->rxRingSize; i++) { lp->rx_ring[i].status = cpu_to_le32(R_OWN); } for (i = 0; i < lp->txRingSize; i++) { lp->tx_ring[i].status = cpu_to_le32(0); } barrier(); lp->cache.save_cnt--; START_DE4X5; } return; } static void de4x5_cache_state(struct device *dev, int flag) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; switch(flag) { case DE4X5_SAVE_STATE: lp->cache.csr0 = inl(DE4X5_BMR); lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR)); lp->cache.csr7 = inl(DE4X5_IMR); break; case DE4X5_RESTORE_STATE: outl(lp->cache.csr0, DE4X5_BMR); outl(lp->cache.csr6, DE4X5_OMR); outl(lp->cache.csr7, DE4X5_IMR); if (lp->chipset == DC21140) { gep_wr(lp->cache.gepc, dev); gep_wr(lp->cache.gep, dev); } else { reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15); } break; } return; } static void de4x5_put_cache(struct device *dev, struct sk_buff *skb) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; struct sk_buff *p; if (lp->cache.skb) { for (p=lp->cache.skb; p->next; p=p->next); p->next = skb; } else { lp->cache.skb = skb; } skb->next = NULL; return; } static void de4x5_putb_cache(struct device *dev, struct sk_buff *skb) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; struct sk_buff *p = lp->cache.skb; lp->cache.skb = skb; skb->next = p; return; } static struct sk_buff * de4x5_get_cache(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; struct sk_buff *p = lp->cache.skb; if (p) { lp->cache.skb = p->next; p->next = NULL; } return p; } /* ** Check the Auto Negotiation State. Return OK when a link pass interrupt ** is received and the auto-negotiation status is NWAY OK. */ static int test_ans(struct device *dev, s32 irqs, s32 irq_mask, s32 msec) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 sts, ans; if (lp->timeout < 0) { lp->timeout = msec/100; outl(irq_mask, DE4X5_IMR); /* clear all pending interrupts */ sts = inl(DE4X5_STS); outl(sts, DE4X5_STS); } ans = inl(DE4X5_SISR) & SISR_ANS; sts = inl(DE4X5_STS) & ~TIMER_CB; if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) { sts = 100 | TIMER_CB; } else { lp->timeout = -1; } return sts; } static void de4x5_setup_intr(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 imr, sts; if (inl(DE4X5_OMR) & OMR_SR) { /* Only unmask if TX/RX is enabled */ imr = 0; UNMASK_IRQs; sts = inl(DE4X5_STS); /* Reset any pending (stale) interrupts */ outl(sts, DE4X5_STS); ENABLE_IRQs; } return; } /* ** */ static void reset_init_sia(struct device *dev, s32 csr13, s32 csr14, s32 csr15) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; RESET_SIA; if (lp->useSROM) { if (lp->ibn == 3) { srom_exec(dev, lp->phy[lp->active].rst); srom_exec(dev, lp->phy[lp->active].gep); outl(1, DE4X5_SICR); return; } else { csr15 = lp->cache.csr15; csr14 = lp->cache.csr14; csr13 = lp->cache.csr13; outl(csr15 | lp->cache.gepc, DE4X5_SIGR); outl(csr15 | lp->cache.gep, DE4X5_SIGR); } } else { outl(csr15, DE4X5_SIGR); } outl(csr14, DE4X5_STRR); outl(csr13, DE4X5_SICR); de4x5_ms_delay(10); return; } /* ** Create a loopback ethernet packet */ static void create_packet(struct device *dev, char *frame, int len) { int i; char *buf = frame; for (i=0; idev_addr[i]; } for (i=0; idev_addr[i]; } *buf++ = 0; /* Packet length (2 bytes) */ *buf++ = 1; return; } /* ** Known delay in microseconds */ static void de4x5_us_delay(u32 usec) { udelay(usec); return; } /* ** Known delay in milliseconds, in millisecond steps. */ static void de4x5_ms_delay(u32 msec) { u_int i; for (i=0; i>2)&0x1f)+0x40); ManCode[1]=(((Eisa.Id[1]&0xe0)>>5)+((Eisa.Id[0]&0x03)<<3)+0x40); ManCode[2]=(((Eisa.Id[2]>>4)&0x0f)+0x30); ManCode[3]=((Eisa.Id[2]&0x0f)+0x30); ManCode[4]=(((Eisa.Id[3]>>4)&0x0f)+0x30); ManCode[5]='\0'; for (i=0;ichipset == DC21040) { strcpy(name, "DE434/5"); return status; } else { /* Search for a DEC name in the SROM */ int i = *((char *)&lp->srom + 19) * 3; strncpy(name, (char *)&lp->srom + 26 + i, 8); } name[8] = '\0'; for (i=0; ichipset == DC21040) ? "DC21040" : ((lp->chipset == DC21041) ? "DC21041" : ((lp->chipset == DC21140) ? "DC21140" : ((lp->chipset == DC21142) ? "DC21142" : ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN" ))))))); } if (lp->chipset != DC21041) { useSROM = TRUE; /* card is not recognisably DEC */ } } else if ((lp->chipset & ~0x00ff) == DC2114x) { useSROM = TRUE; } return status; } /* ** Set up the Ethernet PROM counter to the start of the Ethernet address on ** the DC21040, else read the SROM for the other chips. ** The SROM may not be present in a multi-MAC card, so first read the ** MAC address and check for a bad address. If there is a bad one then exit ** immediately with the prior srom contents intact (the h/w address will ** be fixed up later). */ static void DevicePresent(u_long aprom_addr) { int i, j=0; struct bus_type *lp = &bus; if (lp->chipset == DC21040) { if (lp->bus == EISA) { enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */ } else { outl(0, aprom_addr); /* Reset Ethernet Address ROM Pointer */ } } else { /* Read new srom */ u_short tmp, *p = (short *)((char *)&lp->srom + SROM_HWADD); for (i=0; i<(ETH_ALEN>>1); i++) { tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i); *p = le16_to_cpu(tmp); j += *p++; } if ((j == 0) || (j == 0x2fffd)) { return; } p=(short *)&lp->srom; for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) { tmp = srom_rd(aprom_addr, i); *p++ = le16_to_cpu(tmp); } de4x5_dbg_srom((struct de4x5_srom *)&lp->srom); } return; } /* ** Since the write on the Enet PROM register doesn't seem to reset the PROM ** pointer correctly (at least on my DE425 EISA card), this routine should do ** it...from depca.c. */ static void enet_addr_rst(u_long aprom_addr) { union { struct { u32 a; u32 b; } llsig; char Sig[sizeof(u32) << 1]; } dev; short sigLength=0; s8 data; int i, j; dev.llsig.a = ETH_PROM_SIG; dev.llsig.b = ETH_PROM_SIG; sigLength = sizeof(u32) << 1; for (i=0,j=0;jbase_addr; int broken, i, k, tmp, status = 0; u_short j,chksum; struct bus_type *lp = &bus; broken = de4x5_bad_srom(lp); for (i=0,k=0,j=0;j<3;j++) { k <<= 1; if (k > 0xffff) k-=0xffff; if (lp->bus == PCI) { if (lp->chipset == DC21040) { while ((tmp = inl(DE4X5_APROM)) < 0); k += (u_char) tmp; dev->dev_addr[i++] = (u_char) tmp; while ((tmp = inl(DE4X5_APROM)) < 0); k += (u_short) (tmp << 8); dev->dev_addr[i++] = (u_char) tmp; } else if (!broken) { dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++; dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++; } else if ((broken == SMC) || (broken == ACCTON)) { dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++; dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++; } } else { k += (u_char) (tmp = inb(EISA_APROM)); dev->dev_addr[i++] = (u_char) tmp; k += (u_short) ((tmp = inb(EISA_APROM)) << 8); dev->dev_addr[i++] = (u_char) tmp; } if (k > 0xffff) k-=0xffff; } if (k == 0xffff) k=0; if (lp->bus == PCI) { if (lp->chipset == DC21040) { while ((tmp = inl(DE4X5_APROM)) < 0); chksum = (u_char) tmp; while ((tmp = inl(DE4X5_APROM)) < 0); chksum |= (u_short) (tmp << 8); if ((k != chksum) && (dec_only)) status = -1; } } else { chksum = (u_char) inb(EISA_APROM); chksum |= (u_short) (inb(EISA_APROM) << 8); if ((k != chksum) && (dec_only)) status = -1; } /* If possible, try to fix a broken card - SMC only so far */ srom_repair(dev, broken); /* Test for a bad enet address */ status = test_bad_enet(dev, status); return status; } /* ** Test for enet addresses in the first 32 bytes. The built-in strncmp ** didn't seem to work here...? */ static int de4x5_bad_srom(struct bus_type *lp) { int i, status = 0; for (i=0; isrom, (char *)&enet_det[i], 3) && !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) { if (i == 0) { status = SMC; } else if (i == 1) { status = ACCTON; } break; } } return status; } static int de4x5_strncmp(char *a, char *b, int n) { int ret=0; for (;n && !ret;n--) { ret = *a++ - *b++; } return ret; } static void srom_repair(struct device *dev, int card) { struct bus_type *lp = &bus; switch(card) { case SMC: memset((char *)&bus.srom, 0, sizeof(struct de4x5_srom)); memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN); memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100); useSROM = TRUE; break; } return; } /* ** Assume that the irq's do not follow the PCI spec - this is seems ** to be true so far (2 for 2). */ static int test_bad_enet(struct device *dev, int status) { struct bus_type *lp = &bus; int i, tmp; for (tmp=0,i=0; idev_addr[i]; if ((tmp == 0) || (tmp == 0x5fa)) { if ((lp->chipset == last.chipset) && (lp->bus_num == last.bus) && (lp->bus_num > 0)) { for (i=0; idev_addr[i] = last.addr[i]; for (i=ETH_ALEN-1; i>2; --i) { dev->dev_addr[i] += 1; if (dev->dev_addr[i] != 0) break; } for (i=0; idev_addr[i]; dev->irq = last.irq; status = 0; } } else if (!status) { last.chipset = lp->chipset; last.bus = lp->bus_num; last.irq = dev->irq; for (i=0; idev_addr[i]; } return status; } /* ** SROM Read */ static short srom_rd(u_long addr, u_char offset) { sendto_srom(SROM_RD | SROM_SR, addr); srom_latch(SROM_RD | SROM_SR | DT_CS, addr); srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr); srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset); return srom_data(SROM_RD | SROM_SR | DT_CS, addr); } static void srom_latch(u_int command, u_long addr) { sendto_srom(command, addr); sendto_srom(command | DT_CLK, addr); sendto_srom(command, addr); return; } static void srom_command(u_int command, u_long addr) { srom_latch(command, addr); srom_latch(command, addr); srom_latch((command & 0x0000ff00) | DT_CS, addr); return; } static void srom_address(u_int command, u_long addr, u_char offset) { int i; char a; a = (char)(offset << 2); for (i=0; i<6; i++, a <<= 1) { srom_latch(command | ((a < 0) ? DT_IN : 0), addr); } de4x5_us_delay(1); i = (getfrom_srom(addr) >> 3) & 0x01; return; } static short srom_data(u_int command, u_long addr) { int i; short word = 0; s32 tmp; for (i=0; i<16; i++) { sendto_srom(command | DT_CLK, addr); tmp = getfrom_srom(addr); sendto_srom(command, addr); word = (word << 1) | ((tmp >> 3) & 0x01); } sendto_srom(command & 0x0000ff00, addr); return word; } /* static void srom_busy(u_int command, u_long addr) { sendto_srom((command & 0x0000ff00) | DT_CS, addr); while (!((getfrom_srom(addr) >> 3) & 0x01)) { de4x5_ms_delay(1); } sendto_srom(command & 0x0000ff00, addr); return; } */ static void sendto_srom(u_int command, u_long addr) { outl(command, addr); udelay(1); return; } static int getfrom_srom(u_long addr) { s32 tmp; tmp = inl(addr); udelay(1); return tmp; } static int srom_infoleaf_info(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int i, count; u_char *p; /* Find the infoleaf decoder function that matches this chipset */ for (i=0; ichipset == infoleaf_array[i].chipset) break; } if (i == INFOLEAF_SIZE) { lp->useSROM = FALSE; printk("%s: Cannot find correct chipset for SROM decoding!\n", dev->name); return -ENXIO; } lp->infoleaf_fn = infoleaf_array[i].fn; /* Find the information offset that this function should use */ count = *((u_char *)&lp->srom + 19); p = (u_char *)&lp->srom + 26; if (count > 1) { for (i=count; i; --i, p+=3) { if (lp->device == *p) break; } if (i == 0) { lp->useSROM = FALSE; printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n", dev->name, lp->device); return -ENXIO; } } lp->infoleaf_offset = TWIDDLE(p+1); return 0; } /* ** This routine loads any type 1 or 3 MII info into the mii device ** struct and executes any type 5 code to reset PHY devices for this ** controller. ** The info for the MII devices will be valid since the index used ** will follow the discovery process from MII address 1-31 then 0. */ static void srom_init(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset; u_char count; p+=2; if (lp->chipset == DC21140) { lp->cache.gepc = (*p++ | GEP_CTRL); gep_wr(lp->cache.gepc, dev); } /* Block count */ count = *p++; /* Jump the infoblocks to find types */ for (;count; --count) { if (*p < 128) { p += COMPACT_LEN; } else if (*(p+1) == 5) { type5_infoblock(dev, 1, p); p += ((*p & BLOCK_LEN) + 1); } else if (*(p+1) == 4) { p += ((*p & BLOCK_LEN) + 1); } else if (*(p+1) == 3) { type3_infoblock(dev, 1, p); p += ((*p & BLOCK_LEN) + 1); } else if (*(p+1) == 2) { p += ((*p & BLOCK_LEN) + 1); } else if (*(p+1) == 1) { type1_infoblock(dev, 1, p); p += ((*p & BLOCK_LEN) + 1); } else { p += ((*p & BLOCK_LEN) + 1); } } return; } /* ** A generic routine that writes GEP control, data and reset information ** to the GEP register (21140) or csr15 GEP portion (2114[23]). */ static void srom_exec(struct device *dev, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; u_char count = (p ? *p++ : 0); u_short *w = (u_short *)p; if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return; if (lp->chipset != DC21140) RESET_SIA; while (count--) { gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ? *p++ : TWIDDLE(w++)), dev); udelay(2000); /* 2ms per action */ } if (lp->chipset != DC21140) { outl(lp->cache.csr14, DE4X5_STRR); outl(lp->cache.csr13, DE4X5_SICR); } return; } /* ** Basically this function is a NOP since it will never be called, ** unless I implement the DC21041 SROM functions. There's no need ** since the existing code will be satisfactory for all boards. */ static int dc21041_infoleaf(struct device *dev) { return DE4X5_AUTOSENSE_MS; } static int dc21140_infoleaf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char count = 0; u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset; int next_tick = DE4X5_AUTOSENSE_MS; /* Read the connection type */ p+=2; /* GEP control */ lp->cache.gepc = (*p++ | GEP_CTRL); /* Block count */ count = *p++; /* Recursively figure out the info blocks */ if (*p < 128) { next_tick = dc_infoblock[COMPACT](dev, count, p); } else { next_tick = dc_infoblock[*(p+1)](dev, count, p); } if (lp->tcount == count) { lp->media = NC; if (lp->media != lp->c_media) { de4x5_dbg_media(dev); lp->c_media = lp->media; } lp->media = INIT; lp->tcount = 0; lp->tx_enable = FALSE; } return next_tick & ~TIMER_CB; } static int dc21142_infoleaf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char count = 0; u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset; int next_tick = DE4X5_AUTOSENSE_MS; /* Read the connection type */ p+=2; /* Block count */ count = *p++; /* Recursively figure out the info blocks */ if (*p < 128) { next_tick = dc_infoblock[COMPACT](dev, count, p); } else { next_tick = dc_infoblock[*(p+1)](dev, count, p); } if (lp->tcount == count) { lp->media = NC; if (lp->media != lp->c_media) { de4x5_dbg_media(dev); lp->c_media = lp->media; } lp->media = INIT; lp->tcount = 0; lp->tx_enable = FALSE; } return next_tick & ~TIMER_CB; } static int dc21143_infoleaf(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char count = 0; u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset; int next_tick = DE4X5_AUTOSENSE_MS; /* Read the connection type */ p+=2; /* Block count */ count = *p++; /* Recursively figure out the info blocks */ if (*p < 128) { next_tick = dc_infoblock[COMPACT](dev, count, p); } else { next_tick = dc_infoblock[*(p+1)](dev, count, p); } if (lp->tcount == count) { lp->media = NC; if (lp->media != lp->c_media) { de4x5_dbg_media(dev); lp->c_media = lp->media; } lp->media = INIT; lp->tcount = 0; lp->tx_enable = FALSE; } return next_tick & ~TIMER_CB; } /* ** The compact infoblock is only designed for DC21140[A] chips, so ** we'll reuse the dc21140m_autoconf function. Non MII media only. */ static int compact_infoblock(struct device *dev, u_char count, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char flags, csr6; /* Recursively figure out the info blocks */ if (--count > lp->tcount) { if (*(p+COMPACT_LEN) < 128) { return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN); } else { return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN); } } if ((lp->media == INIT) && (lp->timeout < 0)) { lp->ibn = COMPACT; lp->active = 0; gep_wr(lp->cache.gepc, dev); lp->infoblock_media = (*p++) & COMPACT_MC; lp->cache.gep = *p++; csr6 = *p++; flags = *p++; lp->asBitValid = (flags & 0x80) ? 0 : -1; lp->defMedium = (flags & 0x40) ? -1 : 0; lp->asBit = 1 << ((csr6 >> 1) & 0x07); lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit; lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18); lp->useMII = FALSE; de4x5_switch_mac_port(dev); } return dc21140m_autoconf(dev); } /* ** This block describes non MII media for the DC21140[A] only. */ static int type0_infoblock(struct device *dev, u_char count, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char flags, csr6, len = (*p & BLOCK_LEN)+1; /* Recursively figure out the info blocks */ if (--count > lp->tcount) { if (*(p+len) < 128) { return dc_infoblock[COMPACT](dev, count, p+len); } else { return dc_infoblock[*(p+len+1)](dev, count, p+len); } } if ((lp->media == INIT) && (lp->timeout < 0)) { lp->ibn = 0; lp->active = 0; gep_wr(lp->cache.gepc, dev); p+=2; lp->infoblock_media = (*p++) & BLOCK0_MC; lp->cache.gep = *p++; csr6 = *p++; flags = *p++; lp->asBitValid = (flags & 0x80) ? 0 : -1; lp->defMedium = (flags & 0x40) ? -1 : 0; lp->asBit = 1 << ((csr6 >> 1) & 0x07); lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit; lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18); lp->useMII = FALSE; de4x5_switch_mac_port(dev); } return dc21140m_autoconf(dev); } /* These functions are under construction! */ static int type1_infoblock(struct device *dev, u_char count, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char len = (*p & BLOCK_LEN)+1; /* Recursively figure out the info blocks */ if (--count > lp->tcount) { if (*(p+len) < 128) { return dc_infoblock[COMPACT](dev, count, p+len); } else { return dc_infoblock[*(p+len+1)](dev, count, p+len); } } p += 2; if (lp->state == INITIALISED) { lp->active = *p++; lp->phy[lp->active].gep = (*p ? p : 0); p += (*p + 1); lp->phy[lp->active].rst = (*p ? p : 0); p += (*p + 1); lp->phy[lp->active].mc = TWIDDLE(p); p += 2; lp->phy[lp->active].ana = TWIDDLE(p); p += 2; lp->phy[lp->active].fdx = TWIDDLE(p); p += 2; lp->phy[lp->active].ttm = TWIDDLE(p); return 0; } else if ((lp->media == INIT) && (lp->timeout < 0)) { lp->ibn = 1; lp->active = *p; lp->infoblock_csr6 = OMR_MII_100; lp->useMII = TRUE; lp->infoblock_media = ANS; de4x5_switch_mac_port(dev); } return dc21140m_autoconf(dev); } static int type2_infoblock(struct device *dev, u_char count, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char len = (*p & BLOCK_LEN)+1; /* Recursively figure out the info blocks */ if (--count > lp->tcount) { if (*(p+len) < 128) { return dc_infoblock[COMPACT](dev, count, p+len); } else { return dc_infoblock[*(p+len+1)](dev, count, p+len); } } if ((lp->media == INIT) && (lp->timeout < 0)) { lp->ibn = 2; lp->active = 0; p += 2; lp->infoblock_media = (*p) & MEDIA_CODE; if ((*p++) & EXT_FIELD) { lp->cache.csr13 = TWIDDLE(p); p += 2; lp->cache.csr14 = TWIDDLE(p); p += 2; lp->cache.csr15 = TWIDDLE(p); p += 2; } else { lp->cache.csr13 = CSR13; lp->cache.csr14 = CSR14; lp->cache.csr15 = CSR15; } lp->cache.gepc = ((s32)(TWIDDLE(p)) << 16); p += 2; lp->cache.gep = ((s32)(TWIDDLE(p)) << 16); lp->infoblock_csr6 = OMR_SIA; lp->useMII = FALSE; de4x5_switch_mac_port(dev); } return dc2114x_autoconf(dev); } static int type3_infoblock(struct device *dev, u_char count, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char len = (*p & BLOCK_LEN)+1; /* Recursively figure out the info blocks */ if (--count > lp->tcount) { if (*(p+len) < 128) { return dc_infoblock[COMPACT](dev, count, p+len); } else { return dc_infoblock[*(p+len+1)](dev, count, p+len); } } p += 2; if (lp->state == INITIALISED) { lp->active = *p++; lp->phy[lp->active].gep = (*p ? p : 0); p += (2 * (*p) + 1); lp->phy[lp->active].rst = (*p ? p : 0); p += (2 * (*p) + 1); lp->phy[lp->active].mc = TWIDDLE(p); p += 2; lp->phy[lp->active].ana = TWIDDLE(p); p += 2; lp->phy[lp->active].fdx = TWIDDLE(p); p += 2; lp->phy[lp->active].ttm = TWIDDLE(p); p += 2; lp->phy[lp->active].mci = *p; return 0; } else if ((lp->media == INIT) && (lp->timeout < 0)) { lp->ibn = 3; lp->active = *p; lp->infoblock_csr6 = OMR_MII_100; lp->useMII = TRUE; lp->infoblock_media = ANS; de4x5_switch_mac_port(dev); } return dc2114x_autoconf(dev); } static int type4_infoblock(struct device *dev, u_char count, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char flags, csr6, len = (*p & BLOCK_LEN)+1; /* Recursively figure out the info blocks */ if (--count > lp->tcount) { if (*(p+len) < 128) { return dc_infoblock[COMPACT](dev, count, p+len); } else { return dc_infoblock[*(p+len+1)](dev, count, p+len); } } if ((lp->media == INIT) && (lp->timeout < 0)) { lp->ibn = 4; lp->active = 0; p+=2; lp->infoblock_media = (*p++) & MEDIA_CODE; lp->cache.csr13 = CSR13; /* Hard coded defaults */ lp->cache.csr14 = CSR14; lp->cache.csr15 = CSR15; lp->cache.gepc = ((s32)(TWIDDLE(p)) << 16); p += 2; lp->cache.gep = ((s32)(TWIDDLE(p)) << 16); p += 2; csr6 = *p++; flags = *p++; lp->asBitValid = (flags & 0x80) ? 0 : -1; lp->defMedium = (flags & 0x40) ? -1 : 0; lp->asBit = 1 << ((csr6 >> 1) & 0x07); lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit; lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18); lp->useMII = FALSE; de4x5_switch_mac_port(dev); } return dc2114x_autoconf(dev); } /* ** This block type provides information for resetting external devices ** (chips) through the General Purpose Register. */ static int type5_infoblock(struct device *dev, u_char count, u_char *p) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_char len = (*p & BLOCK_LEN)+1; /* Recursively figure out the info blocks */ if (--count > lp->tcount) { if (*(p+len) < 128) { return dc_infoblock[COMPACT](dev, count, p+len); } else { return dc_infoblock[*(p+len+1)](dev, count, p+len); } } /* Must be initializing to run this code */ if ((lp->state == INITIALISED) || (lp->media == INIT)) { p+=2; lp->rst = p; srom_exec(dev, lp->rst); } return DE4X5_AUTOSENSE_MS; } /* ** MII Read/Write */ static int mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr) { mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */ mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */ mii_wdata(MII_STRD, 4, ioaddr); /* SFD and Read operation */ mii_address(phyaddr, ioaddr); /* PHY address to be accessed */ mii_address(phyreg, ioaddr); /* PHY Register to read */ mii_ta(MII_STRD, ioaddr); /* Turn around time - 2 MDC */ return mii_rdata(ioaddr); /* Read data */ } static void mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr) { mii_wdata(MII_PREAMBLE, 2, ioaddr); /* Start of 34 bit preamble... */ mii_wdata(MII_PREAMBLE, 32, ioaddr); /* ...continued */ mii_wdata(MII_STWR, 4, ioaddr); /* SFD and Write operation */ mii_address(phyaddr, ioaddr); /* PHY address to be accessed */ mii_address(phyreg, ioaddr); /* PHY Register to write */ mii_ta(MII_STWR, ioaddr); /* Turn around time - 2 MDC */ data = mii_swap(data, 16); /* Swap data bit ordering */ mii_wdata(data, 16, ioaddr); /* Write data */ return; } static int mii_rdata(u_long ioaddr) { int i; s32 tmp = 0; for (i=0; i<16; i++) { tmp <<= 1; tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr); } return tmp; } static void mii_wdata(int data, int len, u_long ioaddr) { int i; for (i=0; i>= 1; } return; } static void mii_address(u_char addr, u_long ioaddr) { int i; addr = mii_swap(addr, 5); for (i=0; i<5; i++) { sendto_mii(MII_MWR | MII_WR, addr, ioaddr); addr >>= 1; } return; } static void mii_ta(u_long rw, u_long ioaddr) { if (rw == MII_STWR) { sendto_mii(MII_MWR | MII_WR, 1, ioaddr); sendto_mii(MII_MWR | MII_WR, 0, ioaddr); } else { getfrom_mii(MII_MRD | MII_RD, ioaddr); /* Tri-state MDIO */ } return; } static int mii_swap(int data, int len) { int i, tmp = 0; for (i=0; i>= 1; } return tmp; } static void sendto_mii(u32 command, int data, u_long ioaddr) { u32 j; j = (data & 1) << 17; outl(command | j, ioaddr); udelay(1); outl(command | MII_MDC | j, ioaddr); udelay(1); return; } static int getfrom_mii(u32 command, u_long ioaddr) { outl(command, ioaddr); udelay(1); outl(command | MII_MDC, ioaddr); udelay(1); return ((inl(ioaddr) >> 19) & 1); } /* ** Here's 3 ways to calculate the OUI from the ID registers. */ static int mii_get_oui(u_char phyaddr, u_long ioaddr) { /* union { u_short reg; u_char breg[2]; } a; int i, r2, r3, ret=0;*/ int r2, r3; /* Read r2 and r3 */ r2 = mii_rd(MII_ID0, phyaddr, ioaddr); r3 = mii_rd(MII_ID1, phyaddr, ioaddr); /* SEEQ and Cypress way * / / * Shuffle r2 and r3 * / a.reg=0; r3 = ((r3>>10)|(r2<<6))&0x0ff; r2 = ((r2>>2)&0x3fff); / * Bit reverse r3 * / for (i=0;i<8;i++) { ret<<=1; ret |= (r3&1); r3>>=1; } / * Bit reverse r2 * / for (i=0;i<16;i++) { a.reg<<=1; a.reg |= (r2&1); r2>>=1; } / * Swap r2 bytes * / i=a.breg[0]; a.breg[0]=a.breg[1]; a.breg[1]=i; return ((a.reg<<8)|ret); */ /* SEEQ and Cypress way */ /* return ((r2<<6)|(u_int)(r3>>10)); */ /* NATIONAL and BROADCOM way */ return r2; /* (I did it) My way */ } /* ** The SROM spec forces us to search addresses [1-31 0]. Bummer. */ static int mii_get_phy(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; int i, j, k, n, limit=sizeof(phy_info)/sizeof(struct phy_table); int id; lp->active = 0; lp->useMII = TRUE; /* Search the MII address space for possible PHY devices */ for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(++i)%DE4X5_MAX_MII) { lp->phy[lp->active].addr = i; if (i==0) n++; /* Count cycles */ while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */ id = mii_get_oui(i, DE4X5_MII); if ((id == 0) || (id == 65535)) continue; /* Valid ID? */ for (j=0; jphy[k].id && (k < DE4X5_MAX_PHY); k++); if (k < DE4X5_MAX_PHY) { memcpy((char *)&lp->phy[k], (char *)&phy_info[j], sizeof(struct phy_table)); lp->phy[k].addr = i; lp->mii_cnt++; lp->active++; } else { goto purgatory; /* Stop the search */ } break; } if ((j == limit) && (i < DE4X5_MAX_MII)) { for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++); lp->phy[k].addr = i; lp->phy[k].id = id; lp->phy[k].spd.reg = GENERIC_REG; /* ANLPA register */ lp->phy[k].spd.mask = GENERIC_MASK; /* 100Mb/s technologies */ lp->phy[k].spd.value = GENERIC_VALUE; /* TX & T4, H/F Duplex */ lp->mii_cnt++; lp->active++; printk("%s: Using generic MII device control. If the board doesn't operate, \nplease mail the following dump to the author:\n", dev->name); j = de4x5_debug; de4x5_debug |= DEBUG_MII; de4x5_dbg_mii(dev, k); de4x5_debug = j; printk("\n"); } } purgatory: lp->active = 0; if (lp->phy[0].id) { /* Reset the PHY devices */ for (k=0; lp->phy[k].id && (k < DE4X5_MAX_PHY); k++) { /*For each PHY*/ mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII); while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST); de4x5_dbg_mii(dev, k); } } if (!lp->mii_cnt) lp->useMII = FALSE; return lp->mii_cnt; } static char * build_setup_frame(struct device *dev, int mode) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int i; char *pa = lp->setup_frame; /* Initialise the setup frame */ if (mode == ALL) { memset(lp->setup_frame, 0, SETUP_FRAME_LEN); } if (lp->setup_f == HASH_PERF) { for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; idev_addr[i]; /* Host address */ if (i & 0x01) pa += 2; } *(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80; } else { for (i=0; idev_addr[i]; if (i & 0x01) pa += 4; } for (i=0; ipriv; del_timer(&lp->timer); return; } static long de4x5_switch_mac_port(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; s32 omr; STOP_DE4X5; /* Assert the OMR_PS bit in CSR6 */ omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR | OMR_FDX)); omr |= lp->infoblock_csr6; if (omr & OMR_PS) omr |= OMR_HBD; outl(omr, DE4X5_OMR); /* Soft Reset */ RESET_DE4X5; /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */ if (lp->chipset == DC21140) { gep_wr(lp->cache.gepc, dev); gep_wr(lp->cache.gep, dev); } else if ((lp->chipset & ~0x0ff) == DC2114x) { reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15); } /* Restore CSR6 */ outl(omr, DE4X5_OMR); /* Reset CSR8 */ inl(DE4X5_MFC); return omr; } static void gep_wr(s32 data, struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if (lp->chipset == DC21140) { outl(data, DE4X5_GEP); } else if ((lp->chipset & ~0x00ff) == DC2114x) { outl((data<<16) | lp->cache.csr15, DE4X5_SIGR); } return; } static int gep_rd(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if (lp->chipset == DC21140) { return inl(DE4X5_GEP); } else if ((lp->chipset & ~0x00ff) == DC2114x) { return (inl(DE4X5_SIGR) & 0x000fffff); } return 0; } static void timeout(struct device *dev, void (*fn)(u_long data), u_long data, u_long msec) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int dt; /* First, cancel any pending timer events */ del_timer(&lp->timer); /* Convert msec to ticks */ dt = (msec * HZ) / 1000; if (dt==0) dt=1; /* Set up timer */ lp->timer.expires = jiffies + dt; lp->timer.function = fn; lp->timer.data = data; add_timer(&lp->timer); return; } static void yawn(struct device *dev, int state) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return; if(lp->bus == EISA) { switch(state) { case WAKEUP: outb(WAKEUP, PCI_CFPM); de4x5_ms_delay(10); break; case SNOOZE: outb(SNOOZE, PCI_CFPM); break; case SLEEP: outl(0, DE4X5_SICR); outb(SLEEP, PCI_CFPM); break; } } else { switch(state) { case WAKEUP: pcibios_write_config_byte(lp->bus_num, lp->device << 3, PCI_CFDA_PSM, WAKEUP); de4x5_ms_delay(10); break; case SNOOZE: pcibios_write_config_byte(lp->bus_num, lp->device << 3, PCI_CFDA_PSM, SNOOZE); break; case SLEEP: outl(0, DE4X5_SICR); pcibios_write_config_byte(lp->bus_num, lp->device << 3, PCI_CFDA_PSM, SLEEP); break; } } return; } static void de4x5_parse_params(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; char *p, *q, t; lp->params.fdx = 0; lp->params.autosense = AUTO; if (args == NULL) return; if ((p = strstr(args, dev->name))) { if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p); t = *q; *q = '\0'; if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1; if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) { if (strstr(p, "TP")) { lp->params.autosense = TP; } else if (strstr(p, "TP_NW")) { lp->params.autosense = TP_NW; } else if (strstr(p, "BNC")) { lp->params.autosense = BNC; } else if (strstr(p, "AUI")) { lp->params.autosense = AUI; } else if (strstr(p, "BNC_AUI")) { lp->params.autosense = BNC; } else if (strstr(p, "10Mb")) { lp->params.autosense = _10Mb; } else if (strstr(p, "100Mb")) { lp->params.autosense = _100Mb; } else if (strstr(p, "AUTO")) { lp->params.autosense = AUTO; } } *q = t; } return; } static void de4x5_dbg_open(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; int i; if (de4x5_debug & DEBUG_OPEN) { printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq); printk("\tphysical address: "); for (i=0;i<6;i++) { printk("%2.2x:",(short)dev->dev_addr[i]); } printk("\n"); printk("Descriptor head addresses:\n"); printk("\t0x%8.8lx 0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring); printk("Descriptor addresses:\nRX: "); for (i=0;irxRingSize-1;i++){ if (i < 3) { printk("0x%8.8lx ",(u_long)&lp->rx_ring[i].status); } } printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status); printk("TX: "); for (i=0;itxRingSize-1;i++){ if (i < 3) { printk("0x%8.8lx ", (u_long)&lp->tx_ring[i].status); } } printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status); printk("Descriptor buffers:\nRX: "); for (i=0;irxRingSize-1;i++){ if (i < 3) { printk("0x%8.8x ",le32_to_cpu(lp->rx_ring[i].buf)); } } printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf)); printk("TX: "); for (i=0;itxRingSize-1;i++){ if (i < 3) { printk("0x%8.8x ", le32_to_cpu(lp->tx_ring[i].buf)); } } printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf)); printk("Ring size: \nRX: %d\nTX: %d\n", (short)lp->rxRingSize, (short)lp->txRingSize); } return; } static void de4x5_dbg_mii(struct device *dev, int k) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; u_long iobase = dev->base_addr; if (de4x5_debug & DEBUG_MII) { printk("\nMII device address: %d\n", lp->phy[k].addr); printk("MII CR: %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII)); printk("MII SR: %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII)); printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII)); printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII)); if (lp->phy[k].id != BROADCOM_T4) { printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII)); printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII)); } printk("MII 16: %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII)); if (lp->phy[k].id != BROADCOM_T4) { printk("MII 17: %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII)); printk("MII 18: %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII)); } else { printk("MII 20: %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII)); } } return; } static void de4x5_dbg_media(struct device *dev) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; if (lp->media != lp->c_media) { if (de4x5_debug & DEBUG_MEDIA) { printk("%s: media is %s%s\n", dev->name, (lp->media == NC ? "unconnected, link down or incompatible connection" : (lp->media == TP ? "TP" : (lp->media == ANS ? "TP/Nway" : (lp->media == BNC ? "BNC" : (lp->media == AUI ? "AUI" : (lp->media == BNC_AUI ? "BNC/AUI" : (lp->media == EXT_SIA ? "EXT SIA" : (lp->media == _100Mb ? "100Mb/s" : (lp->media == _10Mb ? "10Mb/s" : "???" ))))))))), (lp->fdx?" full duplex.":".")); } lp->c_media = lp->media; } return; } static void de4x5_dbg_srom(struct de4x5_srom *p) { int i; if (de4x5_debug & DEBUG_SROM) { printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id)); printk("Sub-system ID: %04x\n", *((u_short *)p->sub_system_id)); printk("ID Block CRC: %02x\n", (u_char)(p->id_block_crc)); printk("SROM version: %02x\n", (u_char)(p->version)); printk("# controllers: %02x\n", (u_char)(p->num_controllers)); printk("Hardware Address: "); for (i=0;iieee_addr+i)); } printk("%02x\n", (u_char)*(p->ieee_addr+i)); printk("CRC checksum: %04x\n", (u_short)(p->chksum)); for (i=0; i<64; i++) { printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i)); } } return; } static void de4x5_dbg_rx(struct sk_buff *skb, int len) { int i, j; if (de4x5_debug & DEBUG_RX) { printk("R: %02x:%02x:%02x:%02x:%02x:%02x <- %02x:%02x:%02x:%02x:%02x:%02x len/SAP:%02x%02x [%d]\n", (u_char)skb->data[0], (u_char)skb->data[1], (u_char)skb->data[2], (u_char)skb->data[3], (u_char)skb->data[4], (u_char)skb->data[5], (u_char)skb->data[6], (u_char)skb->data[7], (u_char)skb->data[8], (u_char)skb->data[9], (u_char)skb->data[10], (u_char)skb->data[11], (u_char)skb->data[12], (u_char)skb->data[13], len); if (de4x5_debug & DEBUG_RX) { for (j=0; len>0;j+=16, len-=16) { printk(" %03x: ",j); for (i=0; i<16 && idata[i+j]); } printk("\n"); } } } return; } /* ** Perform IOCTL call functions here. Some are privileged operations and the ** effective uid is checked in those cases. In the normal course of events ** this function is only used for my testing. */ static int de4x5_ioctl(struct device *dev, struct ifreq *rq, int cmd) { struct de4x5_private *lp = (struct de4x5_private *)dev->priv; struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_data; u_long iobase = dev->base_addr; int i, j, status = 0; s32 omr; union { u8 addr[144]; u16 sval[72]; u32 lval[36]; } tmp; switch(ioc->cmd) { case DE4X5_GET_HWADDR: /* Get the hardware address */ ioc->len = ETH_ALEN; status = verify_area(VERIFY_WRITE, (void *)ioc->data, ioc->len); if (status) break; for (i=0; idev_addr[i]; } copy_to_user(ioc->data, tmp.addr, ioc->len); break; case DE4X5_SET_HWADDR: /* Set the hardware address */ status = verify_area(VERIFY_READ, (void *)ioc->data, ETH_ALEN); if (status) break; status = -EPERM; if (!suser()) break; status = 0; copy_from_user(tmp.addr, ioc->data, ETH_ALEN); for (i=0; idev_addr[i] = tmp.addr[i]; } build_setup_frame(dev, PHYS_ADDR_ONLY); /* Set up the descriptor and give ownership to the card */ while (test_and_set_bit(0, (void *)&dev->tbusy) != 0); load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET | SETUP_FRAME_LEN, NULL); lp->tx_new = (++lp->tx_new) % lp->txRingSize; outl(POLL_DEMAND, DE4X5_TPD); /* Start the TX */ dev->tbusy = 0; /* Unlock the TX ring */ break; case DE4X5_SET_PROM: /* Set Promiscuous Mode */ if (suser()) { omr = inl(DE4X5_OMR); omr |= OMR_PR; outl(omr, DE4X5_OMR); dev->flags |= IFF_PROMISC; } else { status = -EPERM; } break; case DE4X5_CLR_PROM: /* Clear Promiscuous Mode */ if (suser()) { omr = inl(DE4X5_OMR); omr &= ~OMR_PR; outb(omr, DE4X5_OMR); dev->flags &= ~IFF_PROMISC; } else { status = -EPERM; } break; case DE4X5_SAY_BOO: /* Say "Boo!" to the kernel log file */ printk("%s: Boo!\n", dev->name); break; case DE4X5_MCA_EN: /* Enable pass all multicast addressing */ if (suser()) { omr = inl(DE4X5_OMR); omr |= OMR_PM; outl(omr, DE4X5_OMR); } else { status = -EPERM; } break; case DE4X5_GET_STATS: /* Get the driver statistics */ ioc->len = sizeof(lp->pktStats); status = verify_area(VERIFY_WRITE, (void *)ioc->data, ioc->len); if (status) break; cli(); copy_to_user(ioc->data, &lp->pktStats, ioc->len); sti(); break; case DE4X5_CLR_STATS: /* Zero out the driver statistics */ if (suser()) { cli(); memset(&lp->pktStats, 0, sizeof(lp->pktStats)); sti(); } else { status = -EPERM; } break; case DE4X5_GET_OMR: /* Get the OMR Register contents */ tmp.addr[0] = inl(DE4X5_OMR); if (!(status = verify_area(VERIFY_WRITE, (void *)ioc->data, 1))) { copy_to_user(ioc->data, tmp.addr, 1); } break; case DE4X5_SET_OMR: /* Set the OMR Register contents */ if (suser()) { if (!(status = verify_area(VERIFY_READ, (void *)ioc->data, 1))) { copy_from_user(tmp.addr, ioc->data, 1); outl(tmp.addr[0], DE4X5_OMR); } } else { status = -EPERM; } break; case DE4X5_GET_REG: /* Get the DE4X5 Registers */ j = 0; tmp.lval[0] = inl(DE4X5_STS); j+=4; tmp.lval[1] = inl(DE4X5_BMR); j+=4; tmp.lval[2] = inl(DE4X5_IMR); j+=4; tmp.lval[3] = inl(DE4X5_OMR); j+=4; tmp.lval[4] = inl(DE4X5_SISR); j+=4; tmp.lval[5] = inl(DE4X5_SICR); j+=4; tmp.lval[6] = inl(DE4X5_STRR); j+=4; tmp.lval[7] = inl(DE4X5_SIGR); j+=4; ioc->len = j; if (!(status = verify_area(VERIFY_WRITE, (void *)ioc->data, ioc->len))) { copy_to_user(ioc->data, tmp.addr, ioc->len); } break; #define DE4X5_DUMP 0x0f /* Dump the DE4X5 Status */ /* case DE4X5_DUMP: j = 0; tmp.addr[j++] = dev->irq; for (i=0; idev_addr[i]; } tmp.addr[j++] = lp->rxRingSize; tmp.lval[j>>2] = (long)lp->rx_ring; j+=4; tmp.lval[j>>2] = (long)lp->tx_ring; j+=4; for (i=0;irxRingSize-1;i++){ if (i < 3) { tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4; } } tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4; for (i=0;itxRingSize-1;i++){ if (i < 3) { tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4; } } tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4; for (i=0;irxRingSize-1;i++){ if (i < 3) { tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4; } } tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4; for (i=0;itxRingSize-1;i++){ if (i < 3) { tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4; } } tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4; for (i=0;irxRingSize;i++){ tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4; } for (i=0;itxRingSize;i++){ tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4; } tmp.lval[j>>2] = inl(DE4X5_BMR); j+=4; tmp.lval[j>>2] = inl(DE4X5_TPD); j+=4; tmp.lval[j>>2] = inl(DE4X5_RPD); j+=4; tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4; tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4; tmp.lval[j>>2] = inl(DE4X5_STS); j+=4; tmp.lval[j>>2] = inl(DE4X5_OMR); j+=4; tmp.lval[j>>2] = inl(DE4X5_IMR); j+=4; tmp.lval[j>>2] = lp->chipset; j+=4; if (lp->chipset == DC21140) { tmp.lval[j>>2] = gep_rd(dev); j+=4; } else { tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4; tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4; tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4; tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4; } tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4; if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) { tmp.lval[j>>2] = lp->active; j+=4; tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4; tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4; tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4; tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4; if (lp->phy[lp->active].id != BROADCOM_T4) { tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4; tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4; } tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4; if (lp->phy[lp->active].id != BROADCOM_T4) { tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4; tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4; } else { tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4; } } tmp.addr[j++] = lp->txRingSize; tmp.addr[j++] = dev->tbusy; ioc->len = j; if (!(status = verify_area(VERIFY_WRITE, (void *)ioc->data, ioc->len))) { copy_to_user(ioc->data, tmp.addr, ioc->len); } break; */ default: status = -EOPNOTSUPP; } return status; } #ifdef MODULE /* ** Note now that module autoprobing is allowed under EISA and PCI. The ** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes ** to "do the right thing". */ #define LP(a) ((struct de4x5_private *)(a)) static struct device *mdev = NULL; static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED */ MODULE_PARM(io, "i"); int init_module(void) { int i, num, status = -EIO; struct device *p; num = count_adapters(); for (i=0; ipriv) { /* Private areas allocated? */ struct de4x5_private *lp = (struct de4x5_private *)p->priv; next = lp->next_module; if (lp->cache.buf) { /* MAC buffers allocated? */ kfree(lp->cache.buf); /* Free the MAC buffers */ } kfree(lp->cache.priv); /* Free the private area */ release_region(p->base_addr, (lp->bus == PCI ? DE4X5_PCI_TOTAL_SIZE : DE4X5_EISA_TOTAL_SIZE)); } unregister_netdev(p); kfree(p); /* Free the device structure */ return next; } static int count_adapters(void) { int i, j=0; char name[DE4X5_STRLEN]; u_char pb, dev_fn; u_short vendor; u_int class = DE4X5_CLASS_CODE; u_int device; struct pci_dev *pdev; #ifndef __sparc_v9__ u_long iobase = 0x1000; for (i=1; inext) { if ((pdev->bus->number==pb) && (pdev->devfn==dev_fn)) break; } vendor = pdev->vendor; device = pdev->device << 8; if (is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x) j++; } return j; } /* ** If at end of eth device list and can't use current entry, malloc ** one up. If memory could not be allocated, print an error message. */ __initfunc(static struct device * insert_device(struct device *dev, u_long iobase, int (*init)(struct device *))) { struct device *new; new = (struct device *)kmalloc(sizeof(struct device)+8, GFP_KERNEL); if (new == NULL) { printk("de4x5.c: Device not initialised, insufficient memory\n"); return NULL; } else { memset((char *)new, 0, sizeof(struct device)+8); new->name = (char *)(new + 1); new->base_addr = iobase; /* assign the io address */ new->init = init; /* initialisation routine */ } return new; } #endif /* MODULE */ /* * Local variables: * compile-command: "gcc -D__KERNEL__ -I/linux/include -Wall -Wstrict-prototypes -fomit-frame-pointer -fno-strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -O2 -m486 -c de4x5.c" * * compile-command: "gcc -D__KERNEL__ -DMODULE -I/linux/include -Wall -Wstrict-prototypes -fomit-frame-pointer -fno-strength-reduce -malign-loops=2 -malign-jumps=2 -malign-functions=2 -O2 -m486 -c de4x5.c" * End: */